building BRIDGES
Upcoming SlideShare
Loading in...5
×
 

building BRIDGES

on

  • 145 views

 

Statistics

Views

Total Views
145
Views on SlideShare
134
Embed Views
11

Actions

Likes
0
Downloads
0
Comments
0

1 Embed 11

http://climatechangejm.blogspot.com 11

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    building BRIDGES building BRIDGES Presentation Transcript

    • Looking  for   a  bridge   between   approaches  
    • Global  knowledge   A  bridge   for  what?   Local  knowledge  
    • Global  knowledge   Structured   InformaHon   HOW  IS  THE   CURRENT  BRIDGE?   Tacit   Knowledge   Local  knowledge  
    • Global  knowledge   Structured   InformaHon   Organized   knowledge   HOW  IS  THE   CURRENT  BRIDGE?   Tacit   Knowledge   Disintegrated   policies     Local  knowledge  
    • Global  knowledge   Structured   InformaHon   Organized   knowledge   Why  is  this   so?   Tacit   Knowledge   Disintegrated   policies     Local  knowledge  
    • Formalizing   Dynamics   DEEP   Formalizing   Associa1ons   SHALLOW   Policy   Modeling   •  System  of  Variables  (dependent  –  independent)   •  Linear  relaHon   •  Hierarchical  organizaHon   •  Homogeneity  assumpHons   •  Scare  of  Ecological  Fallacy   Mainstream  Policy  Science   Global  knowledge   Structured   InformaHon   Organized   knowledge   Why  is  this   so?   Tacit   Knowledge   Disintegrated   policies     Local  knowledge  
    • DEEP   Formalizing   Associa1ons   SHALLOW   Policy   Modeling   •  System  of  Variables  (dependent  –  independent)   •  Linear  relaHon   •  Hierarchical  organizaHon   •  Homogeneity  assumpHons   •  Scare  of  Ecological  Fallacy   Mainstream  Policy  Science   Global  knowledge   Structured   InformaHon   Organized   knowledge   Why  is  this   so?   Tacit   Knowledge   Disintegrated   policies     Local  knowledge   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior   But…   Formalizing   Dynamics  
    • DEEP   Formalizing   Associa1ons   SHALLOW   Policy   Modeling   Can  we   reconcile   this?   •  System  of  Variables  (dependent  –  independent)   •  Linear  relaHon   •  Hierarchical  organizaHon   •  Homogeneity  assumpHons   •  Scare  of  Ecological  Fallacy   Mainstream  Policy  Science   Global  knowledge   Structured   InformaHon   Tacit   Knowledge   Organized   knowledge   Disintegrated   policies     Local  knowledge   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior   But…   Formalizing   Dynamics  
    • Formalizing   Dynamics   DEEP   Policy   Modeling   Can  we   reconcile   this?   Global  knowledge   Organized   knowledge   Tacit   Knowledge   Local  knowledge   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • Policy   Modeling   Global  knowledge   DEEP   A   computaHonal   bridge!   Formalizing   Dynamics   Path-­‐ dependence   Localized   Organized   knowledge   Rules   AGENT-­‐BASED   MODELING   Tacit   Knowledge   Learning  and   adapta,on   Local  knowledge   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • BASIC  IDEA:   •  RaHonally-­‐ bounded   •  PercepHon   •  Knowledge   •  Response   We  program  agents.   Formalizing   Dynamics   Path-­‐ dependence   Localized   Rules   AGENT-­‐BASED   MODELING   Tacit   Knowledge   •  •  •  •  Organized   knowledge   Learning  and   adapta,on   Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • BASIC  IDEA:   Formalizing   Dynamics   Path-­‐ dependence   Localized   We  can  have  mulHple  agents   Rules   AGENT-­‐BASED   MODELING   Tacit   Knowledge   •  •  •  •  Organized   knowledge   Learning  and   adapta,on   Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • BASIC  IDEA:   MULTIPLE  LEVELS   Formalizing   Dynamics   Path-­‐ dependence   Localized   Organized   knowledge   Rules   AGENT-­‐BASED   MODELING   Tacit   Knowledge   Learning  and   adapta,on   We  can  have  mulHple  agents   MULTIPLE  INTERACTIONS   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • BASIC  IDEA:   MULTIPLE  LEVELS   Formalizing   Dynamics   Path-­‐ dependence   Localized   TRAJECTORIES   AND  SCALES   Organized   knowledge   Rules   AGENT-­‐BASED   MODELING   Tacit   Knowledge   Learning  and   adapta,on   We  can  have  mulHple  agents   MULTIPLE  INTERACTIONS   •  •  •  •  Networks  of  Actors   Feedback  relaHons   Emergent  organizaHon   Heterogeneity  of  behavior  
    • GREAT  APPROACH…  but  challenging   COMPUTING   ?   PROGRAMMING   ?   COMPUTABILITY   DECOMPOSABILITY   ABSTRACTION   INTEREST   VALIDITY   ?   ?   DECIDABILITY  
    • Hands  on!   PLEASE,  GO  TO:   hYp://climatechangejm.blogspot.com/  
    • DISCUSSION   How  do  you  think  ABM  could  face  these  issues?   •  Human  Agency  (Hassan,  2009;  Crate   &  Nutall,  2009)   •  History  and  Heterogeneity  maYer   (Rosen,  2003)   •  Scale  (Strauss  &  Orlove,2003;  Rosen,   2003)   •  Individual  PercepHon  and  Strategic   responses  (Rosen,2003)   •  Tractability  of  climate  change   (Rayner,2003;  Hassan,  2009)   •  JusHce  (Crate  &  Nutall,  2009)  
    • CLOSING  COMMENTS   How  can  a  simulaHon  ever  tell  us  anything   that  we  do  not  already  know?   HOLDING  THAT:   1.  A  simulaHon  is  no  beYer  than  the   assumpHons  built  into  it.   2.  A  computer  can  do  only  what  it  is   programmed  to  do.   SPACE  OF  DERIVED  POSSIBILITIES  ?   Correct  Reasoning   Correct  Reasoning   Correct  Premises   Correct  Premises   ASSUMPTIONS   ASSUMPTIONS  
    • CLOSING  COMMENTS   How  can  a  simulaHon  ever  tell  us  anything   that  we  do  not  already  know?   HOLDING  THAT:   1.  A  simulaHon  is  no  beYer  than  the   assumpHons  built  into  it.   2.  A  computer  can  do  only  what  it  is   programmed  to  do.   MODELING  THE  POORLY  UNDERSTOOD   Sufficient  Concepts   Sufficient  Concepts   Relevant  relaHonships   Relevant  relaHonships   Minimal  properHes   Minimal  properHes