SlideShare a Scribd company logo
1 of 57
– 1 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Switched-Capacitor Circuits
Continuous-Time Integrator
– 2 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Goal:
C2
Vi
Vo
R1
C2
Vi
Vo
SC
   
   
 
 
 

t
o in
1 2 -∞
o
i 1 2
1
v t = - v ξ dξ
R C
V 1 1
H s = s = -
V R C s
Approach: emulating resistors with switched capacitors
 1 2=R C
Concept of Switched Capacitor
– 3 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
 A B
q C
i = = V - V
T T

 A B
1
i = V - V
R
Ф2
Ф1
eq
T
R =
C
• A switched capacitor is a discrete-time “resistor”
• RC time constant set by capacitor ratio C2/C1 (match considerably better
than R and C) and clock period T (flexibility)
R
VA VB
i
C Ф2Ф2
Ф1Ф1
VA VB
<i>
so,
 
    
 
2
eq,1 2 2
1 1
CT
=R C = C = T
C C
Non-overlapping
two-phase clock
Switched Capacitors
– 4 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ф1 Ф2 Ф1 Ф2 Ф1 Ф2
• Shunt- and series-type SCs are simple and cheap to implement
• Stray-insensitive SC requires 2 more switches, what’s the advantage
besides being more flexible (i.e., w/ or w/o the T/2 delay)?
2-phase clock
Ф2Ф1
VA VB
CФ1
VA VB
C Ф2
Series-typeShunt-type
C Ф2Ф2(Ф1)
Ф1Ф1(Ф2)
VA VB
Stray-insensitive
Discrete-Time Integrator (DTI)
– 5 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
2-phase clock
C2
Vi
Vo
Ф2Ф1
C1
Series-typeShunt-type
Ф1 Ф2 Ф1 Ф2 Ф1 Ф2
What are the VTFs (z-domain) of these DTIs, assuming no parasitic
capacitance is present?
C2
Vi
Vo
C1Ф1
Ф2
Shunt-Type DTI
– 6 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ф1
(sample)
Charge conservation law (ideal):
Total charge on C1 and C2 during Ф1→ Ф2 transition must remain unchanged!
C2
Vi
Vo
C1
C2
Vo
C1
Vi
Ф2
(update)

Ф1 Ф2 Ф1 Ф2 Ф1 Ф2
T
vi(t)
0 t
vo(t)
0 t
(n-1)
(n)
(n+1)
(n-1)
(n)
(n+1)
Shunt-Type DTI
– 7 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ф1
(sample)
Ф2
(update)
C2
Vi
Vo
C1
C2
Vo
C1
Vi
      1 i 1 o 2Q φ = V n C - V n C     2 1 o 2Q φ = 0 C - V n+1 C

          1 2 i 1 o 2 1 o 2Q φ = Q φ ⇒ V n C - V n C = 0 C - V n+1 C
     i 1 o 2 o 2V z C - V z C = -z V z C
 
 
 
-1 -1/2
o 1 1
-1 -1
i 2 2
V z C Cz z
H z = = - or -
V z C 1- z C 1- z
Series-Type DTI
– 8 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ф1
(sample/update)
Ф2
(reset C1)
C2
Vi
Vo
C1Ф1
Ф2
 
 
 
o 1
-1
i 2
V z C 1
H z = = -
V z C 1- z
VTF:
Ф1 Ф2 Ф1 Ф2 Ф1 Ф2
T
vi(t)
0 t
vo(t)
0 t
(n-1)
(n)
(n+1)
(n-1)
(n)
(n+1)
Stray Capacitance
– 9 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Series-typeShunt-type
Cu
Cu Cu
Cu Cu
C1 C2
• Strays derive from D/S diodes and
wiring capacitance
• VTF is modified due to strays
• Strays at the summing node is of no
significance (virtual ground)
2
1
C
= 4
C
C2
Vi
Vo
C1
Ф1 Ф2
A
C2
Vi
Vo
C1
Ф1
Ф2
A
Stray-Insensitive SC Integrator
– 10 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
  1
-1
2
C 1
H z = -
C 1- z
VTF:
 
-1
1
-1
2
C z
H z = +
C 1- z
• Capacitors can be significantly sized down to save power/area
• Sizes are eventually limited by kT/C noise, mismatch, etc.
C1 Ф2Ф2(Ф1)
Ф1Ф1(Ф2)
C2
Vi
Vo
A B
“Inverting” “Non-inverting”
VTF:
SC Amplifier
– 11 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
   -11
2
C
H z = + z
C
• Non-integrating, memoryless (less the delay)
• Used in many applications of parametric amplification
VTF:
Vi
C2
C1Ф1
Ф2
Ф1
Vo
– 12 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
SC Applications
CT Filter
– 13 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
R
CVi Vo
L
R1
CA
R
R
R3
R4
CB
R2
Vi
Vo
RLC prototype
Active-RC
Tow-Thomas
CT biquad

SC DT Filter
– 14 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
SC DT
biquad
CA CB
Vi
Vo
C1 Ф2Ф2
Ф1Ф1
C2
C4 Ф2
Ф1
C3 Ф2Ф1
Ф1Ф2
Ф2
R1
CA
R
R
R3
R4
CB
R2
Vi
Vo
Active-RC
Tow-Thomas
CT biquad

Sigma-Delta (ΣΔ) Modulator
– 15 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
CI
Ф2Ф1
Ф1Ф2
Vi
Do
+VR 1-b
DAC-VR
CS
DTI + 1-bit comparator + 1-bit DAC = first-order ΣΔ ADC
Pipelined ADC
– 16 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
SC amplifier + 2 comparators + 3-level DAC = 1.5-bit pipelined ADC
Vo
Vi
0
-VR
VR
1.5-b
DAC
Φ1 C1
Φ1 C2
Φ2
Φ1
Φ2
-VR/4
VR/4
SC Common-Mode Feedback
– 17 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Vo
+
Vo
-
R
A
R
VBias Vcm
Vcmc
Vo
+
Vo
-
R
A
R
Vcmc
Vcm-VBias

CM sense amp can be replaced by a floating voltage source since the gain
through the main op-amp is high enough.
SC Common-Mode Feedback
– 18 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014

Vo
+
Vo
-
A
Vcmc
C
C
0.2C
0.2C
Ф2
Ф2
Ф2
Ф1
Ф1
Ф1
Vcm
Vcm
VBias
Vo
+
Vo
-
A
Vcmc
Vcm-VBias
Vcm-VBias
Ф2
Ф1
– 19 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Noise in SC Circuits
Noise of CT Integrator
– 20 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Noise in CT circuits can be simulated with SPICE (.noise)
R
C
Vi
Vo
R
C
Vo
VN1
2
VN2
2
H1(f)
H2(f)
         
2 2
2 22 N1 N2
oN 1 2
V V
V = f H f df + f H f df +...
Δf Δf
Noise of SC Integrator
– 21 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
SC circuits are NOT noise-free! Switches and op-amps introduce noise.
Ф1 Ф2 Ф1 Ф2 Ф1 Ф2
C2
C1 Ф2Ф1
Ф1Ф2
Vi
Vo
Sampling (Ф1) Ideal Voltage Source
– 22 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Noise is indistinguishable from signal after sampling
• The noise acquired by C1 will be amplified in Ф2 just like signal
       
 
 
 
 
  



2 2
∞ 22 N1 N2
N 10
2
∞
1 20
1 2
V V
V φ1 = f + f H f df
Δf Δf
1
= 4kTR +4kTR df
1+ j2πf R +R C
kT
=
C
C1
Vi
R1
R2
VN1
2
VN2
2
Integration (Ф2)
– 23 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
No simulator can directly simulate the aggregated output noise!
           
 
  
  
 
2 22
2 22 N3 N5N4
N 34 5
V VV
V φ2 = f + f H f df + f H f df +...
Δf Δf Δf
   
 
 
 
2
2 2 21
oN N N
2
C
V = V φ1 + V φ2
C
Vo
VN3
2
VN5
2
H34(f)
H5(f)
C1
C2
R4VN4
2
R3
Sampling (Ф1) Noise – Cascaded Stages
– 24 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
C1'R1
R2
VN3
2
VN5
2
VN1
2
VN2
2
C1
C2
R4VN4
2
R3
• Finite op-amp BW limits the noise bandwidth, resulting in less overall kT/C noise
(noise filtering).
• But parasitic loop delay may introduce peaking in freq. response, resulting in more
integrated noise (noise peaking).
C2 C2'
Vi
Vo
C1 Ф1Ф2
Ф2Ф1
C1' Ф2Ф1
Ф1Ф2
Ф2

Sampled Noise Spectrum
– 25 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Total integrated noise power remains constant
• SNR remains constant
CT
DT
PSD
fs/2 fs 3/2fs
0
PSD
fs 2fs
0
Alias
– 26 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Non-ideal Effects in
SC Circuits
Non-ideal Effects in SC Circuits
– 27 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Capacitors (poly-poly, metal-metal, MIM, MOM, sandwich, gate cap,
accumulation-mode gate cap, etc.)
– PP, MIM, and MOM are linear up to 14-16 bits (nonlinear voltage
coefficients negligible for most applications)
– Gate caps are typically good for up to 8-10 bits
• Switches (MOS transistors)
– Nonzero on-resistance (voltage dependent)
– (Nonlinear) stray capacitance added (Cgs, Cgd, Cgb, Cdb, Csb)
– Switch-induced sampling errors (charge injection, clock feedthrough,
junction leakage, drain-source leakage, and gate leakage)
• Operational amplifiers
– Offset
– Finite-gain effects (voltage dependent)
– Finite bandwidth and slew rate (measured by settling speed)
– 28 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Non-ideal Effects of
Switches
Nonzero On-Resistance
– 29 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• FET channel resistance (thus tracking bandwidth) depends on signal level
• Usually (RonCS)-1 ≥ (3-5)·ω-3dB of closed-loop op-amp for settling purpose
VGS
Vout
C
…
Ф
CS
Ф
Ф
CS
…
Ron
0 VDDVout
VTnVTp
PMOS
NMOS
CMOS
 -1
on ox DD th out
W
R = μC V - V - V
L
Clock Bootstrapping
– 30 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Small on-resistance leads to large switches → large parasitic caps and
large clock buffers
• Clock bootstrapping keeps VGS of the switch constant → constant on-
resistance (body effect?) and less parasitics w/o the PMOS
Ф
Ф
CS
…
OutIn
M1
VDD
Ф1 Ф2
CMOS Bootstrapped NMOS
Simplified Clock Bootstrapper
– 31 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Pros
• Linearity
• Bandwidth
Cons
• Device reliability
• Complexity
Out
C
In
M2
M1
VDD
VSS
OutIn
M1
VDD
Ф1 Ф2
Ф1
Ф1
Ф2
Ф2
Ф2
Ф2
Switch-Induced Errors
– 32 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Channel charge injection and clock feedthrough (on drain side) result in
charge trapped on CS after switch is turned off.
Vout
Ф
CS
Zi
Vin
CgdCgs
Qch
• Clock feedthrough
• Charge injection
Clock Feedthrough and Charge Injection
– 33 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Both phenomena sensitive to Zi, CS, and clock rise/fall time
• Offset, gain error, and nonlinearity introduced to the sampling
• Clock feedthrough can be simulated by SPICE, but charge injection
cannot be simulated with lumped transistor models
Ф
VDD
0
Vin+Vth
Switch on Switch off
Vout
Ф
CS
Zi
Vin
CgdCgs
Qch
Clock Rise/Fall-Time Dependence
– 34 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ф
VDD
0
Vin+Vth
Switch on Switch off
Vout
Ф
CS
Zi
Vin
CgdCgs
Qch
Clock feedthrough Charge injection
Fast turn-off
Slow turn-off
gs
DD
gs S
C
ΔV = - V
C +C
 
 
ox DD th in
gs S
C WL V - V - V
ΔV = -
2 C +C
 gs
in th
gs S
C
ΔV = - V + V
C +C
ΔV = 0
Dummy Switch
– 35 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Difficult to achieve precise cancellation due to the nonlinear
dependence of ΔV on Zi, CS, and clock rise/fall time
• Sensitive to the phase alignment between Ф and Ф_
Vout
Ф
W
L CS
W
2L
Ф
Vin
CMOS Switch
– 36 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Very sensitive to phase alignment between Ф and Ф_
• Subject to threshold mismatch between PMOS and NMOS
• Exact cancellation occurs only for one specific Vin (which one?)
Vout
CS
Vin
Ф
Ф
Same size for
P and N FETs
Differential Signaling
– 37 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Signal-independent errors (offset) and even-order distortions cancelled
• Gain error and odd-order nonlinearities remain
Balanced diff. input
Vop
CSp
Vip
M1
Von
CSn
Vin
M2
Ф
Ф
Switch Performance
– 38 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
    ch
2
ithDDox
2
ithDDox
on
μQ
L
VVVWLμC
L
VVV
L
W
μC
1
R 




S
ch
C
Q
2
1
ΔV Charge injection:
Bandwidth:
S
2
ch
Son CL
μQ
CR
1
BW 

2 2
ch S
S ch
Q L CΔV 1 L
≈ =
BW 2 C μQ 2μ
Performance FoM:
Technology scaling improves switch performance!
On-resistance:
Leakage in SC Circuits
– 39 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• I1 – diode leakage (existing in the old days too)
• I2 – sub-threshold drain-source leakage of summing-node switch
• I3 – gate leakage (FN tunneling) of amplifier input transistors
• Leakage currents are highly temperature- and process-dependent; the
lower limit of clock frequency is often determined by leakage
Vo(t)
0 t
Ф1 Ф1Ф2 Ф2
Φ1 = “high”, Φ2 = “low”
Vi
Vo
C2
C1
A0
Vx
Ф2 Ф2
Ф1 Ф1
VB
I2 I1
I3
DS Leakage
– 40 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
M1
+
Vi
+
Vo
+
Vo
-
Vi
-
CS
+
CS
-
VDD
M1
-
VDD
Ф1
Ф1e
Ф1 Ф1e
Ф2
Ф2
CS
+
CS
-
Ф2e
Ф2e
• 0.13-μm CMOS
• A0 = Gm·Ro = 90dB
• Ro ≈ 2MΩ
• Rleak ≈ 0.6V/3μA
≈ 0.2MΩ
• A0 = Gm·(Rleak//Ro)
≈ 70dB
OutIn
M1
VDD
Φ Φ
Φ
Out
Φ
Φ
Φ
Φ
Φ
Φ
Φ
In
M3 M4
M2
M1
Ileak
VDD = 1.2V
VSS = 0V
Gate Leakage
– 41 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Direct tunneling through the thin gate oxide
• Short-channel MOSFET behaves increasingly like BJT’s
• Violates the high-impedance assumption of the summing node
    GS ox GSI ∝ WL exp -t exp V
Switch Size Optimization
– 42 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• To minimize switch-induced error voltages, small transistor size,
slow turn-off, low source impedance should be used.
• For fast settling (high-speed design), large W/L should be used, and
errors will be inevitably large as well.
Guidelines
• Always use minimum channel length for switches as long as
leakage allows.
• For a given speed, switch sizes can be optimized w/ simulation.
• Be aware of the limitations of simulators (SPICE etc.) using lumped
device models.
– 43 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Non-ideal Effects of
Op-Amps
Non-ideal Effects of Op-Amps
– 44 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Offset
• Finite-gain effects (voltage dependent)
• Finite bandwidth and slew rate (measured by settling
speed)
Offset Voltage
– 45 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
        1 i 1 o os 2Q φ = V n C + V n - V C
      2 os 1 o os 2Q φ = -V C + V n+1 - V C
   
-1
1
o i-1
2
C z
V z = V z
C 1- z
Vi
Vo
C2
C1Ф1
Ф2
Ф2
Ф1 Vos
Vo(t)
0 t
Ф1 Ф1Ф2 Ф2
Vi = 0
   
 
 
 
1
i o o os
2
C
V = 0 ⇒ V n+1 - V n = V
C
Autozeroing
– 46 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
      1 i os 1 os 2Q φ = V n - V C - V C
      2 os 1 o os 2Q φ = -V C + V n - V C
 
 
 
o 1
i 2
V z C
H z = =
V z C
Vi
Vo
C2
C1Ф1
Ф2
Ф2
Ф1
Vos
Ф1
• Also eliminates low-frequency noise, e.g., 1/f noise
• A.k.a. correlated double sampling (CDS)
Chopper Stabilization
– 47 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Ref: K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise
chopper-stabilized differential switched-capacitor filtering technique,” IEEE Journal of
Solid-State Circuits, vol. 16, issue 6, pp. 708-715, 1981.
Vi VoA1
Vn
2
A2
fC
1
-1
A B
Chopper Stabilization
– 48 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Also eliminates DC offset
voltage of A1
Vi VoA1
Vn
2
A2
fC
1
-1
A B
|Vi|2
f
0
SN(f)
f
0
f
0
|VA|2
|VB|2
f
0
fC
fC
fC
fC
Chopper-Stabilized Differential Op-Amp
– 49 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Vi+
Vi-
Vo-
Vo+
Ф
Ф
Ф
Ф
Ф
Ф
Ф
Ф
• Integrators/amplifiers can be built using these op-amps
• Some oversampling is useful to facilitate the implementation
Ideal SC Amplifier
– 50 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
1
CL
2
C
A =
C
• Closed-loop gain is determined by the capacitor ratio by design
• But this is assuming X is an ideal summing node (the op-amp is ideal)
Vi
∞
C2
C1Ф1
Ф2
Ф1
VoX
Finite-Gain Effect in SC Amplifier
– 51 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
 
  
 
o 1 1 1 2
CL
1 2i 2 2 2
2
V C C C +C1
A = = ≈ 1-
C +CV C C C A1+
C A
Vi
A
C2
C1Ф1
Ф2
Ф1
VoX
     
     
   

 1 i 1 x 1 1 2
x 1 o 1 x 1
Q φ = V φ - V φ C +0 C
V φ = V φ = -V φ A
        1 2 i 1 x 1 o x 2Q φ = Q φ ⇒ V C = -V C + V - V C
       
   
   

 2 x 2 1 o 2 x 2 2
o 2 x 2
Q φ = -V φ C + V φ - V φ C
V φ = -V φ A
o xV = -V A
– 52 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Practical Issues
Analog vs. Digital Supply Lines
– 53 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
Sharing sensitive analog supplies with digital ones is a very bad idea.
Analog
circuits
Digital
circuits
Pad
Pad
VDD CBP
id=
d
L
di
ΔV =L
dt
R dΔV =i R
A DD L RV = V - ΔV - ΔV
Analog vs. Digital Supply Lines
– 54 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Dedicated pads
for analog and
digital supplies
• On-chip bypass
capacitors help
(watch ringing)
• Off-chip chokes
(large inductors)
can stop noise
propagation at
board level
Analog
circuits
Digital
circuits
Pad
Pad
VDD CBP
Pad
Pad
id=
“Supply” Capacitance
– 55 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Any summing-node stray capacitance can be a potential coupling path.
• VDD, VSS, substrate, clock line, and digital noises, body effect, etc.
• Fully differential circuits help to reject common-mode noise and coupling.
Cp
…
VDD
VSS
M2
M5
M3 M4
M7
M6
Vo
CC
Vi
C2
C1Ф1
Ф2
Ф2
Ф1
M1
S
Y
X
Cgs
Cgd
 stray
o
2
C
ΔV = ΔV
C
“Supply” Capacitance
– 56 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Avoid connecting bottom-plate parasitics to the summing node
• Avoid crossing other signal lines with the summing node
• Shielding can mitigate substrate noise coupling
n substrate
p+
p well
Cbot
C2
Clock Generation
– 57 –
Data Converters Switched-Capacitor Circuits Professor Y. Chiu
EECT 7327 Fall 2014
• Clock-gated ring structure
• Non-overlapping time determined by inverter delays, sensitive to process,
voltage, and temperature (PVT) variations
• DLL is an alternative, often used in high-speed designs
CLK Ф2
Ф1
Ф2
Ф1

More Related Content

What's hot

Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design pptAnil Yadav
 
Fpga architectures and applications
Fpga architectures and applicationsFpga architectures and applications
Fpga architectures and applicationsSudhanshu Janwadkar
 
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulationChirag vasava
 
low pw and leakage current techniques for cmos circuits
low pw and leakage current techniques for cmos circuitslow pw and leakage current techniques for cmos circuits
low pw and leakage current techniques for cmos circuitsAnamika Pancholi
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterIkhwan_Fakrudin
 
Negative Capacitance FET
Negative Capacitance FETNegative Capacitance FET
Negative Capacitance FETHardik Patel
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierSimen Li
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power AmplifierSimen Li
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 

What's hot (20)

Pll ppt
Pll pptPll ppt
Pll ppt
 
SigmaDeltaADC
SigmaDeltaADCSigmaDeltaADC
SigmaDeltaADC
 
FPGA
FPGAFPGA
FPGA
 
MOS transistor 13
MOS transistor 13MOS transistor 13
MOS transistor 13
 
Introduction to FPGAs
Introduction to FPGAsIntroduction to FPGAs
Introduction to FPGAs
 
Low power vlsi design ppt
Low power vlsi design pptLow power vlsi design ppt
Low power vlsi design ppt
 
Fpga architectures and applications
Fpga architectures and applicationsFpga architectures and applications
Fpga architectures and applications
 
C-V characteristics of MOS Capacitor
C-V characteristics of MOS CapacitorC-V characteristics of MOS Capacitor
C-V characteristics of MOS Capacitor
 
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
(S.C.E.T) Appliction of pll fm demodulation fsk demodulation
 
low pw and leakage current techniques for cmos circuits
low pw and leakage current techniques for cmos circuitslow pw and leakage current techniques for cmos circuits
low pw and leakage current techniques for cmos circuits
 
CMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverterCMOS Topic 5 -_cmos_inverter
CMOS Topic 5 -_cmos_inverter
 
Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Negative Capacitance FET
Negative Capacitance FETNegative Capacitance FET
Negative Capacitance FET
 
VLSI
VLSIVLSI
VLSI
 
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband AmplifierRF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
RF Circuit Design - [Ch4-2] LNA, PA, and Broadband Amplifier
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
RF Module Design - [Chapter 6] Power Amplifier
RF Module Design - [Chapter 6]  Power AmplifierRF Module Design - [Chapter 6]  Power Amplifier
RF Module Design - [Chapter 6] Power Amplifier
 
Layouts
LayoutsLayouts
Layouts
 
Mosfet
MosfetMosfet
Mosfet
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 

Viewers also liked

Switched capacitor filter
Switched capacitor filterSwitched capacitor filter
Switched capacitor filterMinh Anh Nguyen
 
Switched capacitor filter
Switched capacitor filter Switched capacitor filter
Switched capacitor filter Minh Anh Nguyen
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorKarthik Rathinavel
 
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADC
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADCDesign of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADC
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADCIDES Editor
 
Design & characterization of high speed power efficient cmos comparator
Design & characterization of high speed power efficient cmos comparatorDesign & characterization of high speed power efficient cmos comparator
Design & characterization of high speed power efficient cmos comparatorIAEME Publication
 
Converter Simulation - Beyond the Evaluation Board
Converter Simulation - Beyond the Evaluation BoardConverter Simulation - Beyond the Evaluation Board
Converter Simulation - Beyond the Evaluation BoardAnalog Devices, Inc.
 
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...IAEME Publication
 
Cultura del agua en Frailes I: conoce tus fuentes y Acuíferos
Cultura del agua en Frailes I: conoce tus fuentes y AcuíferosCultura del agua en Frailes I: conoce tus fuentes y Acuíferos
Cultura del agua en Frailes I: conoce tus fuentes y AcuíferosTúRInnova @tecnico_turismo
 
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anak
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anakhubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anak
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anakSiti Nurjanah
 
Рекламные услуги Business Family
Рекламные услуги Business FamilyРекламные услуги Business Family
Рекламные услуги Business FamilyBusiness Family
 
Рекламные услуги Business Family
Рекламные услуги Business FamilyРекламные услуги Business Family
Рекламные услуги Business FamilyBusiness Family
 
Thinks - Monday
Thinks - MondayThinks - Monday
Thinks - Mondayjwickberg
 
Интернет маркетинг по новым технологиям
Интернет маркетинг по новым технологиямИнтернет маркетинг по новым технологиям
Интернет маркетинг по новым технологиямBusiness Family
 
Enterprise Node - Code Discoverability
Enterprise Node - Code DiscoverabilityEnterprise Node - Code Discoverability
Enterprise Node - Code DiscoverabilityKurtis Kemple
 

Viewers also liked (20)

Switched capacitor filter
Switched capacitor filterSwitched capacitor filter
Switched capacitor filter
 
Switched capacitor filter
Switched capacitor filter Switched capacitor filter
Switched capacitor filter
 
Biquad Filter
Biquad FilterBiquad Filter
Biquad Filter
 
ECE 626 project report Switched Capacitor
ECE 626 project report Switched CapacitorECE 626 project report Switched Capacitor
ECE 626 project report Switched Capacitor
 
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADC
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADCDesign of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADC
Design of a 45nm TIQ Comparator for High Speed and Low Power 4-Bit Flash ADC
 
Design & characterization of high speed power efficient cmos comparator
Design & characterization of high speed power efficient cmos comparatorDesign & characterization of high speed power efficient cmos comparator
Design & characterization of high speed power efficient cmos comparator
 
Converter Simulation - Beyond the Evaluation Board
Converter Simulation - Beyond the Evaluation BoardConverter Simulation - Beyond the Evaluation Board
Converter Simulation - Beyond the Evaluation Board
 
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...
A 10-BIT 25 MS/S PIPELINED ADC USING 1.5-BIT SWITCHED CAPACITANCE BASED MDAC ...
 
Fft
FftFft
Fft
 
Lecture9
Lecture9Lecture9
Lecture9
 
Cultura del agua en Frailes I: conoce tus fuentes y Acuíferos
Cultura del agua en Frailes I: conoce tus fuentes y AcuíferosCultura del agua en Frailes I: conoce tus fuentes y Acuíferos
Cultura del agua en Frailes I: conoce tus fuentes y Acuíferos
 
путешествие к настоящему (4)
путешествие к настоящему (4)путешествие к настоящему (4)
путешествие к настоящему (4)
 
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anak
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anakhubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anak
hubungan tingkat pendidikan orangtua dengan prestasi hasil belajar anak
 
Рекламные услуги Business Family
Рекламные услуги Business FamilyРекламные услуги Business Family
Рекламные услуги Business Family
 
Рекламные услуги Business Family
Рекламные услуги Business FamilyРекламные услуги Business Family
Рекламные услуги Business Family
 
Thinks - Monday
Thinks - MondayThinks - Monday
Thinks - Monday
 
Интернет маркетинг по новым технологиям
Интернет маркетинг по новым технологиямИнтернет маркетинг по новым технологиям
Интернет маркетинг по новым технологиям
 
Ev90
Ev90Ev90
Ev90
 
Enterprise Node - Code Discoverability
Enterprise Node - Code DiscoverabilityEnterprise Node - Code Discoverability
Enterprise Node - Code Discoverability
 
Peta
PetaPeta
Peta
 

Similar to Switched capacitor

STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD Slobodan Cuk
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.pptShivamChaturvedi67
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfBalraj Singh
 
Chapter 09
Chapter 09Chapter 09
Chapter 09Tha Mike
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxElisée Ndjabu
 
Chapter 15
Chapter 15Chapter 15
Chapter 15Tha Mike
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise AmplifierSimen Li
 
Synchronization of single phase power converters to grid
Synchronization of single phase power converters to gridSynchronization of single phase power converters to grid
Synchronization of single phase power converters to gridSyed Lateef
 
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdf
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdfSwitched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdf
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdfSouryaDewan1
 
Cathode Ray Tube and Oscilloscopes
Cathode Ray Tube and OscilloscopesCathode Ray Tube and Oscilloscopes
Cathode Ray Tube and OscilloscopesDr Naim R Kidwai
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)aicdesign
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICChenming Hu
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationscuashok07
 

Similar to Switched capacitor (20)

comparator.pptx
comparator.pptxcomparator.pptx
comparator.pptx
 
Aec manual2017 imp
Aec manual2017 impAec manual2017 imp
Aec manual2017 imp
 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD
 
ddc cinverter control design process.ppt
ddc cinverter control design process.pptddc cinverter control design process.ppt
ddc cinverter control design process.ppt
 
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdfLecture21-BJT ExamplesAnd Pspice based sSim.pdf
Lecture21-BJT ExamplesAnd Pspice based sSim.pdf
 
Chapter 09
Chapter 09Chapter 09
Chapter 09
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptxsp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
sp12Part2 CIRCUITS AND SYSTEMS FOR COMPUTER ENGINEERING .pptx
 
Transformer
TransformerTransformer
Transformer
 
9077262.ppt
9077262.ppt9077262.ppt
9077262.ppt
 
Chapter 15
Chapter 15Chapter 15
Chapter 15
 
RF Module Design - [Chapter 5] Low Noise Amplifier
RF Module Design - [Chapter 5]  Low Noise AmplifierRF Module Design - [Chapter 5]  Low Noise Amplifier
RF Module Design - [Chapter 5] Low Noise Amplifier
 
Synchronization of single phase power converters to grid
Synchronization of single phase power converters to gridSynchronization of single phase power converters to grid
Synchronization of single phase power converters to grid
 
Giannakas____icecs2010
Giannakas____icecs2010Giannakas____icecs2010
Giannakas____icecs2010
 
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdf
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdfSwitched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdf
Switched_Capacitors_Mixed_Signal_Design_Engineers_1678884175.pdf
 
Pdc lab manualnew
Pdc lab manualnewPdc lab manualnew
Pdc lab manualnew
 
Cathode Ray Tube and Oscilloscopes
Cathode Ray Tube and OscilloscopesCathode Ray Tube and Oscilloscopes
Cathode Ray Tube and Oscilloscopes
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)
 
Ch5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for ICCh5 lecture slides Chenming Hu Device for IC
Ch5 lecture slides Chenming Hu Device for IC
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 

Recently uploaded

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptDineshKumar4165
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfRagavanV2
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...soginsider
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performancesivaprakash250
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityMorshed Ahmed Rahath
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Bookingroncy bisnoi
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Standamitlee9823
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Arindam Chakraborty, Ph.D., P.E. (CA, TX)
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 

Recently uploaded (20)

(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
(INDIRA) Call Girl Bhosari Call Now 8617697112 Bhosari Escorts 24x7
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
Thermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.pptThermal Engineering -unit - III & IV.ppt
Thermal Engineering -unit - III & IV.ppt
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced LoadsFEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
FEA Based Level 3 Assessment of Deformed Tanks with Fluid Induced Loads
 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
 
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Netaji Nagar, Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
 
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bangalore ☎ 7737669865 🥵 Book Your One night Stand
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
(INDIRA) Call Girl Meerut Call Now 8617697112 Meerut Escorts 24x7
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort ServiceCall Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
Call Girls in Ramesh Nagar Delhi 💯 Call Us 🔝9953056974 🔝 Escort Service
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 

Switched capacitor

  • 1. – 1 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Switched-Capacitor Circuits
  • 2. Continuous-Time Integrator – 2 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Goal: C2 Vi Vo R1 C2 Vi Vo SC                t o in 1 2 -∞ o i 1 2 1 v t = - v ξ dξ R C V 1 1 H s = s = - V R C s Approach: emulating resistors with switched capacitors  1 2=R C
  • 3. Concept of Switched Capacitor – 3 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014  A B q C i = = V - V T T   A B 1 i = V - V R Ф2 Ф1 eq T R = C • A switched capacitor is a discrete-time “resistor” • RC time constant set by capacitor ratio C2/C1 (match considerably better than R and C) and clock period T (flexibility) R VA VB i C Ф2Ф2 Ф1Ф1 VA VB <i> so,          2 eq,1 2 2 1 1 CT =R C = C = T C C Non-overlapping two-phase clock
  • 4. Switched Capacitors – 4 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 • Shunt- and series-type SCs are simple and cheap to implement • Stray-insensitive SC requires 2 more switches, what’s the advantage besides being more flexible (i.e., w/ or w/o the T/2 delay)? 2-phase clock Ф2Ф1 VA VB CФ1 VA VB C Ф2 Series-typeShunt-type C Ф2Ф2(Ф1) Ф1Ф1(Ф2) VA VB Stray-insensitive
  • 5. Discrete-Time Integrator (DTI) – 5 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 2-phase clock C2 Vi Vo Ф2Ф1 C1 Series-typeShunt-type Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 What are the VTFs (z-domain) of these DTIs, assuming no parasitic capacitance is present? C2 Vi Vo C1Ф1 Ф2
  • 6. Shunt-Type DTI – 6 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ф1 (sample) Charge conservation law (ideal): Total charge on C1 and C2 during Ф1→ Ф2 transition must remain unchanged! C2 Vi Vo C1 C2 Vo C1 Vi Ф2 (update)  Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 T vi(t) 0 t vo(t) 0 t (n-1) (n) (n+1) (n-1) (n) (n+1)
  • 7. Shunt-Type DTI – 7 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ф1 (sample) Ф2 (update) C2 Vi Vo C1 C2 Vo C1 Vi       1 i 1 o 2Q φ = V n C - V n C     2 1 o 2Q φ = 0 C - V n+1 C            1 2 i 1 o 2 1 o 2Q φ = Q φ ⇒ V n C - V n C = 0 C - V n+1 C      i 1 o 2 o 2V z C - V z C = -z V z C       -1 -1/2 o 1 1 -1 -1 i 2 2 V z C Cz z H z = = - or - V z C 1- z C 1- z
  • 8. Series-Type DTI – 8 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ф1 (sample/update) Ф2 (reset C1) C2 Vi Vo C1Ф1 Ф2       o 1 -1 i 2 V z C 1 H z = = - V z C 1- z VTF: Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 T vi(t) 0 t vo(t) 0 t (n-1) (n) (n+1) (n-1) (n) (n+1)
  • 9. Stray Capacitance – 9 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Series-typeShunt-type Cu Cu Cu Cu Cu C1 C2 • Strays derive from D/S diodes and wiring capacitance • VTF is modified due to strays • Strays at the summing node is of no significance (virtual ground) 2 1 C = 4 C C2 Vi Vo C1 Ф1 Ф2 A C2 Vi Vo C1 Ф1 Ф2 A
  • 10. Stray-Insensitive SC Integrator – 10 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014   1 -1 2 C 1 H z = - C 1- z VTF:   -1 1 -1 2 C z H z = + C 1- z • Capacitors can be significantly sized down to save power/area • Sizes are eventually limited by kT/C noise, mismatch, etc. C1 Ф2Ф2(Ф1) Ф1Ф1(Ф2) C2 Vi Vo A B “Inverting” “Non-inverting” VTF:
  • 11. SC Amplifier – 11 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014    -11 2 C H z = + z C • Non-integrating, memoryless (less the delay) • Used in many applications of parametric amplification VTF: Vi C2 C1Ф1 Ф2 Ф1 Vo
  • 12. – 12 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 SC Applications
  • 13. CT Filter – 13 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 R CVi Vo L R1 CA R R R3 R4 CB R2 Vi Vo RLC prototype Active-RC Tow-Thomas CT biquad 
  • 14. SC DT Filter – 14 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 SC DT biquad CA CB Vi Vo C1 Ф2Ф2 Ф1Ф1 C2 C4 Ф2 Ф1 C3 Ф2Ф1 Ф1Ф2 Ф2 R1 CA R R R3 R4 CB R2 Vi Vo Active-RC Tow-Thomas CT biquad 
  • 15. Sigma-Delta (ΣΔ) Modulator – 15 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 CI Ф2Ф1 Ф1Ф2 Vi Do +VR 1-b DAC-VR CS DTI + 1-bit comparator + 1-bit DAC = first-order ΣΔ ADC
  • 16. Pipelined ADC – 16 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 SC amplifier + 2 comparators + 3-level DAC = 1.5-bit pipelined ADC Vo Vi 0 -VR VR 1.5-b DAC Φ1 C1 Φ1 C2 Φ2 Φ1 Φ2 -VR/4 VR/4
  • 17. SC Common-Mode Feedback – 17 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Vo + Vo - R A R VBias Vcm Vcmc Vo + Vo - R A R Vcmc Vcm-VBias  CM sense amp can be replaced by a floating voltage source since the gain through the main op-amp is high enough.
  • 18. SC Common-Mode Feedback – 18 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014  Vo + Vo - A Vcmc C C 0.2C 0.2C Ф2 Ф2 Ф2 Ф1 Ф1 Ф1 Vcm Vcm VBias Vo + Vo - A Vcmc Vcm-VBias Vcm-VBias Ф2 Ф1
  • 19. – 19 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Noise in SC Circuits
  • 20. Noise of CT Integrator – 20 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Noise in CT circuits can be simulated with SPICE (.noise) R C Vi Vo R C Vo VN1 2 VN2 2 H1(f) H2(f)           2 2 2 22 N1 N2 oN 1 2 V V V = f H f df + f H f df +... Δf Δf
  • 21. Noise of SC Integrator – 21 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 SC circuits are NOT noise-free! Switches and op-amps introduce noise. Ф1 Ф2 Ф1 Ф2 Ф1 Ф2 C2 C1 Ф2Ф1 Ф1Ф2 Vi Vo
  • 22. Sampling (Ф1) Ideal Voltage Source – 22 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Noise is indistinguishable from signal after sampling • The noise acquired by C1 will be amplified in Ф2 just like signal                       2 2 ∞ 22 N1 N2 N 10 2 ∞ 1 20 1 2 V V V φ1 = f + f H f df Δf Δf 1 = 4kTR +4kTR df 1+ j2πf R +R C kT = C C1 Vi R1 R2 VN1 2 VN2 2
  • 23. Integration (Ф2) – 23 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 No simulator can directly simulate the aggregated output noise!                       2 22 2 22 N3 N5N4 N 34 5 V VV V φ2 = f + f H f df + f H f df +... Δf Δf Δf           2 2 2 21 oN N N 2 C V = V φ1 + V φ2 C Vo VN3 2 VN5 2 H34(f) H5(f) C1 C2 R4VN4 2 R3
  • 24. Sampling (Ф1) Noise – Cascaded Stages – 24 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 C1'R1 R2 VN3 2 VN5 2 VN1 2 VN2 2 C1 C2 R4VN4 2 R3 • Finite op-amp BW limits the noise bandwidth, resulting in less overall kT/C noise (noise filtering). • But parasitic loop delay may introduce peaking in freq. response, resulting in more integrated noise (noise peaking). C2 C2' Vi Vo C1 Ф1Ф2 Ф2Ф1 C1' Ф2Ф1 Ф1Ф2 Ф2 
  • 25. Sampled Noise Spectrum – 25 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Total integrated noise power remains constant • SNR remains constant CT DT PSD fs/2 fs 3/2fs 0 PSD fs 2fs 0 Alias
  • 26. – 26 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Non-ideal Effects in SC Circuits
  • 27. Non-ideal Effects in SC Circuits – 27 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Capacitors (poly-poly, metal-metal, MIM, MOM, sandwich, gate cap, accumulation-mode gate cap, etc.) – PP, MIM, and MOM are linear up to 14-16 bits (nonlinear voltage coefficients negligible for most applications) – Gate caps are typically good for up to 8-10 bits • Switches (MOS transistors) – Nonzero on-resistance (voltage dependent) – (Nonlinear) stray capacitance added (Cgs, Cgd, Cgb, Cdb, Csb) – Switch-induced sampling errors (charge injection, clock feedthrough, junction leakage, drain-source leakage, and gate leakage) • Operational amplifiers – Offset – Finite-gain effects (voltage dependent) – Finite bandwidth and slew rate (measured by settling speed)
  • 28. – 28 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Non-ideal Effects of Switches
  • 29. Nonzero On-Resistance – 29 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • FET channel resistance (thus tracking bandwidth) depends on signal level • Usually (RonCS)-1 ≥ (3-5)·ω-3dB of closed-loop op-amp for settling purpose VGS Vout C … Ф CS Ф Ф CS … Ron 0 VDDVout VTnVTp PMOS NMOS CMOS  -1 on ox DD th out W R = μC V - V - V L
  • 30. Clock Bootstrapping – 30 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Small on-resistance leads to large switches → large parasitic caps and large clock buffers • Clock bootstrapping keeps VGS of the switch constant → constant on- resistance (body effect?) and less parasitics w/o the PMOS Ф Ф CS … OutIn M1 VDD Ф1 Ф2 CMOS Bootstrapped NMOS
  • 31. Simplified Clock Bootstrapper – 31 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Pros • Linearity • Bandwidth Cons • Device reliability • Complexity Out C In M2 M1 VDD VSS OutIn M1 VDD Ф1 Ф2 Ф1 Ф1 Ф2 Ф2 Ф2 Ф2
  • 32. Switch-Induced Errors – 32 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Channel charge injection and clock feedthrough (on drain side) result in charge trapped on CS after switch is turned off. Vout Ф CS Zi Vin CgdCgs Qch • Clock feedthrough • Charge injection
  • 33. Clock Feedthrough and Charge Injection – 33 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Both phenomena sensitive to Zi, CS, and clock rise/fall time • Offset, gain error, and nonlinearity introduced to the sampling • Clock feedthrough can be simulated by SPICE, but charge injection cannot be simulated with lumped transistor models Ф VDD 0 Vin+Vth Switch on Switch off Vout Ф CS Zi Vin CgdCgs Qch
  • 34. Clock Rise/Fall-Time Dependence – 34 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ф VDD 0 Vin+Vth Switch on Switch off Vout Ф CS Zi Vin CgdCgs Qch Clock feedthrough Charge injection Fast turn-off Slow turn-off gs DD gs S C ΔV = - V C +C     ox DD th in gs S C WL V - V - V ΔV = - 2 C +C  gs in th gs S C ΔV = - V + V C +C ΔV = 0
  • 35. Dummy Switch – 35 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Difficult to achieve precise cancellation due to the nonlinear dependence of ΔV on Zi, CS, and clock rise/fall time • Sensitive to the phase alignment between Ф and Ф_ Vout Ф W L CS W 2L Ф Vin
  • 36. CMOS Switch – 36 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Very sensitive to phase alignment between Ф and Ф_ • Subject to threshold mismatch between PMOS and NMOS • Exact cancellation occurs only for one specific Vin (which one?) Vout CS Vin Ф Ф Same size for P and N FETs
  • 37. Differential Signaling – 37 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Signal-independent errors (offset) and even-order distortions cancelled • Gain error and odd-order nonlinearities remain Balanced diff. input Vop CSp Vip M1 Von CSn Vin M2 Ф Ф
  • 38. Switch Performance – 38 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014     ch 2 ithDDox 2 ithDDox on μQ L VVVWLμC L VVV L W μC 1 R      S ch C Q 2 1 ΔV Charge injection: Bandwidth: S 2 ch Son CL μQ CR 1 BW   2 2 ch S S ch Q L CΔV 1 L ≈ = BW 2 C μQ 2μ Performance FoM: Technology scaling improves switch performance! On-resistance:
  • 39. Leakage in SC Circuits – 39 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • I1 – diode leakage (existing in the old days too) • I2 – sub-threshold drain-source leakage of summing-node switch • I3 – gate leakage (FN tunneling) of amplifier input transistors • Leakage currents are highly temperature- and process-dependent; the lower limit of clock frequency is often determined by leakage Vo(t) 0 t Ф1 Ф1Ф2 Ф2 Φ1 = “high”, Φ2 = “low” Vi Vo C2 C1 A0 Vx Ф2 Ф2 Ф1 Ф1 VB I2 I1 I3
  • 40. DS Leakage – 40 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 M1 + Vi + Vo + Vo - Vi - CS + CS - VDD M1 - VDD Ф1 Ф1e Ф1 Ф1e Ф2 Ф2 CS + CS - Ф2e Ф2e • 0.13-μm CMOS • A0 = Gm·Ro = 90dB • Ro ≈ 2MΩ • Rleak ≈ 0.6V/3μA ≈ 0.2MΩ • A0 = Gm·(Rleak//Ro) ≈ 70dB OutIn M1 VDD Φ Φ Φ Out Φ Φ Φ Φ Φ Φ Φ In M3 M4 M2 M1 Ileak VDD = 1.2V VSS = 0V
  • 41. Gate Leakage – 41 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Direct tunneling through the thin gate oxide • Short-channel MOSFET behaves increasingly like BJT’s • Violates the high-impedance assumption of the summing node     GS ox GSI ∝ WL exp -t exp V
  • 42. Switch Size Optimization – 42 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • To minimize switch-induced error voltages, small transistor size, slow turn-off, low source impedance should be used. • For fast settling (high-speed design), large W/L should be used, and errors will be inevitably large as well. Guidelines • Always use minimum channel length for switches as long as leakage allows. • For a given speed, switch sizes can be optimized w/ simulation. • Be aware of the limitations of simulators (SPICE etc.) using lumped device models.
  • 43. – 43 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Non-ideal Effects of Op-Amps
  • 44. Non-ideal Effects of Op-Amps – 44 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Offset • Finite-gain effects (voltage dependent) • Finite bandwidth and slew rate (measured by settling speed)
  • 45. Offset Voltage – 45 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014         1 i 1 o os 2Q φ = V n C + V n - V C       2 os 1 o os 2Q φ = -V C + V n+1 - V C     -1 1 o i-1 2 C z V z = V z C 1- z Vi Vo C2 C1Ф1 Ф2 Ф2 Ф1 Vos Vo(t) 0 t Ф1 Ф1Ф2 Ф2 Vi = 0           1 i o o os 2 C V = 0 ⇒ V n+1 - V n = V C
  • 46. Autozeroing – 46 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014       1 i os 1 os 2Q φ = V n - V C - V C       2 os 1 o os 2Q φ = -V C + V n - V C       o 1 i 2 V z C H z = = V z C Vi Vo C2 C1Ф1 Ф2 Ф2 Ф1 Vos Ф1 • Also eliminates low-frequency noise, e.g., 1/f noise • A.k.a. correlated double sampling (CDS)
  • 47. Chopper Stabilization – 47 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Ref: K. C. Hsieh, P. R. Gray, D. Senderowicz, and D. G. Messerschmitt, “A low-noise chopper-stabilized differential switched-capacitor filtering technique,” IEEE Journal of Solid-State Circuits, vol. 16, issue 6, pp. 708-715, 1981. Vi VoA1 Vn 2 A2 fC 1 -1 A B
  • 48. Chopper Stabilization – 48 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Also eliminates DC offset voltage of A1 Vi VoA1 Vn 2 A2 fC 1 -1 A B |Vi|2 f 0 SN(f) f 0 f 0 |VA|2 |VB|2 f 0 fC fC fC fC
  • 49. Chopper-Stabilized Differential Op-Amp – 49 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Vi+ Vi- Vo- Vo+ Ф Ф Ф Ф Ф Ф Ф Ф • Integrators/amplifiers can be built using these op-amps • Some oversampling is useful to facilitate the implementation
  • 50. Ideal SC Amplifier – 50 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 1 CL 2 C A = C • Closed-loop gain is determined by the capacitor ratio by design • But this is assuming X is an ideal summing node (the op-amp is ideal) Vi ∞ C2 C1Ф1 Ф2 Ф1 VoX
  • 51. Finite-Gain Effect in SC Amplifier – 51 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014        o 1 1 1 2 CL 1 2i 2 2 2 2 V C C C +C1 A = = ≈ 1- C +CV C C C A1+ C A Vi A C2 C1Ф1 Ф2 Ф1 VoX                   1 i 1 x 1 1 2 x 1 o 1 x 1 Q φ = V φ - V φ C +0 C V φ = V φ = -V φ A         1 2 i 1 x 1 o x 2Q φ = Q φ ⇒ V C = -V C + V - V C                   2 x 2 1 o 2 x 2 2 o 2 x 2 Q φ = -V φ C + V φ - V φ C V φ = -V φ A o xV = -V A
  • 52. – 52 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Practical Issues
  • 53. Analog vs. Digital Supply Lines – 53 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 Sharing sensitive analog supplies with digital ones is a very bad idea. Analog circuits Digital circuits Pad Pad VDD CBP id= d L di ΔV =L dt R dΔV =i R A DD L RV = V - ΔV - ΔV
  • 54. Analog vs. Digital Supply Lines – 54 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Dedicated pads for analog and digital supplies • On-chip bypass capacitors help (watch ringing) • Off-chip chokes (large inductors) can stop noise propagation at board level Analog circuits Digital circuits Pad Pad VDD CBP Pad Pad id=
  • 55. “Supply” Capacitance – 55 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Any summing-node stray capacitance can be a potential coupling path. • VDD, VSS, substrate, clock line, and digital noises, body effect, etc. • Fully differential circuits help to reject common-mode noise and coupling. Cp … VDD VSS M2 M5 M3 M4 M7 M6 Vo CC Vi C2 C1Ф1 Ф2 Ф2 Ф1 M1 S Y X Cgs Cgd  stray o 2 C ΔV = ΔV C
  • 56. “Supply” Capacitance – 56 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Avoid connecting bottom-plate parasitics to the summing node • Avoid crossing other signal lines with the summing node • Shielding can mitigate substrate noise coupling n substrate p+ p well Cbot C2
  • 57. Clock Generation – 57 – Data Converters Switched-Capacitor Circuits Professor Y. Chiu EECT 7327 Fall 2014 • Clock-gated ring structure • Non-overlapping time determined by inverter delays, sensitive to process, voltage, and temperature (PVT) variations • DLL is an alternative, often used in high-speed designs CLK Ф2 Ф1 Ф2 Ф1