• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Sustainable Solutions for the 21st Century - Opportunities for Integration of Solid Waste Conversion Technologies with Public Works
 

Sustainable Solutions for the 21st Century - Opportunities for Integration of Solid Waste Conversion Technologies with Public Works

on

  • 410 views

 

Statistics

Views

Total Views
410
Views on SlideShare
410
Embed Views
0

Actions

Likes
0
Downloads
5
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Sustainable Solutions for the 21st Century - Opportunities for Integration of Solid Waste Conversion Technologies with Public Works Sustainable Solutions for the 21st Century - Opportunities for Integration of Solid Waste Conversion Technologies with Public Works Presentation Transcript

    • SUSTAINABLE SOLUTIONS FOR THE 21ST CENTURY Opportunities for Integration of Solid Waste Conversion  Technologies with Public Works 2012 APWA Florida Chapter  Annual Meeting &  Annual Meeting & Trade Show Paul Hauck, P.E. C CDM Smith S t 1715 N. Westshore Boulevard Suite 875 Tampa, Florida 33607 (813) 281‐2900 hauckpl@cdmsmith.com h k l@ d ith
    • CDM Smith’s U.S. Waste‐to‐Energy ExperienceIntroduction
    • CDM Smith’s Florida Solid Waste ExperienceIntroduction
    • My Claim to Fame – Construction Manager of Pasco County Resource Recovery FacilityPasco County Resource Recovery Facility Constructed 1989-1992 $90M, 1050 TPD 32 MWIntroduction
    • Presentation Outline• Emerging paradigms• Proven and emerging waste conversion technologies• Marriage of WTE and water resources Marriage of WTE and water resources• Synergistic opportunities with Public Works Emerging Paradigms
    • Intended Consequences of theIntegrated Solid Waste Management HierarchyIntegrated Solid Waste Management HierarchyEmerging Paradigms
    • The Three Rs of Recycling…Plus Two!Emerging Paradigms
    • Municipal Wastes…Yesterday’s Trash…Today’s Renewable Fuels and WattageRenewable Fuels and Wattage• Municipal solid waste (MSW)• Refuse‐derived fuel (RDF) – Fluff Waste Conversion  – Densified Densified  Technology Options T h l O ti (pellets and briquettes)• Biomass (yard and  • Thermal (WTE) wood waste) • Biological/Chemical • Organic wastes • Physical – F d Food wastest – Fats, oils, and grease (FOG) p ( )• Wastewater treatment plant (WWTP) biosolidsEmerging Paradigms
    • Modern WTE Trends •WTE facility expansions and new construction Attention to aesthetics/LEED /innovation •Attention to aesthetics/LEED®/innovation •More stringent emission limits and GHG reporting Increasing •MSW Higher Heating Value (HHV) •Boiler/T‐G availability •Use of reclaimed water for cooling •Use of reclaimed water for cooling •Gross/net electric generation •Non‐ferrous metal recovery •Integrated solid waste management/eco‐campus •Resistance to WTE in established communities •Air emissions  •Reagent consumption •Water consumption Decreasing •Lower PPA electric paymentsEmerging Paradigms
    • Campus for Management of Solid Waste,  Recycling, and Water Resources Recycling and Water Resources Reclaimed Water Recycled  Potable Water Potable Water Wastewater Yard & Wood  Yard & Wood Products Biosolids i lid Compost Facility ili Treatment Plant Treatment Plant Waste Processing • compost • mulch Electricity • soil amendment ~ mpressed Air Biosolids Excess   Electricity Shredded Yard Combustibles & Wood Waste •Chipped Tires Cooling & Fire Protection •Chipped Wood Com Used Tire / Bulky Waste Used Tire / Bulky Waste • tire derived fuel ~ Wood & Yard Waste • crumb rubber Resizing Facility WTE Electricity Low Pressure Steam & Compressed Air ~ Construction & Demolition • sand Waste‐to‐Energy Combustibles Debris Processing Facility • crushed asphalt M Not Requiring  • crushed concrete Concrete Resizing ravel shed and, • metals Rejects Sa Crus Gr M Ash • metals M Steam Residue WTE Ash • recycled ash eachate to WWTP Processing Landfill Gas & Mined  ‐ LF daily cover Combustible Rejects Loop for M Electricity Facility M ~ Combustibles ‐ road base Industrial Park Tenants ects Landfill Le Reje • plastics • glass M ~ Electricity MRF • paper M • cardboard Landfill Gas • metalsReclaimed Water Reuse Closed C&D / Inert Active Landfill Ash Monofill Landfill Landfill Emerging Paradigms
    • Replacing Apathy with Action…NIMBI• NIMBY…Not in My Back Yard• BANANA…Build Absolutely Nothing Anywhere Near Anyone• NUMBEE…Not Using My Bucks Ever, Either• NIMEY…Not in My Election Year NIMEY N i M El i Y• NIMBI…Now I Must Become Involved!Emerging Paradigms
    • Presentation Outline• Emerging paradigms• Proven and emerging waste conversion technologies• Marriage of WTE and water resources Marriage of WTE and water resources• Synergistic opportunities with Public Works Proven and Emerging Waste Conversion Technologies
    • Modern Waste‐to‐Energy (WTE)• WTE disposes of 13% of the nation’s waste (U.S. EPA) – 86 operating facilities  – 36 million people served – 27 states 27 states – Generation capacity in  excess of 2,700 MW – 16 million MWhrs of  renewable power generated annually – 259 million tons per year currently disposed of in landfills  p y y p represents an additional 142,450,000 MWhrs annually  (equivalent to 16,261 MW of capacity) • Most WTE facilities sell electricity to the local grid at lower prices  Most WTE facilities sell electricity to the local grid at lower prices than Public Works facilities purchase at commercial ratesProven Waste Conversion Technologies
    • Historical Emission Trends from Large and Small Municipal Waste CombustorsMunicipal Waste CombustorsPollutant 1990 Emissions  2005 Emissions  Percent Reduction (TPY) (TPY)CDD/CDF TEQ Basis * 44 15 99+%Mercury 57 2.3 96%Cadmium 9.6 0.4 96%Lead 170 5.5 97%Particulate MatterP i l M 18,600 18 600 780 96%HCL 57,400 3,200 94%SO2 38,300 4,600 88%NOx 64,900 49,500 24%Source: EPA, August 2007* Dioxin/furan emissions are in units of grams per year toxic equivalent quantity (TEQ), using1989 NATO toxicity factors; all other pollutant emissions are in units of tons per yearProven Waste Conversion Technologies
    • Dominant WTE Technology in U.S.• ~75% are massburn facilities• ~ 17% are refuse‐derived fuel (RDF) facilities Massburn WTE requires no pre-processing of MSW pre-Proven Waste Conversion Technologies
    • Typical Massburn WTE FacilityProven Waste Conversion Technologies
    • Typical Massburn WTE Flow DiagramProven Waste Conversion Technologies
    • Metals Liberated by the Combustion ProcessRecovered and Recycled for Additional RevenuesRecovered and Recycled for Additional Revenues Ferrous metals  Non‐ferrous metals  everything…including the  (aluminum, brass,  kitchen sink bronze, copper, gold,  silver, stainless) , )Proven Waste Conversion Technologies
    • Non‐ferrous Metals …Liberated and Recovered After CombustionLiberated and Recovered After Combustion Aluminum, brass, bronze, copper, gold, and silver , , , pp , g , Dense aluminum  aluminum nuggetsProven Waste Conversion Technologies
    • Advantages of Massburn WTE – Minimal Residuals to the LandfillResiduals to the Landfill Typical WTE Ash Residue yp • 75% weight reduction • 90% volume reduction Existing landfill life maximized due to ash density at t i that of compacted MSW d it t twice th t f t dProven Waste Conversion Technologies
    • Florida Waste‐to‐Energy Facilities 12 Facilities – 607 MW of Renewable Electricity12 Facilities – 607 MW of Renewable ElectricityFlorida Waste‐to‐Energy Facilities Bay CountyB C 490 TPD  490 TPD 13.6 MW 13 6 MWBroward County North  2,250 TPD  68 MWBroward County South 2,250 TPD 66 MWMiami‐Dade County 2,688 TPD 77 MWHillsborough County 1,800 TPD  46 MW Lake CountyLake County 528 TPD 528 TPD 14.5 MW 14 5 MWLee County 1,800 TPD 58 MWCity of Tampa  1,000 TPD  22.5 MWPalm Beach County (RDF) 2,000 TPD  62 MWPalm Beach County (Massburn) 3,000 TPD 75 MW (first new plant in 16 years)Pinellas County 3,000 TPD 75 MWPasco County  1,050 TPD  30 MWProven Waste Conversion Technologies
    • City of Tampa Waste‐to‐Energy Facility1,000 TPD – 22.5 MW1 000 TPD – 22 5 MW• Original construction: 1975• Rebuilt as WTE: 1985• Retrofit for CAAA: 1998‐2001 Portions of this  facility are 35 years  old and on  their third life!Proven Waste Conversion Technologies
    • Pinellas County Resource Recovery Facility 3,000 TPD – 75‐MW Electrical Output3 000 TPD – 75‐MW Electrical Output • Oi i l Original construction: 1985 t ti 1985 • 1,000‐TPD expansion: 1987Proven Waste Conversion Technologies
    • Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW1 800 TPD – 46 MW Original 1,200‐TPD construction: 1987 O i i l 1 200 TPD t ti 1987 600‐TPD expansion completed: 2009 Compatible with the urban landscape  Compatible with the urban landscape Commercial/industrial development has occurred around facility over 24 years!Proven Waste Conversion Technologies
    • Hillsborough County Resource Recovery Facility1,800 TPD – 46 MW (Located Adjacent to WWTP)1 800 TPD – 46 MW (Located Adjacent to WWTP) 8‐MGD WWTP (AWTP) 1,800‐TPD WTEProven Waste Conversion Technologies
    • Pasco County Resource Recovery Facility1,050 TPD – 30‐MW Electrical1 050 TPD – 30‐MW Electrical • Construction: 1989‐1991 Construction: 1989 1991 • $90M capital costProven Waste Conversion Technologies
    • Pasco County FloridaIntegrated Solid Waste Management CampusIntegrated Solid Waste Management CampusProven Waste Conversion Technologies
    • WWTP, Biosolids, and Power Also Integrated into Pasco County ISWM Campusinto Pasco County ISWM Campus ASH MONOFILL WTE SCALES MRF Peaking Biosolids Power Stabilization Plant WWTP (4 mgd)Proven Waste Conversion Technologies
    • Lee County Resource Recovery Facility1,800 TPD – 58‐MW Electrical1 800 TPD – 58‐MW Electrical • Original Construction 1994 • Original construction: 1994 • 636 TPD Expansion Completed 2006 636 TPD Expansion Completed 2006 • 636‐TPD expansion completed: 2006Proven Waste Conversion Technologies
    • New 3,000‐TPD Massburn WTE to be Added to the Palm Beach County ISWM CampusAdded to the Palm Beach County ISWM CampusProven Waste Conversion Technologies
    • Palm Beach County, Florida (2012)New 3,000‐TPD Massburn WTE RenderingIncorporating Both Sustainability and AestheticsProven Waste Conversion Technologies
    • Proposed 3,000‐TPD Massburn WTE Facility Layout in Palm Beach County, Florida 2012Layout in Palm Beach County Florida 2012Proven Waste Conversion Technologies
    • Palm Beach County, FloridaNew 3,000‐TPD Massburn WTE RenderingIncorporating Rainwater Harvest (First 2”) 2 MGProven Waste Conversion Technologies
    • Palm Beach County, Florida Proposed Visitors CenterProposed Visitors CenterProven Waste Conversion Technologies
    • Innovative Water Recycling Process“Better Than Zero Discharge” Better Than Zero Discharge• Cascading water recycling  – Clean water with low  minerals/solids – Wastewater with high  minerals/solids – Wastewater with high  minerals/solids/contact with ashProven Waste Conversion Technologies
    • PBC New WTE Project – Sustainability Options  Recycled Water Supply Sources  Recycled Water Supply Sources Monthly Water Sources at Normal Conditions Monthly Water Sources at Normal Conditions 100% 90% and  80% Total Dema 70% 60%Percent of To 50% 40% 30% 20% 10% 0% Jan Feb March April May June July Aug Sept Oct Nov Dec 8.2% Average 60.1% Average 31.7% Average Harvested Rainfall  Cooling Tower Blowdown Water Industrial Supply Water Proven Waste Conversion Technologies
    • PBC New WTE ProjectContinuing the Trend to Lower Emission LimitsContinuing the Trend to Lower Emission Limits Emission Unit US EPA MACT PBC Permit Limit Units Mg/dscm 7% O2 /dParticulate 20 12Cadmium 0.010 0.010Lead 0.140 0.125Mercury 0.050 0.025Sulfur DioxideSulfur Dioxide 30 24Hydrogen Chloride 25 20Carbon Monoxide (4 hr) 100 100Nitrogen O id (24 h )Ni Oxide (24 hr) 150 50Nitrogen Oxide (annual) 90 45*Dioxin/Furan Dioxin/Furan ** 13 10**ng/dscm 7%O2 * Month Proven Waste Conversion Technologies
    • Hennepin County WTE Welcomes Minnesota Twins into the Neighborhood!Minnesota Twins into the Neighborhood! HERC WTE Facility y (1987) Target Field (2010)Proven Waste Conversion Technologies
    • HERC WTE Facility…Compatible with the Urban Landscape!Compatible with the Urban Landscape! Hennepin Energy Recovery CenterProven Waste Conversion Technologies
    • Advantages of Massburn WTE – Reliability• Proven in hundreds of installations worldwide• Base loaded “renewable” electrical generation (24/7/365)• High system availability – B il Boiler availability (90‐92%) il bilit (90 92%) – Turbine‐generator availability (98‐99%)• Ability to process problematic wastes Ability to process problematic wastes – High moisture (biosolids, food waste, vegetative waste) – Carpet, asphalt shingles, non‐recyclable plastics – Out‐of‐date pharmaceuticals and controlled substances• Ability to process wide range of waste fuels – 3 800 to 6 000 btu/pound 3,800 to 6,000 btu/poundProven Waste Conversion Technologies
    • Advantages of Massburn WTE ‐ Economic• Financeable projects – Attractive interest rates for 20‐ to 30‐year amortization – Demonstrated technology‐bond buyers are not risk takers!• Stabilizes solid waste disposal costs over long‐term – System‐wide costs may drop by 35% upon retirement of debt  (Recent Kent County, Michigan experience 2010)Proven Waste Conversion Technologies
    • STATE EMERGING (Higher Risk) PROVEN (Lower Risk) ofTECHNOLOGY PILOT SCALE DEMONSTRATION MARKET ENTRY MARKET MARKET PENETRATION MATURITY Biomass  Co‐firing Fluidized  Direct  (utility  Stoker Bed Combustion boilers) Small Gasifier/  / IC Engine Biomass  Gasification  Gasification – & Pyrolysis & Pyrolysis Boilers, Kilns Boilers, Kilns Pyrolysis and  Depolymerization Massburn  WTE &  Other Conversion Processes 1 Other Conversion Processes  Waste‐to‐ Waste‐to‐ RDF Combustion2 Energy Co‐ Digestion Anaerobic Digestion 1. Includes RDF gasification, plasma gasification, and pyrolysis 2. RDF = Refuse‐derived fuel RDF = Refuse‐derived fuelEmerging Waste Conversion Technologies
    • Enhanced Revenues of Ethanol from MSWOnly Time Will Tell…Only Time Will Tell• Potentially 2‐3 times the revenue stream of electricityEmerging Waste Conversion Technologies
    • Many Options for Emerging Waste‐to‐Ethanol Conversion Technologies Waste‐to‐Ethanol Conversion TechnologiesBiochemical Pathways Thermochemical Pathways• Acid Hydrolysis Acid Hydrolysis • Thermal Gasification/Biological  Thermal Gasification/Biological – Proven technology, developed post  Fermentation WW2 – Syngas (CO, H2, CH4, and CO2)  – 1/3 of carbon “lost” to CO2 – Only tested in laboratory, but may be  – High water demand High water demand “low cost” option low cost option – Expensive metallurgy – Inconsistent quality (bacteria may  produce other alcohol products)• Enzymatic Hydrolysis – Long residence time needed for high  conversion efficiency – Can be located with conventional Can be located with conventional – 1/3 of carbon “lost” to CO2 • Thermal Gasification/Catalytic  – High water demand Synthesis – High cost of enzymes – Syngas (CO, H2, CH4, and CO2)  – No biological component, allows  higher temperature and has lower  water demand – Catalyst can’t mutate or alter biology – Alcohol is a consistent quality but Alcohol is a consistent quality, but  product is not pure ethanol, but a  blend of alcohols Emerging Waste Conversion Technologies
    • Biomass‐to‐Ethanol Production Pathways Grain Starch Fermentation Material Cane Handling Alcohol Alcohol Sugar & Refining Refining Processing Biomass Cellulose GasificationEmerging Waste Conversion Technologies
    • Ineos Waste‐to‐Biofuel Project Status Indian River County, Florida Indian River County Florida• CDM Smith supporting role – DOE DOE grant application: $50M awarded in 2009 t li ti $50M d d i 2009 – Prepared NEPA compliance/environmental permit applications – Civil site/facility infrastructure design• Construction started 1Q 2011 Construction started 1Q 2011• Anticipated startup 3Q 2012 with full production by 4Q 2012Emerging Waste Conversion Technologies
    • Catalytic Depolymerizationof Carbonaceous Wastesof Carbonaceous Wastes For P d i F Production of f Synthetic Diesel and Bio Oil • Cardboard / paper • Fats, Oils and Grease • Plastics and PVC • Used Tires / Rubber Used Tires / Rubber • Waste oils • Landscape Wastes • Wood WastesEmerging  Waste Conversion Technologies
    • AlphaKat Process Status in US• Exclusive license in U.S. to Covanta Energy for MSW feedstock – Process employs a turbine, heat, and a catalyst to convert  wastes into diesel fuel • Test facility started construction in Spring of 2009 Test facility started construction in Spring of 2009• Commercial scale testing commenced in early 2010• Partial funding via U.S. DOD in 2009 ($1.4M)• Testing continues through end of 2012• Marketing plan under developmentEmerging Waste Conversion Technologies
    • Presentation Outline• Emerging paradigms• Proven and emerging waste conversion technologies• Marriage of WTE and water resources Marriage of WTE and water resources• Synergistic opportunities with Public Works WTE and Water Resources
    • Water – Energy Nexus• Water and energy issues are inextricably linked• Lower quality water supply sources require higher levels  of treatment• Higher levels of treatment require greater inputs of energy Higher levels of treatment require greater inputs of energy – Pumping from greater depths/distances – Membrane treatment processes require energy for pressure – Disinfection treatments are often electrically derived  (ultraviolet light, ozone)WTE and Water Resources
    • Economic Sustainability – Maximizing Benefits via Integrated Solid Waste and Water Resourcesvia Integrated Solid Waste and Water Resources Solid Waste Recycling Potable Water P bl W Wastewater Reclaimed Water Stormwater Transportation Parks & Recreation Facilities Fleet Services Public Works Public WorksWTE and Water Resources
    • Energy Intensity Ranges of Proven Water Treatment ProcessesProven Water Treatment Processes Energy Intensity  Water Resource Treatment Technology Treatment Technology (kWh/MG) (k h/ )Groundwater Conventional softening, filtration, and disinfection 150 – 750Surface Water Conventional softening, filtration, and disinfection 150 – 750Brackish Water Reverse osmosis/membrane 4,000 – 10,000Seawater Reverse osmosis/membrane / 10,000 – 20,000 , ,Seawater Multi‐Stage Flash Evaporation (MSF)/Multiple Effect  20,000 – 100,000 Distillation (MED)Reclaimed WaterReclaimed Water Reverse osmosis/membrane Reverse osmosis/membrane 10,000  15,000 10 000 – 15 000Reclaimed Water Multi‐Stage Flash Evaporation (MSF)/Multiple Effect  15,000 – 20,000  Distillation (MED)WastewaterW Biological treatment/disinfection Bi l i l t t t/di i f ti 1,000 – 5,000  1 000 5 000WTE and Water Resources
    • WTE and WWTP Facilities Make Good NeighborsMake Good Neighbors 8‐MGD WWTP (AWTP) 1,800 TPD/46 MW WTE Facility Adjacent AWTP powered by energy from WTE (Aug 08)WTE and Water Resources
    • Potential Annual Net Savings to Public Works@ 3 Cents/kWh Spread@ 3 Cents/kWh Spread $20,000,000  $20 000 000 $18,000,000  500 TPD  avings  $16,000,000  WTE ntial Annual Sa $14,000,000  1000 TPD  000 WTE $12,000,000  1500 TPD  $10,000,000  WTEPoten $8,000,000  2000 TPD  WTE $6,000,000  2500 TPD  $4,000,000  $4 000 000 WTE $2,000,000  3000 TPD  WTE $‐ 0 20 40 60 80 100 Percent of WTE Electricity Used InternallyWTE and Water Resources
    • Potential Annual Net Savings to Public Works @ 4 Cents/kWh Spread4 Cents/kWh Spread $30,000,000  $30 000 000 ual Savings  500 TPD WTE $25,000,000  1000 TPD  otential Annu $20,000,000  WTE 1500 TPD  $15,000,000  WTE 2000 TPD  2000 TPDPo WTE $10,000,000  2500 TPD  WTE $5,000,000  3000 TPD  3000 TPD WTE $‐ 0 20 40 60 80 100 Percent of WTE Electricity Used InternallyWTE and Water Resources
    • Candidate Florida Renewable Energy ProjectMunicipal Utility CampusMunicipal Utility Campus Existing landfill Existing wastewater treatment  E i ti t t t t t plant (~ 13‐MW electrical demand) Potential  waste‐to‐energy plant sized to meet  electrical power demands of water treatment  Future water reclamation plant projects (1,200 TPD @ 30‐MW output) j t (1 200 TPD @ 30 MW t t) (~ 17 MW Electrical Demand) ( l i l d)WTE and Water Resources
    • Municipal Utility Campus Synergies Integration of waste‐to‐energy with  water and wastewater treatment plants water and wastewater treatment plantsSolid Waste Excess Electricity to Grid WTE Electricity to Utility ComplexSanitary Waste Reclaimed Reclaimed Water to Grid WWTP Water Wet  Potable WaterExcess Stormwater to Grid Weather WTP Storage WellsWTE and Water Resources
    • Municipal Utility CampusOptimizing Energy and Water ProductionOptimizing Energy and Water Production Water and electricity production can be varied by time of day to meet peak demands Electricity Water Water Electricity  Electricity Water Water Production Production Electricity Electricity Off Peak Peak Electric  Off Peak Demand Time of Day Time of DayWTE and Water Resources
    • Presentation Outline• Emerging paradigms• Proven and emerging waste conversion technologies• Marriage of WTE and water resources Marriage of WTE and water resources• Synergistic opportunities with Public Works Synergistic Opportunities with Public Works
    • Candidate Renewable Energy Project Opportunities on Wastewater Treatment SitesOpportunities on Wastewater Treatment Sites Heat Recovery Effluent y Wind Energy Solar Energy Waste-to-Energy Co-digestion Reclaimed(Organic waste and FOG) Water Biogas Use (CHP and CNG) d Biosolids to FertilizerSynergistic Opportunities with Public Works
    • Wastewater Treatment Plants Can Be Viewed As  Water/Biosolids/Energy Resource Centers Water/Biosolids/Energy Resource Centers Fuel Solar and Wind Organic Waste Energy (Heat, Power) Power)WastewaterWastewater Biosolids & Nutrients (Fuel & Fertilizer) Reclaimed R l i d Water Synergistic Opportunities with Public Works
    • Co‐digestion of Organic Waste  with Wastewater Solids  with Wastewater Solids Food Industry Waste Wastewater Solids AnimalManure and Crop Cogen WastesInstitutional Anaerobic Organic Digestion WasteResidential Landfill Organic Waste 62 Synergistic Opportunities with Public Works
    • Biosolids as a Resource Sludge +Organic Waste Biogas Land Amendment ApplicationThickening Dewatering Soil Anaerobic Amendment Digestion Fertilizer Syngas Drying Char Ch Pyrolysis P l i Char Gasification Ash Dewatering Incineration with Synergistic Opportunities with Public Works Energy Recovery
    • Palm Beach County, FloridaRegional Biosolids Processing FacilityRegional Biosolids Processing FacilitySynergistic Opportunities with Public Works
    • Campus for Management of Solid Waste,  Recycling, and Water Resources Recycling and Water Resources Reclaimed Water Recycled  Potable Water Potable Water Wastewater Yard & Wood  Yard & Wood Products Biosolids i lid Compost Facility ili Treatment Plant Treatment Plant Waste Processing • compost • mulch Electricity • soil amendment ~ mpressed Air Biosolids Excess   Electricity Shredded Yard Combustibles & Wood Waste •Chipped Tires Cooling & Fire Protection •Chipped Wood Com Used Tire / Bulky Waste Used Tire / Bulky Waste • tire derived fuel ~ Wood & Yard Waste • crumb rubber Resizing Facility WTE Electricity Low Pressure Steam & Compressed Air ~ Construction & Demolition • sand Waste‐to‐Energy Combustibles Debris Processing Facility • crushed asphalt M Not Requiring  • crushed concrete Concrete Resizing ravel shed and, • metals Rejects Sa Crus Gr M Ash • metals M Steam Residue WTE Ash • recycled ash eachate to WWTP Processing Landfill Gas & Mined  ‐ LF daily cover Combustible Rejects Loop for M Electricity Facility M ~ Combustibles ‐ road base Industrial Park Tenants ects Landfill Le Reje • plastics • glass M ~ Electricity MRF • paper M • cardboard Landfill Gas • metalsReclaimed Water Reuse Closed C&D / Inert Active Landfill Ash Monofill Landfill Landfill Synergistic Opportunities with Public Works
    • Integrated Aggregate Recycling Project  Public Works Recycling Complex Ferrous and Nonferrous Metals Construction & Demolition C&D Scrap Metal Recycler Processing Yard and Wood Waste Biomass Recyclers Wastes Combustibles Facility • ethanol (fuel) Sorted Aggregates • power • wood wastes • stone • compost • plastic • brick • paper • roof tile Construction Products Construction Products • shingles • concrete • tires • asphalt • asphalt • glass Aggregate • concrete products • ceramics Classification • drain field rock • flowable • flowable fill Facility • road base • structural fill • soil cement Electricity to Recycling  Recycling Sized Ash Sized Ash Complex Products Portland Cement  Waste‐to‐Energy Ash Manufacturer Municipal (WTE) Processing Feedstock Scrap Metal Recyclers Solid Waste Facility Bottom Ash Facility (Al, Ca, Fe, Si) Ferrous Metals Ferrous and Nonferrous Metals Building Products • insulation insulation • tile Fly Ash Frit Industrial Wastes Vitrified Glass Frit Vitrification Processing and Fiber Products and Fiber Products • slags/ashes • slags/ashes • contaminated soils Facility • sludges • sludges • other problematic • other problematic wastes INPUTS MATERIAL PROCESSING RECYCLING MARKETSSynergistic Opportunities with Public Works
    • Future WTE Ash Recycling OpportunityBlending Ash with Crushed ConcreteBlending Ash with Crushed ConcreteSynergistic Opportunities with Public Works
    • Public Works Recycling Recycled Asphalt Pavement (RAP) millings stockpiled for future crushing/ R l dA h l P (RAP) illi k il d f f hi / screening…for internal use or saleSynergistic Opportunities with Public Works
    • City of Tampa Public Works Recycling  Recycled Asphalt Pavement (RAP) millings sized at <1/2 inch and  stockpiled for Public Works projectsSynergistic Opportunities with Public Works
    • City of Tampa Public Works Recycling Toilet bowls and household ceramics stockpiled at City of Tampa  T il b l dh h ld i k il d Ci fT Public Works yard for later crushing and sizing to <1/2 inchSynergistic Opportunities with Public Works
    • WTE Bottom Ash Recycling Raw Material for Production of Portland CementProduction of Portland Cement Portland  Typical WTE  Component Cement Clinker AshSilica (SiO2) 18‐24 22‐24 24AluminiaAl i i (Al2O3) 4‐8 48 5 6Ferric Oxide (Fe2O3) 2‐5 0‐3 3Lime (CaO) 62‐67 68‐71 37 Source: Defending the Character of Ash, Richard W Goodwin W. Goodwin, 1992Synergistic Opportunities with Public Works
    • Future WTE Plants – Typical Elevation ViewOptions for Recycling: Options for WTE 1. Single Stream MRF Basement Area: Basement Area:2. Multi Stream MRF 1. Maintenance Shop3. Dirty MRF 2. Ash Processing4. C&D Recycling 3. Special Recycling Alternate WTE Waste Basement Basement Area Recycling Processes Tipping Building Refuse Building Boiler Building Air Pollution Control  Bldg. StackSynergistic Opportunities with Public Works
    • US Department of EnergyOffice of Energy Efficiencyand Renewable Energy 2005 New Industry – BioRefinery PRODUCTS Fuels: – Ethanol – Renewable Diesel – Renewable Gasoline –H d Hydrogen S U Power: G – Electricity A – Heat (co-generation) R Chemicals or – Plastics – Solvents H – Chemical Intermediates Y Biomass D Conversion – Phenolics R – Adhesives Feedstock O Processes – Furfural C – Fatty Acids – Trees A – Acetic Acid R – Enzymatic Fermentation y – Carbon Black – Grasses B – Gas/Liquid Fermentation – Paints – Agricultural Crops O – Acid Hydrolysis/Fermentation – Dyes, Pigments, and Ink – Agricultural Residues N – Gasification – Detergent S – Etc. – Forest Residues – Pyrolysis y y – Animal Wastes Food, F d F l F d Feed, Fuel, – Combustion – Municipal Solid Waste Fiber, & Fertilizer – Co-firing Synergistic Opportunities with Public Works
    • What Will it Take for a Resurgence in WTE/Conversion Projects?Resurgence in WTE/Conversion Projects? • Stewardship • Sustainability  • Synergy • Sizzle and   • NYMBI…Now You Must Become Involved! NYMBI Now You Must Become Involved!Conclusion
    • Thank You for the Opportunity to Share…and Imagineer! and Imagineer! Paul Hauck, P.E. CDM Smith 1715 N. Westshore 1715 N. Westshore Boulevard, Suite 875 Tampa, Florida 33607 (813) 281 (813) 281‐2900 (813) 281‐ hauckpl@cdmsmith.comConclusion