G H PATEL COLLEGE OF ENGINEERING AND TECHNOLOGY 
DEPARTMENT OF INFORMATION TECHNOLOGY 
Subject : 2131004 (Digital Electronics) 
K-map Method 
Preparad By: 
Harekrushna Patel (130110116035)
Contents 
• Introduction 
• Two variable maps 
• Three variable maps 
• Four variable maps 
• Five variable maps 
• Six variable maps
Introduction 
• The map method provides a simple straight 
forward procedure for minimizing Boolean 
functions. 
• This method may be regarded either as a 
pictorial form of a truth table or as an 
extension of the Venn diagram. 
• The map method, first proposed by Veitch (1) 
and slightly modify by Karnaugh (2), is also 
known as the ‘Veitch diagram’ or the 
‘Karnaugh map’.
Cont. 
Minterm 
• Standard Product Term 
• For n – variable function → 2n minterm 
• Sum of all minterms = 1 i.e. Σmi = 1
Cont. 
Maxterm 
• Standard Sum Term 
• For n – variable function → 2n maxterm 
• Product of all maxterms = 1 i.e. ΠMj = 1
Cont. 
• Forms of Boolean function: 
– Sum of Product(SOP) form 
– Product of Sum(POS) form
Cont. 
• SOP Form: 
– AND - OR Logic or NAND - NAND Logic
Cont. 
• POS Form: 
– OR - AND Logic or NOR - NOR Logic
Rules 
• No zeros allowed. 
• No diagonals. 
• Only power of 2 number of cells in each 
group. 
• Groups should be as large as possible. 
• Every 1 must be in at least one group. 
• Overlapping allowed. 
• Wrap around allowed. 
• Fewest number of groups possible.
Two variable K-map 
• There are four minterms for two variables; 
hence the map consists of four squares, one 
for each minterm. 
• The 0’s and 1’s marked for each row and each 
column designate the values of variables x and 
y, respectively. 
mo m1 
m2 m3
Cont. 
mo m1 
m2 m3
Cont. 
mo m1 
m2 m3 
x 
y 
• Take two variables x and y
Cont. 
y’ y 
0 1 
mo m1 
m2 m3 
x 
y 
0 
1 
X’ 
X 
• Relation between squares & two variables
Cont. 
y’ y 
0 1 
x’y’ 
x 
y 
0 
1 
X’ 
X 
• Relation between squares & two variables
Cont. 
y’ y 
0 1 
x’y’ x’y 
x 
y 
0 
1 
X’ 
X 
• Relation between squares & two variables
Cont. 
y’ y 
0 1 
x’y’ x’y 
xy’ 
x 
y 
0 
1 
X’ 
X 
• Relation between squares & two variables
Cont. 
y’ y 
0 1 
x’y’ x’y 
xy’ xy 
x 
y 
0 
1 
X’ 
X 
• Relation between squares & two variables
Example 
• Simplify following two Boolean functions: 
– F1 = xy 
– F2 = x+y
Cont. 
mo m1 
m2 m3 
x 
y 
0 
1 
• F1 = xy……???? 
0 1 
X’ 
X 
y’ y
Cont. 
0 0 
0 1 
x 
• F1 = xy 
y 
0 
1 
0 1 
X’ 
X 
y’ y
Cont. 
y’ y 
0 1 
mo m1 
m2 m3 
x 
y 
0 
1 
X’ 
X 
• F2 = x + y……????
Cont. 
y’ y 
0 1 
0 1 
1 1 
x 
y 
0 
1 
X’ 
X 
• F2 = x + y = x’y + xy’ + xy = m1 + m2 + m3
Three variable K-map 
• There eight minterms for three binary 
variables. Therefore, a map consists of eight 
squares. 
m0 m1 m3 m2 
m4 m5 m7 m6
Cont. 
m0 m1 m3 m2 
m4 m5 m7 m6
Cont. 
m0 m1 m3 m2 
m4 m5 m7 m6 
x 
yz 
• Take three variables x, y and z
Cont. 
x 
yz 
0 
1 
y’z’ y’z y z y z’ 
00 01 11 10 
x’ 
x 
m0 m1 m3 m2 
m4 m5 m7 m6 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ 
1 
00 01 11 10 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z 
1 
00 01 11 10 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z x’yz 
1 
00 01 11 10 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z x’yz x’yz’ 
1 
00 01 11 10 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z x’yz x’yz’ 
1 
00 01 11 10 
xy’z’ 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z x’yz x’yz’ 
1 
00 01 11 10 
xy’z’ xy’z 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
y’z’ y’z y z y z’ 
x’ 0 
x’y’z’ x’y’z x’yz x’yz’ 
1 
00 01 11 10 
xy’z’ xy’z xyz 
x 
• Relation between squares & three variables
Cont. 
x 
yz 
0 
x 1 
xy’z’ xy’z xyz xyz’ 
y’z’ y’z y z y z’ 
00 01 11 10 
x’ 
x’y’z’ x’y’z x’yz x’yz’ 
• Relation between squares & three variables
Example 
• Simplify the Boolean function: 
– F = x’yz + xy’z’ + xyz + xyz’ 
• Ans.: 
– x’yz = m3 
– xy’z’ = m4 
– xyz = m7 
– xyz’ = m6
Cont. 
x 
yz 
0 
1 
y’z’ y’z y z y z’ 
00 01 11 10 
x’ 
x 
m0 m1 m3 m2 
m4 m5 m7 m6 
• F = x’yz + x’yz’ + xy’z’ + xy’z
Cont. 
x 
yz 
0 
1 
y’z’ y’z y z y z’ 
00 01 11 10 
x’ 
x 
0 0 1 0 
1 0 1 1 
• F = x’yz + x’yz’ + xy’z’ + xy’z
Cont. 
x 
yz 
0 
1 
y’z’ y’z y z y z’ 
00 01 11 10 
x’ 
x 
0 0 1 0 
1 0 1 1 
• Final Ans. 
F = yz + xz’
Four Variable K-map 
• There sixteen minterms for four binary 
variables. Therefore, a map consists of sixteen 
squares. 
m0 m1 m3 m2 
m4 m5 m7 m6 
m12 m13 m15 m14 
m8 m9 m11 m10
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
m0 m1 m3 m2 
m4 m5 m7 m6 
m12 m13 m15 m14 
m8 m9 m11 m10 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Take four variables A,B,C and D
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD ABCD’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD ABCD’ 
AB’C’D’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD ABCD’ 
AB’C’D’ AB’C’D 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD ABCD’ 
AB’C’D’ AB’C’D AB’CD 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Cont. 
C’D’ C’D C D C D’ 
00 01 11 10 
A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 
A’BC’D’ A’BC’D A’BCD A’BCD’ 
ABC’D’ ABC’D ABCD ABCD’ 
AB’C’D’ AB’C’D AB’CD AB’CD’ 
00 
01 
11 
10 
AB 
A’B’ 
A’B 
A B 
A B’ 
CD 
• Relation between squares & four variables
Example 
• Simplify the Boolean function: 
– F(w, x, y, z) = Σ(1,5,12,13)
Cont. 
m0 m1 m3 m2 
m4 m5 m7 m6 
m12 m13 m15 m14 
m8 m9 m11 m10 
W 
Z 
X 
Y 
00 01 11 10 
00 
01 
11 
10 
F(w, x, y, z) = Σ(1,5,12,13)
Cont. 
0 1 0 0 
0 1 0 0 
1 1 0 0 
0 0 0 0 
W 
Z 
X 
Y 
00 01 11 10 
00 
01 
11 
10 
F(w, x, y, z) = Σ(1,5,12,13) 
Put 1 in place of 
m1, m5, m12, m13
Cont. 
0 1 0 0 
0 1 0 0 
1 1 0 0 
0 0 0 0 
W 
Z 
X 
Y 
00 01 11 10 
00 
01 
11 
10 
F(w, x, y, z) = Σ(1,5,12,13) 
Put 1 in place of 
m1, m5, m12, m13 
Making pairs
Cont. 
0 1 0 0 
0 1 0 0 
1 1 0 0 
0 0 0 0 
W 
Z 
X 
Y 
00 01 11 10 
00 
01 
11 
10 
F(w, x, y, z) = Σ(1,5,12,13) 
Put 1 in place of 
m1, m5, m12, m13 
Making pairs 
Hence the simplified 
Expression is 
F = WY’Z + W’Y’Z
Five variable K-map 
• There thirty two minterms for five binary 
variables. Therefore, a map consists of thirty 
two squares. 
m16 m17 m19 m18 
m20 m21 m23 m22 
M28 m29 M31 m30 
m24 m25 m27 m26 
m0 m1 m3 m2 
m4 m5 m7 m6 
m12 m13 m15 m14 
m8 m9 m11 m10
Cont. 
000 001 011 010 110 111 101 100 
m16 m17 m19 m18 
m20 m21 m23 m22 
m28 m29 m31 m30 
m24 m25 m27 m26 
E 
m0 m1 m3 m2 
m4 m5 m7 m6 
m12 m13 m15 m14 
m8 m9 m11 m10 
CD 
AB 
00 
01 
11 
10 
• Relation between squares & five variables
Cont. 
• Example: 
– Design a circuit of 5 input variables that generates 
output 1 if and only if the number of 1’s in the 
input is prime (i.e., 2, 3 or 5). 
• Ans.: 
– The minterms can easily be found from Karnaugh 
Map where addresses of 2,3 or 5 numbers of 1.
Cont.
Cont.
Cont. 
• Hence the simplified expression becomes 
BC’D’E + A’BC’D + AC’DE’ + AB’C’D + A’B’CE + A’CDE’ 
+ A’BCD + AB’CD’ + ABD’E’ + AB’DE’ + A’B’DE + 
ABCDE
6 variable K-map 
• A 6-variable K-Map will have 26 = 64 cells. A 
function F which has maximum decimal value 
of 63, can be defined and simplified by a 6- 
variable Karnaugh Map.
Cont.
Cont. 
• Boolean table for 6 variables is quite big, so 
we have shown only values, where there is a 
noticeable change in values which will help us 
to draw the K-Map. 
• A = 0 for decimal values 0 to 31 and A = 1 for 
31 to 63. 
• B = 0 for decimal values 0 to 15 and 32 to 47. 
B = 1 for decimal values 16 to 31 and 48 to 63.
Cont. 
No. A B C D E F Minterm 
m0 0 0 0 0 0 0 A’B’C’D’E’F’ 
m15 0 0 1 1 1 1 A’B’CDEF 
m16 0 1 0 0 0 0 A’BC’D’E’F’ 
m31 0 1 1 1 1 1 A’BCDEF 
m32 1 0 0 0 0 0 AB’C’D’E’F’ 
m47 1 0 1 1 1 1 AB’CDEF 
m48 1 1 0 0 0 0 ABC’D’E’F’ 
m63 1 1 1 1 1 1 ABCDEF
Cont. 
• Example: 
– F = Σ (0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 
32, 34, 40, 41, 42, 45, 47, 48, 50, 56, 57, 58, 60, 
61) 
• Ans.: 
– Since, the biggest number is 61, we need to have 
6 variables to define this function.
F = Σ (0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 
48, 50, 56, 57, 58, 60, 61)
Cont. 
• Hence the simplified expression becomes 
F = D’F’ + ACE’F + B’CDF + A’C'E’F’ + ABCE’ + 
A’BC’DEF
Cont. 
• Example: 
– F = Σ (0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 16, 17, 18, 19, 
24, 25, 36, 37, 38, 39, 52, 53, 60, 61) 
• Ans.: 
– Since, the biggest number is 61, we need to have 
6 variables to define this function.
Cont.
Cont. 
• Hence the simplified expression becomes 
F = A’B'E’ + A’C'D’ + A’D'E’ + AB’C'D + ABCE’
THANK YOU... 
You can find a copy of this presentation at: 
http://www.slideshare.net

K-map method

  • 1.
    G H PATELCOLLEGE OF ENGINEERING AND TECHNOLOGY DEPARTMENT OF INFORMATION TECHNOLOGY Subject : 2131004 (Digital Electronics) K-map Method Preparad By: Harekrushna Patel (130110116035)
  • 2.
    Contents • Introduction • Two variable maps • Three variable maps • Four variable maps • Five variable maps • Six variable maps
  • 3.
    Introduction • Themap method provides a simple straight forward procedure for minimizing Boolean functions. • This method may be regarded either as a pictorial form of a truth table or as an extension of the Venn diagram. • The map method, first proposed by Veitch (1) and slightly modify by Karnaugh (2), is also known as the ‘Veitch diagram’ or the ‘Karnaugh map’.
  • 4.
    Cont. Minterm •Standard Product Term • For n – variable function → 2n minterm • Sum of all minterms = 1 i.e. Σmi = 1
  • 5.
    Cont. Maxterm •Standard Sum Term • For n – variable function → 2n maxterm • Product of all maxterms = 1 i.e. ΠMj = 1
  • 6.
    Cont. • Formsof Boolean function: – Sum of Product(SOP) form – Product of Sum(POS) form
  • 7.
    Cont. • SOPForm: – AND - OR Logic or NAND - NAND Logic
  • 8.
    Cont. • POSForm: – OR - AND Logic or NOR - NOR Logic
  • 9.
    Rules • Nozeros allowed. • No diagonals. • Only power of 2 number of cells in each group. • Groups should be as large as possible. • Every 1 must be in at least one group. • Overlapping allowed. • Wrap around allowed. • Fewest number of groups possible.
  • 10.
    Two variable K-map • There are four minterms for two variables; hence the map consists of four squares, one for each minterm. • The 0’s and 1’s marked for each row and each column designate the values of variables x and y, respectively. mo m1 m2 m3
  • 11.
  • 12.
    Cont. mo m1 m2 m3 x y • Take two variables x and y
  • 13.
    Cont. y’ y 0 1 mo m1 m2 m3 x y 0 1 X’ X • Relation between squares & two variables
  • 14.
    Cont. y’ y 0 1 x’y’ x y 0 1 X’ X • Relation between squares & two variables
  • 15.
    Cont. y’ y 0 1 x’y’ x’y x y 0 1 X’ X • Relation between squares & two variables
  • 16.
    Cont. y’ y 0 1 x’y’ x’y xy’ x y 0 1 X’ X • Relation between squares & two variables
  • 17.
    Cont. y’ y 0 1 x’y’ x’y xy’ xy x y 0 1 X’ X • Relation between squares & two variables
  • 18.
    Example • Simplifyfollowing two Boolean functions: – F1 = xy – F2 = x+y
  • 19.
    Cont. mo m1 m2 m3 x y 0 1 • F1 = xy……???? 0 1 X’ X y’ y
  • 20.
    Cont. 0 0 0 1 x • F1 = xy y 0 1 0 1 X’ X y’ y
  • 21.
    Cont. y’ y 0 1 mo m1 m2 m3 x y 0 1 X’ X • F2 = x + y……????
  • 22.
    Cont. y’ y 0 1 0 1 1 1 x y 0 1 X’ X • F2 = x + y = x’y + xy’ + xy = m1 + m2 + m3
  • 23.
    Three variable K-map • There eight minterms for three binary variables. Therefore, a map consists of eight squares. m0 m1 m3 m2 m4 m5 m7 m6
  • 24.
    Cont. m0 m1m3 m2 m4 m5 m7 m6
  • 25.
    Cont. m0 m1m3 m2 m4 m5 m7 m6 x yz • Take three variables x, y and z
  • 26.
    Cont. x yz 0 1 y’z’ y’z y z y z’ 00 01 11 10 x’ x m0 m1 m3 m2 m4 m5 m7 m6 • Relation between squares & three variables
  • 27.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ 1 00 01 11 10 x • Relation between squares & three variables
  • 28.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z 1 00 01 11 10 x • Relation between squares & three variables
  • 29.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z x’yz 1 00 01 11 10 x • Relation between squares & three variables
  • 30.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z x’yz x’yz’ 1 00 01 11 10 x • Relation between squares & three variables
  • 31.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z x’yz x’yz’ 1 00 01 11 10 xy’z’ x • Relation between squares & three variables
  • 32.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z x’yz x’yz’ 1 00 01 11 10 xy’z’ xy’z x • Relation between squares & three variables
  • 33.
    Cont. x yz y’z’ y’z y z y z’ x’ 0 x’y’z’ x’y’z x’yz x’yz’ 1 00 01 11 10 xy’z’ xy’z xyz x • Relation between squares & three variables
  • 34.
    Cont. x yz 0 x 1 xy’z’ xy’z xyz xyz’ y’z’ y’z y z y z’ 00 01 11 10 x’ x’y’z’ x’y’z x’yz x’yz’ • Relation between squares & three variables
  • 35.
    Example • Simplifythe Boolean function: – F = x’yz + xy’z’ + xyz + xyz’ • Ans.: – x’yz = m3 – xy’z’ = m4 – xyz = m7 – xyz’ = m6
  • 36.
    Cont. x yz 0 1 y’z’ y’z y z y z’ 00 01 11 10 x’ x m0 m1 m3 m2 m4 m5 m7 m6 • F = x’yz + x’yz’ + xy’z’ + xy’z
  • 37.
    Cont. x yz 0 1 y’z’ y’z y z y z’ 00 01 11 10 x’ x 0 0 1 0 1 0 1 1 • F = x’yz + x’yz’ + xy’z’ + xy’z
  • 38.
    Cont. x yz 0 1 y’z’ y’z y z y z’ 00 01 11 10 x’ x 0 0 1 0 1 0 1 1 • Final Ans. F = yz + xz’
  • 39.
    Four Variable K-map • There sixteen minterms for four binary variables. Therefore, a map consists of sixteen squares. m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10
  • 40.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 00 01 11 10 AB A’B’ A’B A B A B’ CD • Take four variables A,B,C and D
  • 41.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 42.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 43.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 44.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 45.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 46.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 47.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 48.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 49.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 50.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 51.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 52.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD ABCD’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 53.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD ABCD’ AB’C’D’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 54.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD ABCD’ AB’C’D’ AB’C’D 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 55.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD ABCD’ AB’C’D’ AB’C’D AB’CD 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 56.
    Cont. C’D’ C’DC D C D’ 00 01 11 10 A’B’C’D’ A’B’C’D A’B’CD A’B’CD’ A’BC’D’ A’BC’D A’BCD A’BCD’ ABC’D’ ABC’D ABCD ABCD’ AB’C’D’ AB’C’D AB’CD AB’CD’ 00 01 11 10 AB A’B’ A’B A B A B’ CD • Relation between squares & four variables
  • 57.
    Example • Simplifythe Boolean function: – F(w, x, y, z) = Σ(1,5,12,13)
  • 58.
    Cont. m0 m1m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 W Z X Y 00 01 11 10 00 01 11 10 F(w, x, y, z) = Σ(1,5,12,13)
  • 59.
    Cont. 0 10 0 0 1 0 0 1 1 0 0 0 0 0 0 W Z X Y 00 01 11 10 00 01 11 10 F(w, x, y, z) = Σ(1,5,12,13) Put 1 in place of m1, m5, m12, m13
  • 60.
    Cont. 0 10 0 0 1 0 0 1 1 0 0 0 0 0 0 W Z X Y 00 01 11 10 00 01 11 10 F(w, x, y, z) = Σ(1,5,12,13) Put 1 in place of m1, m5, m12, m13 Making pairs
  • 61.
    Cont. 0 10 0 0 1 0 0 1 1 0 0 0 0 0 0 W Z X Y 00 01 11 10 00 01 11 10 F(w, x, y, z) = Σ(1,5,12,13) Put 1 in place of m1, m5, m12, m13 Making pairs Hence the simplified Expression is F = WY’Z + W’Y’Z
  • 62.
    Five variable K-map • There thirty two minterms for five binary variables. Therefore, a map consists of thirty two squares. m16 m17 m19 m18 m20 m21 m23 m22 M28 m29 M31 m30 m24 m25 m27 m26 m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10
  • 63.
    Cont. 000 001011 010 110 111 101 100 m16 m17 m19 m18 m20 m21 m23 m22 m28 m29 m31 m30 m24 m25 m27 m26 E m0 m1 m3 m2 m4 m5 m7 m6 m12 m13 m15 m14 m8 m9 m11 m10 CD AB 00 01 11 10 • Relation between squares & five variables
  • 64.
    Cont. • Example: – Design a circuit of 5 input variables that generates output 1 if and only if the number of 1’s in the input is prime (i.e., 2, 3 or 5). • Ans.: – The minterms can easily be found from Karnaugh Map where addresses of 2,3 or 5 numbers of 1.
  • 65.
  • 66.
  • 67.
    Cont. • Hencethe simplified expression becomes BC’D’E + A’BC’D + AC’DE’ + AB’C’D + A’B’CE + A’CDE’ + A’BCD + AB’CD’ + ABD’E’ + AB’DE’ + A’B’DE + ABCDE
  • 68.
    6 variable K-map • A 6-variable K-Map will have 26 = 64 cells. A function F which has maximum decimal value of 63, can be defined and simplified by a 6- variable Karnaugh Map.
  • 69.
  • 70.
    Cont. • Booleantable for 6 variables is quite big, so we have shown only values, where there is a noticeable change in values which will help us to draw the K-Map. • A = 0 for decimal values 0 to 31 and A = 1 for 31 to 63. • B = 0 for decimal values 0 to 15 and 32 to 47. B = 1 for decimal values 16 to 31 and 48 to 63.
  • 71.
    Cont. No. AB C D E F Minterm m0 0 0 0 0 0 0 A’B’C’D’E’F’ m15 0 0 1 1 1 1 A’B’CDEF m16 0 1 0 0 0 0 A’BC’D’E’F’ m31 0 1 1 1 1 1 A’BCDEF m32 1 0 0 0 0 0 AB’C’D’E’F’ m47 1 0 1 1 1 1 AB’CDEF m48 1 1 0 0 0 0 ABC’D’E’F’ m63 1 1 1 1 1 1 ABCDEF
  • 72.
    Cont. • Example: – F = Σ (0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, 50, 56, 57, 58, 60, 61) • Ans.: – Since, the biggest number is 61, we need to have 6 variables to define this function.
  • 73.
    F = Σ(0, 2, 4, 8, 10, 13, 15, 16, 18, 20, 23, 24, 26, 32, 34, 40, 41, 42, 45, 47, 48, 50, 56, 57, 58, 60, 61)
  • 74.
    Cont. • Hencethe simplified expression becomes F = D’F’ + ACE’F + B’CDF + A’C'E’F’ + ABCE’ + A’BC’DEF
  • 75.
    Cont. • Example: – F = Σ (0, 1, 2, 3, 4, 5, 8, 9, 12, 13, 16, 17, 18, 19, 24, 25, 36, 37, 38, 39, 52, 53, 60, 61) • Ans.: – Since, the biggest number is 61, we need to have 6 variables to define this function.
  • 76.
  • 77.
    Cont. • Hencethe simplified expression becomes F = A’B'E’ + A’C'D’ + A’D'E’ + AB’C'D + ABCE’
  • 78.
    THANK YOU... Youcan find a copy of this presentation at: http://www.slideshare.net