SlideShare a Scribd company logo
1 of 30
Jessa S. Ariño
    Bachelor of Secondary Education
Central Bicol State University of Education
INTRODUCTION
o Electron microscopes are scientific instruments that use
a beam of energetic electrons to examine objects on a very
fine scale.
o Electron microscopes were developed due to the
limitations of Light Microscopes which are limited by the
physics of light.
o In the early 1930's this theoretical limit had been reached
and there was a scientific desire to see the fine details of
the interior structures of organic cells (nucleus,
mitochondria...etc.).
o This required 10,000x plus magnification which was not
possible using current optical microscopes.
 The transmission electron microscope (TEM) was the
 first type of Electron Microscope to be developed and is
 patterned exactly on the light transmission microscope
 except that a focused beam of electrons is used instead of
 light to "see through" the specimen. It was developed by
 Max Knoll and Ernst Ruska in Germany in 1931.

The first scanning electron microscope (SEM) debuted
 in 1938 ( Manfred Von Ardenne) with the first commercial
 instruments around 1965. Its late development was due to
 the electronics involved in "scanning" the beam of
 electrons across the sample.
SCANNING ELECTRON MICROSCOPE
             (SEM)
 A scanning electron microscope (SEM) is a type of
 electron microscope that images a sample by scanning
 it with a high-energy beam of electrons in a raster scan
 pattern. The electrons interact with the atoms that
 make up the sample producing signals that contain
 information about the sample's surface topography,
 composition, and other properties.
Characteristics that can be viewed on SEM
Topography
 The surface features of an object or "how it looks", its texture;
  direct relation between these features and materials properties
Morphology
 The shape and size of the particles making up the object; direct
  relation between these structures and materials properties
Composition
 The elements and compounds that the object is composed of
  and the relative amounts of them; direct relationship between
  composition and materials properties
Crystallographic Information
 How the atoms are arranged in the object; direct relation
  between these arrangements and material properties
DIFFERENCES BETWEEN OM AND EM
    OPTICAL MICROSCOPE                   ELECTRON MICROSCOPE


1. The source of light.         1. The light source is replaced by a beam of
2. The specimen.                   very fast moving electrons.
3. The lenses that makes the    2. The specimen usually has to be specially
   specimen seem bigger.           prepared and held inside a vacuum
4. The magnified image of the      chamber from which the air has been
   specimen that you see.          pumped out (because electrons do not
                                   travel very far in air).
                                3. The lenses are replaced by a series of coil-
                                   shaped electromagnets through which
                                   the electron beam travels.
                                4. The image is formed as a photograph
                                   (called an electron micrograph) or as an
                                   image on a TV screen.
Advantages of Using SEM over OM
  Magnification      Depth of Field       Resolution
  OM: 4x – 1400x     0.5mm                ~ 0.2mm
  SEM: 10x – 500Kx   30mm                 1.5nm

 The SEM has a large depth of field, which allows a large
  amount of the sample to be in focus at one time and
  produces an image that is a good representation of the
  three-dimensional sample.
 The combination of higher magnification, larger depth of
  field, greater resolution, compositional and
  crystallographic information makes the SEM one of the
  most heavily used instruments in academic/national lab
  research areas and industry.
SEM Sample Preparation
 Cleaning the surface of the specimen
- The proper cleaning of the surface of the sample is
  important because the surface can contain a variety of
  unwanted deposits, such as dust, silt, and detritus, media
  components, or other contaminants, depending on the
  source of the biological material and the experiment that
  may have been conducted prior to SEM specimen
  preparation.
SEM Sample Preparation
 Stabilizing the specimen
- Stabilization is typically done with fixatives. Fixation
  can be achieved, for example, by perfusion and
  microinjection, immersions, or with vapours using
  various fixatives including aldehydes, osmium
  tetroxide, tannic acid, or thiocarbohydrazide
SEM Sample Preparation
 Rinsing the specimen
- After the fixation step, samples must be rinsed in order
  to remove the excess fixative.
SEM Sample Preparation
 Dehydrating the specimen
- The dehydration process of a biological sample needs
  to be done very carefully. It is typically performed with
  either a graded series of acetone or ethanol.
SEM Sample Preparation
 Drying the specimen
 - The scanning electron microscope (like the
  transmission electron microscope) operates with a
  vacuum. Thus, the specimens must be dry or the
  sample will be destroyed in the electron microscope
  chamber. Many electron microscopists consider a
  procedure called the Critical Point Drying (CPD) as
  the gold standard for SEM specimen drying. Carbon
  dioxide is removed after its transition from the liquid
  to the gas phase at the critical point, and the specimen
  is dried without structural damage.
SEM Sample Preparation
 Mounting the specimen
- After the sample have been cleaned, fixed, rinsed,
 dehydrated, and dried using an appropriate protocol,
 specimens must be mounted on a holder that can be
 inserted into the scanning electron microscope.
 Samples are typically mounted on metallic
 (aluminum) stubs using a double-sticky tape. It is
 important that the investigator first decides on the
 best orientation of the specimen on the mounting stub
 before attaching it. A re-orientation proves difficult
 and can result in significant damage to the sample.
SEM Sample Preparation
 Coating the specimen
- The idea of coating the specimen is to increase its
  conductivity in the scanning electron microscope
  and to prevent the build-up of high voltage charges
  on the specimen by conducting the charge to
  ground. Typically, specimens are coated with a thin
  layer of approximately 20 nm to 30 nm of a
  conductive metal (e.g., gold, gold-palladium, or
  platinum).
A spider coated in gold, having been prepared for viewing with a
                 scanning electron microscope
How a scanning electron
microscope (SEM) works?
COMPONENTS OF ELECTRON
            MICROSCOPE
1. Electron optical column consists of:
– electron source to produce electrons
– magnetic lenses to de-magnify the beam
– magnetic coils to control and modify the beam
– apertures to define the beam, prevent electron spray,
etc.
2. Vacuum systems consists of:
– chamber which “holds” vacuum, pumps to produce
vacuum
– valves to control vacuum, gauges to monitor vacuum
3. Signal Detection & Display consists of:
– detectors which collect the signal
– electronics which produce an image from the signal
Typical Images Produced by a SEM




   Scanning electron microscope image of a spider
Typical Images Produced by a SEM




An artificially colored, scanning electron micrograph showing
Salmonella typhimurium (red) invading cultured human cells.
Typical Images Produced by a SEM




A scanning electron micrograph of the bacteria Escherichia coli (E.coli)

More Related Content

What's hot

Atomic force microscopy
Atomic force microscopyAtomic force microscopy
Atomic force microscopySonu Bishnoi
 
Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)Amna Jalil
 
SCANNING PROBE MICROSCOPY .
SCANNING PROBE MICROSCOPY .SCANNING PROBE MICROSCOPY .
SCANNING PROBE MICROSCOPY .sana shaikh
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscopeRaj Mohan
 
Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)D.R. Chandravanshi
 
Scanning Tunneling Microscope
Scanning Tunneling MicroscopeScanning Tunneling Microscope
Scanning Tunneling MicroscopeHilal Aybike Can
 
Scanning and transmission electron microscopy
Scanning and transmission electron microscopyScanning and transmission electron microscopy
Scanning and transmission electron microscopygohil sanjay bhagvanji
 
Energy Dispersive Spectroscopy
Energy Dispersive SpectroscopyEnergy Dispersive Spectroscopy
Energy Dispersive SpectroscopySaad Shaukat
 
Electron microscope - SEM and TEM
Electron microscope - SEM and TEMElectron microscope - SEM and TEM
Electron microscope - SEM and TEMgaurav raja
 
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARY
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARYATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARY
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARYAnjan Anant
 
Atomic force microscopy
Atomic force microscopy Atomic force microscopy
Atomic force microscopy tabirsir
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscopeSenthil Arasan
 
Scanning Electron Microscopy (SEM) lecture
Scanning Electron Microscopy (SEM) lectureScanning Electron Microscopy (SEM) lecture
Scanning Electron Microscopy (SEM) lectureSaurabh Bhargava
 
Electron microscope (TEM & SEM)
Electron microscope (TEM & SEM)Electron microscope (TEM & SEM)
Electron microscope (TEM & SEM)Subhankar Das
 

What's hot (20)

Atomic force microscopy
Atomic force microscopyAtomic force microscopy
Atomic force microscopy
 
Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)
 
STM ppt
STM pptSTM ppt
STM ppt
 
SCANNING PROBE MICROSCOPY .
SCANNING PROBE MICROSCOPY .SCANNING PROBE MICROSCOPY .
SCANNING PROBE MICROSCOPY .
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 
Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)Scanning Electron Microscope (SEM)
Scanning Electron Microscope (SEM)
 
Scanning Tunneling Microscope
Scanning Tunneling MicroscopeScanning Tunneling Microscope
Scanning Tunneling Microscope
 
Scanning and transmission electron microscopy
Scanning and transmission electron microscopyScanning and transmission electron microscopy
Scanning and transmission electron microscopy
 
Energy Dispersive Spectroscopy
Energy Dispersive SpectroscopyEnergy Dispersive Spectroscopy
Energy Dispersive Spectroscopy
 
Electron microscope - SEM and TEM
Electron microscope - SEM and TEMElectron microscope - SEM and TEM
Electron microscope - SEM and TEM
 
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARY
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARYATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARY
ATOMIC FORCE MICROSCOPE MITHILESH CHOUDHARY
 
Atomic force microscopy
Atomic force microscopy Atomic force microscopy
Atomic force microscopy
 
Scanning probe microscope
Scanning probe microscopeScanning probe microscope
Scanning probe microscope
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 
Scanning electron microscopy (sem)
Scanning electron microscopy (sem)Scanning electron microscopy (sem)
Scanning electron microscopy (sem)
 
SEM & FESEM.pptx
SEM & FESEM.pptxSEM & FESEM.pptx
SEM & FESEM.pptx
 
Scanning Electron Microscopy (SEM) lecture
Scanning Electron Microscopy (SEM) lectureScanning Electron Microscopy (SEM) lecture
Scanning Electron Microscopy (SEM) lecture
 
SEM- scanning electron microscope
SEM- scanning electron microscope SEM- scanning electron microscope
SEM- scanning electron microscope
 
Stem
StemStem
Stem
 
Electron microscope (TEM & SEM)
Electron microscope (TEM & SEM)Electron microscope (TEM & SEM)
Electron microscope (TEM & SEM)
 

Viewers also liked

Electron microscopy
Electron microscopyElectron microscopy
Electron microscopysuniu
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing Saurabh Suman
 
Introduction to spectroscopic methods
Introduction to spectroscopic methodsIntroduction to spectroscopic methods
Introduction to spectroscopic methodsBivek Timalsina
 
Introduction To Spectroscopy
Introduction To SpectroscopyIntroduction To Spectroscopy
Introduction To Spectroscopyguest824336
 
Quality assurance audits in pharma industries
Quality assurance audits in pharma industries Quality assurance audits in pharma industries
Quality assurance audits in pharma industries rasika walunj
 
Scanning electon microscope. Dr. GAURAV SALUNKHE
Scanning electon microscope. Dr. GAURAV SALUNKHEScanning electon microscope. Dr. GAURAV SALUNKHE
Scanning electon microscope. Dr. GAURAV SALUNKHEGaurav Salunkhe
 
Electron microscope
Electron microscopeElectron microscope
Electron microscopeshabeel pn
 
Scanning transmission electron microscope (2)
Scanning transmission electron microscope (2)Scanning transmission electron microscope (2)
Scanning transmission electron microscope (2)Gulfam Hussain
 
Fluorescence Microscopy
Fluorescence MicroscopyFluorescence Microscopy
Fluorescence MicroscopyAalap Tripathy
 
Electron microscope
Electron microscopeElectron microscope
Electron microscopejakkaas
 
Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.ankurchaturvedi92
 
Scanning tunneling microscope (STM)
 Scanning tunneling microscope (STM) Scanning tunneling microscope (STM)
Scanning tunneling microscope (STM)Balsam Ata
 
Electron microscopy
Electron microscopyElectron microscopy
Electron microscopyGanga Huvin
 
Diffusion in Materials
Diffusion in MaterialsDiffusion in Materials
Diffusion in MaterialsLuis Linde
 
Carbon nanotubes ppt
Carbon nanotubes pptCarbon nanotubes ppt
Carbon nanotubes pptSaurabh Nandy
 
Sample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsSample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsMalai Kavya
 

Viewers also liked (20)

Electron microscopy
Electron microscopyElectron microscopy
Electron microscopy
 
Sem and tem
Sem and temSem and tem
Sem and tem
 
X ray diffraction
X ray diffractionX ray diffraction
X ray diffraction
 
Friction stir welding and processing
Friction stir welding and processing Friction stir welding and processing
Friction stir welding and processing
 
Introduction to spectroscopic methods
Introduction to spectroscopic methodsIntroduction to spectroscopic methods
Introduction to spectroscopic methods
 
Introduction To Spectroscopy
Introduction To SpectroscopyIntroduction To Spectroscopy
Introduction To Spectroscopy
 
Quality assurance audits in pharma industries
Quality assurance audits in pharma industries Quality assurance audits in pharma industries
Quality assurance audits in pharma industries
 
Scanning electon microscope. Dr. GAURAV SALUNKHE
Scanning electon microscope. Dr. GAURAV SALUNKHEScanning electon microscope. Dr. GAURAV SALUNKHE
Scanning electon microscope. Dr. GAURAV SALUNKHE
 
Electron microscope
Electron microscopeElectron microscope
Electron microscope
 
Scanning transmission electron microscope (2)
Scanning transmission electron microscope (2)Scanning transmission electron microscope (2)
Scanning transmission electron microscope (2)
 
Fluorescence Microscopy
Fluorescence MicroscopyFluorescence Microscopy
Fluorescence Microscopy
 
Electron microscope
Electron microscopeElectron microscope
Electron microscope
 
Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.Synthesis of silver nanoparticles-A novel method.
Synthesis of silver nanoparticles-A novel method.
 
Scanning tunneling microscope (STM)
 Scanning tunneling microscope (STM) Scanning tunneling microscope (STM)
Scanning tunneling microscope (STM)
 
Electron microscopy
Electron microscopyElectron microscopy
Electron microscopy
 
Fluorescence Microscopy
Fluorescence MicroscopyFluorescence Microscopy
Fluorescence Microscopy
 
Diffusion in Materials
Diffusion in MaterialsDiffusion in Materials
Diffusion in Materials
 
Carbon nanotubes ppt
Carbon nanotubes pptCarbon nanotubes ppt
Carbon nanotubes ppt
 
Sample questions and answers for iwp examinations
Sample questions and answers for iwp examinationsSample questions and answers for iwp examinations
Sample questions and answers for iwp examinations
 
Synthesis of silver nanoparticles presentation
Synthesis of silver nanoparticles presentation Synthesis of silver nanoparticles presentation
Synthesis of silver nanoparticles presentation
 

Similar to Scanning electron microscopy

Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron MicroscopeKetan Patil
 
Electron microscope
Electron microscopeElectron microscope
Electron microscopeReena Rai
 
ELECTRON MICROSCOPE AND ITS APPLICATION.pptx
ELECTRON MICROSCOPE AND ITS APPLICATION.pptxELECTRON MICROSCOPE AND ITS APPLICATION.pptx
ELECTRON MICROSCOPE AND ITS APPLICATION.pptxPallaviKumari112
 
Lec 3; Microscopy ALI.pptx
Lec 3; Microscopy ALI.pptxLec 3; Microscopy ALI.pptx
Lec 3; Microscopy ALI.pptxalihaider64675
 
Fluorescence and electron Microscope.pptx
Fluorescence  and electron Microscope.pptxFluorescence  and electron Microscope.pptx
Fluorescence and electron Microscope.pptxsaraso888
 
Scanning electron microscope
Scanning electron microscopeScanning electron microscope
Scanning electron microscopeSuganyaPaulraj
 
Electron Microscope Shanthakumar
Electron Microscope ShanthakumarElectron Microscope Shanthakumar
Electron Microscope Shanthakumarguestcd4662
 
Electron microscopy ameena
Electron microscopy ameenaElectron microscopy ameena
Electron microscopy ameenaAnnakurian9
 
2018 HM-scanning electron microscope
2018 HM-scanning electron microscope2018 HM-scanning electron microscope
2018 HM-scanning electron microscopeHarsh Mohan
 
Scaning electron microscop
Scaning electron microscopScaning electron microscop
Scaning electron microscoptaameb
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscopeMonika Uma Shankar
 
5. Microsocope ELECTRON MICROSCOPE (TEM & SEM ) - Basics
5. Microsocope   ELECTRON MICROSCOPE (TEM & SEM ) - Basics5. Microsocope   ELECTRON MICROSCOPE (TEM & SEM ) - Basics
5. Microsocope ELECTRON MICROSCOPE (TEM & SEM ) - BasicsNethravathi Siri
 
Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron MicroscopeMarian L
 
scanning electron microscope
scanning electron microscopescanning electron microscope
scanning electron microscopeDrAkhilaCNV
 
Chapter-3. Electron Microscopy.pptx
Chapter-3. Electron Microscopy.pptxChapter-3. Electron Microscopy.pptx
Chapter-3. Electron Microscopy.pptxShivayogiPatil2
 
scanning electron microscope for analysis
scanning electron microscope for analysisscanning electron microscope for analysis
scanning electron microscope for analysisM Ali Mohsin
 

Similar to Scanning electron microscopy (20)

Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron Microscope
 
Electron microscope
Electron microscopeElectron microscope
Electron microscope
 
ELECTRON MICROSCOPE AND ITS APPLICATION.pptx
ELECTRON MICROSCOPE AND ITS APPLICATION.pptxELECTRON MICROSCOPE AND ITS APPLICATION.pptx
ELECTRON MICROSCOPE AND ITS APPLICATION.pptx
 
Lec 3; Microscopy ALI.pptx
Lec 3; Microscopy ALI.pptxLec 3; Microscopy ALI.pptx
Lec 3; Microscopy ALI.pptx
 
Electron microscope
Electron microscopeElectron microscope
Electron microscope
 
Electron microscope
Electron microscopeElectron microscope
Electron microscope
 
Fluorescence and electron Microscope.pptx
Fluorescence  and electron Microscope.pptxFluorescence  and electron Microscope.pptx
Fluorescence and electron Microscope.pptx
 
Scanning electron microscope
Scanning electron microscopeScanning electron microscope
Scanning electron microscope
 
Electron Microscope Shanthakumar
Electron Microscope ShanthakumarElectron Microscope Shanthakumar
Electron Microscope Shanthakumar
 
Electron microscopy ameena
Electron microscopy ameenaElectron microscopy ameena
Electron microscopy ameena
 
2018 HM-scanning electron microscope
2018 HM-scanning electron microscope2018 HM-scanning electron microscope
2018 HM-scanning electron microscope
 
Scaning electron microscop
Scaning electron microscopScaning electron microscop
Scaning electron microscop
 
Transmission electron microscope
Transmission electron microscopeTransmission electron microscope
Transmission electron microscope
 
5. Microsocope ELECTRON MICROSCOPE (TEM & SEM ) - Basics
5. Microsocope   ELECTRON MICROSCOPE (TEM & SEM ) - Basics5. Microsocope   ELECTRON MICROSCOPE (TEM & SEM ) - Basics
5. Microsocope ELECTRON MICROSCOPE (TEM & SEM ) - Basics
 
Scanning Electron Microscope
Scanning Electron MicroscopeScanning Electron Microscope
Scanning Electron Microscope
 
Sem (2)
Sem (2)Sem (2)
Sem (2)
 
scanning electron microscope
scanning electron microscopescanning electron microscope
scanning electron microscope
 
Chapter-3. Electron Microscopy.pptx
Chapter-3. Electron Microscopy.pptxChapter-3. Electron Microscopy.pptx
Chapter-3. Electron Microscopy.pptx
 
scanning electron microscope for analysis
scanning electron microscope for analysisscanning electron microscope for analysis
scanning electron microscope for analysis
 
Electron microscopy
Electron microscopyElectron microscopy
Electron microscopy
 

More from Jessa Ariño

Internet and telecommunications
Internet and telecommunicationsInternet and telecommunications
Internet and telecommunicationsJessa Ariño
 
Education systems of australia, china, japan
Education systems of australia, china, japanEducation systems of australia, china, japan
Education systems of australia, china, japanJessa Ariño
 
Qualitative analysis of group 4 cations
Qualitative analysis of group 4 cationsQualitative analysis of group 4 cations
Qualitative analysis of group 4 cationsJessa Ariño
 
It enters a new learning environment
It enters a new learning environmentIt enters a new learning environment
It enters a new learning environmentJessa Ariño
 
Namingandclassification
NamingandclassificationNamingandclassification
NamingandclassificationJessa Ariño
 

More from Jessa Ariño (6)

Internet and telecommunications
Internet and telecommunicationsInternet and telecommunications
Internet and telecommunications
 
Education systems of australia, china, japan
Education systems of australia, china, japanEducation systems of australia, china, japan
Education systems of australia, china, japan
 
Qualitative analysis of group 4 cations
Qualitative analysis of group 4 cationsQualitative analysis of group 4 cations
Qualitative analysis of group 4 cations
 
Completiontestppt
CompletiontestpptCompletiontestppt
Completiontestppt
 
It enters a new learning environment
It enters a new learning environmentIt enters a new learning environment
It enters a new learning environment
 
Namingandclassification
NamingandclassificationNamingandclassification
Namingandclassification
 

Recently uploaded

ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)cama23
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxPoojaSen20
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptxiammrhaywood
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 

Recently uploaded (20)

ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)Global Lehigh Strategic Initiatives (without descriptions)
Global Lehigh Strategic Initiatives (without descriptions)
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptxCulture Uniformity or Diversity IN SOCIOLOGY.pptx
Culture Uniformity or Diversity IN SOCIOLOGY.pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptxAUDIENCE THEORY -CULTIVATION THEORY -  GERBNER.pptx
AUDIENCE THEORY -CULTIVATION THEORY - GERBNER.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 

Scanning electron microscopy

  • 1. Jessa S. Ariño Bachelor of Secondary Education Central Bicol State University of Education
  • 2. INTRODUCTION o Electron microscopes are scientific instruments that use a beam of energetic electrons to examine objects on a very fine scale. o Electron microscopes were developed due to the limitations of Light Microscopes which are limited by the physics of light. o In the early 1930's this theoretical limit had been reached and there was a scientific desire to see the fine details of the interior structures of organic cells (nucleus, mitochondria...etc.). o This required 10,000x plus magnification which was not possible using current optical microscopes.
  • 3.  The transmission electron microscope (TEM) was the first type of Electron Microscope to be developed and is patterned exactly on the light transmission microscope except that a focused beam of electrons is used instead of light to "see through" the specimen. It was developed by Max Knoll and Ernst Ruska in Germany in 1931. The first scanning electron microscope (SEM) debuted in 1938 ( Manfred Von Ardenne) with the first commercial instruments around 1965. Its late development was due to the electronics involved in "scanning" the beam of electrons across the sample.
  • 4. SCANNING ELECTRON MICROSCOPE (SEM)  A scanning electron microscope (SEM) is a type of electron microscope that images a sample by scanning it with a high-energy beam of electrons in a raster scan pattern. The electrons interact with the atoms that make up the sample producing signals that contain information about the sample's surface topography, composition, and other properties.
  • 5. Characteristics that can be viewed on SEM Topography  The surface features of an object or "how it looks", its texture; direct relation between these features and materials properties Morphology  The shape and size of the particles making up the object; direct relation between these structures and materials properties Composition  The elements and compounds that the object is composed of and the relative amounts of them; direct relationship between composition and materials properties Crystallographic Information  How the atoms are arranged in the object; direct relation between these arrangements and material properties
  • 6. DIFFERENCES BETWEEN OM AND EM OPTICAL MICROSCOPE ELECTRON MICROSCOPE 1. The source of light. 1. The light source is replaced by a beam of 2. The specimen. very fast moving electrons. 3. The lenses that makes the 2. The specimen usually has to be specially specimen seem bigger. prepared and held inside a vacuum 4. The magnified image of the chamber from which the air has been specimen that you see. pumped out (because electrons do not travel very far in air). 3. The lenses are replaced by a series of coil- shaped electromagnets through which the electron beam travels. 4. The image is formed as a photograph (called an electron micrograph) or as an image on a TV screen.
  • 7.
  • 8.
  • 9. Advantages of Using SEM over OM Magnification Depth of Field Resolution OM: 4x – 1400x 0.5mm ~ 0.2mm SEM: 10x – 500Kx 30mm 1.5nm  The SEM has a large depth of field, which allows a large amount of the sample to be in focus at one time and produces an image that is a good representation of the three-dimensional sample.  The combination of higher magnification, larger depth of field, greater resolution, compositional and crystallographic information makes the SEM one of the most heavily used instruments in academic/national lab research areas and industry.
  • 10.
  • 11. SEM Sample Preparation  Cleaning the surface of the specimen - The proper cleaning of the surface of the sample is important because the surface can contain a variety of unwanted deposits, such as dust, silt, and detritus, media components, or other contaminants, depending on the source of the biological material and the experiment that may have been conducted prior to SEM specimen preparation.
  • 12. SEM Sample Preparation  Stabilizing the specimen - Stabilization is typically done with fixatives. Fixation can be achieved, for example, by perfusion and microinjection, immersions, or with vapours using various fixatives including aldehydes, osmium tetroxide, tannic acid, or thiocarbohydrazide
  • 13. SEM Sample Preparation  Rinsing the specimen - After the fixation step, samples must be rinsed in order to remove the excess fixative.
  • 14. SEM Sample Preparation  Dehydrating the specimen - The dehydration process of a biological sample needs to be done very carefully. It is typically performed with either a graded series of acetone or ethanol.
  • 15. SEM Sample Preparation  Drying the specimen - The scanning electron microscope (like the transmission electron microscope) operates with a vacuum. Thus, the specimens must be dry or the sample will be destroyed in the electron microscope chamber. Many electron microscopists consider a procedure called the Critical Point Drying (CPD) as the gold standard for SEM specimen drying. Carbon dioxide is removed after its transition from the liquid to the gas phase at the critical point, and the specimen is dried without structural damage.
  • 16. SEM Sample Preparation  Mounting the specimen - After the sample have been cleaned, fixed, rinsed, dehydrated, and dried using an appropriate protocol, specimens must be mounted on a holder that can be inserted into the scanning electron microscope. Samples are typically mounted on metallic (aluminum) stubs using a double-sticky tape. It is important that the investigator first decides on the best orientation of the specimen on the mounting stub before attaching it. A re-orientation proves difficult and can result in significant damage to the sample.
  • 17. SEM Sample Preparation  Coating the specimen - The idea of coating the specimen is to increase its conductivity in the scanning electron microscope and to prevent the build-up of high voltage charges on the specimen by conducting the charge to ground. Typically, specimens are coated with a thin layer of approximately 20 nm to 30 nm of a conductive metal (e.g., gold, gold-palladium, or platinum).
  • 18. A spider coated in gold, having been prepared for viewing with a scanning electron microscope
  • 19. How a scanning electron microscope (SEM) works?
  • 20.
  • 21. COMPONENTS OF ELECTRON MICROSCOPE 1. Electron optical column consists of: – electron source to produce electrons – magnetic lenses to de-magnify the beam – magnetic coils to control and modify the beam – apertures to define the beam, prevent electron spray, etc. 2. Vacuum systems consists of: – chamber which “holds” vacuum, pumps to produce vacuum – valves to control vacuum, gauges to monitor vacuum 3. Signal Detection & Display consists of: – detectors which collect the signal – electronics which produce an image from the signal
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28. Typical Images Produced by a SEM Scanning electron microscope image of a spider
  • 29. Typical Images Produced by a SEM An artificially colored, scanning electron micrograph showing Salmonella typhimurium (red) invading cultured human cells.
  • 30. Typical Images Produced by a SEM A scanning electron micrograph of the bacteria Escherichia coli (E.coli)