Boltzmann Equation in
Cosmology
Department of Physics, NTU

Jia-Long Yeh
Outline
Brief introduction of modern cosmology.

Derive Photon Boltzmann equation in
expanding Universe.

Compton Scattering

References
Cosmology
General Relativity

Thermal Physics
We can get lot in
thermal equilibrium
Saha’s equation -> when photon decouple

Entropy density -> reheating by massive particle

Nucleosynthesis
But…
We want to know more
about evolution of
cosmic structure
Boltzmann Equation
Ludwig Boltzmann

(1844-1906)
Neutrino
ProtonElectron
Photon
Dark
Matter
MetricCompton

Scattering
Coulomb

Scattering
Modern Cosmology

by Dodelson, 2003
Unit
The Boltzmann Equation
df
dt
= C[f]
Boltzmann equation
df
dt
=
@f
@t
+
@f
@xi
dxi
dt
+
@f
@p
dp
dt
+
@f
@ˆp
dˆp
dt
f
(0)
photon ⌘
1
e
p
T 1
Einstein Equation
Cosmological Principle
Isotropic

Homogeneous
Friedmann-Robertson-Walker
metric of Flat Universe
8
<
:
g00(~x, t) = 1
g0i(~x, t) = 0
gij(~x, t) = a(t)2
ij
Scalar perturbation in
Newtonian Gauge
Overdense region
Pµ
⌘
dxµ
d
P2
⌘ gµ⌫Pµ
P⌫ photon
= 0
P0
=
p
p
1 + 2
= p(1 )
P2
= (1 + 2 )(P0
)2
+ p2
= 0, p ⌘ gijPi
Pj
4-momentum
Pi
⌘ C ˆpi
C = p(1 )/a
dxi
dt
=
dxi
d
dt
d
=
Pi
P0
=
ˆpi
a
(1 + )
P0
= p(1 )
)
df
dt
=
@f
@t
+
@f
@xi
ˆpi
a
+
@f
@p
dp
dt
As the same token
1
p
dp
dt
= H
@
@t
ˆpi
a
@
@xi
1st-term: expansion of universe

2nd-term: curvature

3rd-term: gravitational potential
We get Boltzmann equation
)
df
dt
=
@f
@t
+
@f
@xi
ˆpi
a
@f
@p
p[H +
@
@t
+
ˆpi
a
@
@xi
]
Perturbed 

Distribution Function
f = [exp{
p
T(1 + ⇥)
} 1] 1
'
1
ep/T 1
+ (
@
@T
[exp{
p
T
1}] 1
)T⇥
= f(0)
p
@f(0)
@p
⇥
Assume f = [exp{
p
T(1 + ⇥)
} 1] 1
f(0)
=
1
e
p
T 1
T
@f(0)
@T
= p
@f(0)
@p
Zero-Order
df
dt
=
@f(0)
@t
Hp
@f(0)
@p
= 0
@f(0)
@t
=
@f(0)
@T
dT
dt
=
dT/dt
T
p
@f(0)
@p
[
dT/dt
T
da/dt
a
]
@f(0)
@p
= 0
dT
T
=
da
a
) T /
1
a
Wavelength Stretch
C[f] for Compton Scattering
e (!q ) + (!p ) $ e (!q 0
) + (!p 0
)
C[f(!p )] =
X
!q ,!p 0,!p
| Amplitude |2
{fe(!q 0
)f(!p 0
) fe(!q )f(!p )}
First-Order
@⇥
@t
+
ˆpi
a
@⇥
@xi
+
@
@t
+
ˆpi
a
@
@xi
= ne T [⇥0 ⇥ + ˆp · !v b]
dt ⌘ ad⌘
µ ⌘
!
k · ˆp
k
˙⌧ ⌘
d⌧
d⌘
= ne T a
Fourier Transform
˙˜⇥ + ikµ˜⇥ + ˙˜ + ikµ˜ = ˙⌧[˜⇥0
˜⇥ + µ˜vb]
With Polarization
Notes
We only consider scalar mode

We only consider flat universe
Reference
Modern Cosmology

(Scott Dodelson, 2003)
Additional Reference
CMB anisotropies: Total angular momentum
method.

(Wayne Hu, Martin White, 1997, arxive:
astro-ph/9702170 )
Thanks

The Boltzmann Equation in Cosmology