SlideShare a Scribd company logo
1 of 6
Download to read offline
2Li + CI2 -> 2LiCI
2Na + CI2 -> 2NaCI
2K + CI2 -> 2KCI
Chemical PropertiesGroup 1
Size increase
Reactionwith water
Click here video potassium in water
shell
2.1
2.8.1
2.8.8.1
2.8.8.18.1
Na
Li
K
Rb
lose electron easily
electropositive
Reactivity increase
Group 1 (Alkali Metal)
Chemicalreaction
2Li + 2H2O -> 2LiOH + H2
2Na + 2H2O -> 2NaOH + H2
2K + 2H2O -> 2KOH + H2
Reaction with oxygen Reactionwith halogen
Lithium – move slowly surface water – red flame
Sodium – move fast, hissing sound – yellow flame
Potassium – move fast, ignite - lilac flame
Turn red litmus blue- produce hydrogen gas
Solution of metal hydroxide/alkaline produced
Click here video sodium in water
Similar chemical property but diff reactivity
Lithium –burn slowly , red flame
Sodium – burn brightly, yellow flame
Potassium –burn very brightly, lilac flame
Kept in paraffin oil
Strong reducing agent
Reduce H+ ion to H2 gas
(losing e to H+)
Oxidizing agent using potassium chlorate
ReactivityGp 1
4Li + O2 -> 2Li2O
4Na + O2 -> 2Na2O
4K + O2 -> 2K2O
Reactivity Series
Reactivityseries
Metals with water, acids, oxygen
Reactivity series
Non metal, Hydrogen and Carbon
Displacement rxn (H atom from H2O/HCI)
Reactive metal displace H atom from water
2K + 2H2O → 2KOH + H2
Ca + 2H2O → Ca(OH)2 + H2
Less reactive metal displace H atom from acid
Mg + 2HCI → MgCI2 + H2
Zn + H2SO4 → ZnSO4 + H2
Unreactive metal – No rxn with water /acid
Au + HCI →
Displacement rxn (REDOXreaction)
Reactive metaldisplace less reactive metalfrom its solReactivity series
Displacement rxn (O atom from less reactive)
Reactive metal displace O from less reactive metal
2Al + Fe2O3 → Al2O3 + 2Fe
Zn + PbO → ZnO + Pb
Displacement rxn (O atom from less reactive)
Reactive non metal displace O from less reactive metal
C + 2Fe2O3→ 3CO2 + 4Fe
H2 + CuO→ H2O + Cu
Displacement rxn (less reactive ions)
Reactive metal displace less reactive ions from its salt
Zn + CuSO4 → ZnSO4 + Cu
2Al + 3CuCI2 → 2AlCI3 + 3Cu
Reactive metal
Click here AI/CuCI3 displacement
Click here to view Flinn Scientific
Click here Iron extraction (Thermite)
• Metal arranged accordingto their ability to lose electron - form +ve ions
• Measure tendency of metals in losing electrons (Undergooxidation)
• Metals – lose electrons – form electropositiveions – Oxidation Process
Click here microscale Fe reduction
lithium
How fast rxn happen? (Kinetics)
ElectrochemicalSeries
STANDARD Reduction potential – H2 as std
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Mn2+ + 2e- ↔ Mn -1.19
H2O + e- ↔ H2+OH- -0.83
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Sn2+ + 2e- ↔ Sn -0.14
Pb2+ + 2e- ↔ Pb -0.13
H+ + e- ↔ H2 0.00
Cu2+ + e- ↔ Cu+ +0.15
SO4
2-
+ 4H+ + 2e- ↔ H2SO3 + H2O +0.17
Cu2+ + 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH- +0.40
Cu+ + e- ↔ Cu +0.52
1/2I2 + e- ↔ I- +0.54
Fe3+ + e- ↔ Fe2+ +0.77
Ag+ + e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br- +1.07
1/2O2 + 2H+ +2e- ↔ H2O +1.23
Cr2O7
2-+14H+ +6e- ↔ 2Cr3+ +7H2O +1.33
1/2CI2 + e- ↔ CI- +1.36
MnO4
-
+ 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51
1/2F2 + e- ↔ F +2.87
- ve
reduction
potential
+ ve
reduction
potential
Compared to
H2 as std
Eθ
cell/Cell Potential = EMF in volt
EMF when half cell connect to SHE std condition
Std potential written as std reduction potential
TOP right
• High ↑ tendency lose e
• Li → Li +
+ e
• Eθ
Li = +3.04V
• STRONG reducing Agent
•Oxi favourable(Eθ = +ve)
STRONG
Reducing Agent
WEAK
Reducing Agent
BOTTOM right
• Low ↓ tendency lose e
• F - → 1/2F2 + e
• Eθ
F2 = - 2.87V
• WEAK reducing Agent
•Oxi NOT favourable
(Eθ =-ve)
WEAK
Oxidizing Agent
Strong
Oxidizing Agent
TOP left
• Low ↓ tendency gain e
• Li+
+ e → Li
• Eθ
Li= - 3.04V
• WEAK oxidizingAgent
• Red NOT favourable
(Eθ = -ve)
BOTTOM left
• High ↑ tendency gain e
• F2 + 2e → 2F-
• Eθ
F2= +2.87V
• STRONG oxidizing Agent
•Red favourable
(Eθ = +ve)
Thermodynamics measurement
ReactivitySeries
lithium Li
Potassium > Sodium > Lithium
ElectrochemicalSeries
Reactivityvs ElectrochemicalSeries
Oxidized sp ↔ Reduced sp Eθ/V
Li+ + e- ↔ Li -3.04
K+ + e- ↔ K -2.93
Ca2+ + 2e- ↔ Ca -2.87
Na+ + e- ↔ Na -2.71
Mg 2+ + 2e- ↔ Mg -2.37
Al3+ + 3e- ↔ AI -1.66
Zn2+ + 2e- ↔ Zn -0.76
Fe2+ + 2e- ↔ Fe -0.45
Ni2+ + 2e- ↔ Ni -0.26
Pb2+ + 2e- ↔ Pb -0.13
Cu2+ + 2e- ↔ Cu +0.34
Ag+ + e- ↔ Ag +0.80
Lithium > Potassium > Sodium
Electrochemical Series - Thermodynamics measurement
↓
Eθ value give – energetics feasibility of rxn- not rate/kinetics
↓
Rxn may be feasible,
but to slow to happen/no observable sign – Ea too high
↓
Measurement of voltage/potential using Std H2 Electrode
Reactivity – Kinetics
↓
How fast/metal with water and acid
↓
Due to low Ea – easier to react
↓
Potassium + water = faster/reactive
Lithium + water = slower/less reactive
Strong Correlation but may not be the same
↓
Li to Li+ ion more thermodynamically favourable than K to K+ ion
↓
K more reactive than Li in water/acid – due to kinetics factor
ElectrochemicalSeries - Thermodynamics measurement
M(s) → M+
(g) + e
∆Ha/kJ mol-1 ∆Hhyd/kJ mol-1
Li +161 +519 -499
Na +108 +494 -390
K +90 +418 -305
3 Steps rxn:
M (s) → M (g) ∆H = enthalpy of atomization
M (g) → M+
(g) ∆H = enthalpy of ionization
M+
(g) → M+
(aq) ∆H = enthalpy of hydration
ElectrochemicalSeries
STD Oxidation potential
Reduced sp ↔ Oxidized sp Eθ/V
Li ↔ Li+ + e +3.04
K ↔ K+ + e +2.93
Na ↔ Na+ + e +2.71
Li(s)
Li → Li+
(g)
∆Ha = +161
∆HI = +519 ∆Hhyd = - 499
Li+
(g) → Li+
(aq)
Li(s) → Li +
(aq) ∆H = +181
Li(s) → Li (g)
∆Ha = +90
K (s)
K (s) → K (g)
∆HI = +418 ∆Hhyd = - 305
K+
(g) → K+
(aq)
K(s) → K +
(aq) ∆H = +203
Na (s)
∆Ha = +108
Na(s) → Na(g)
∆HI = +494
K → K+
(g)
Na → Na+
(g)
∆Hhyd = - 390
Na+
(g) → Na+
(aq)
Na(s) → Na+
(aq) ∆H = +212
Lithium – least ∆H change
- Most energetically favourable
-∆H = spontaneous/favourable
-∆H = spontaneous/favourable
↓
Li → Li+ + e +Eθ
Potassium – High ∆H change
- Less energetically favourable
-∆H = spontaneous/favourable
-∆H = spontaneous/favourable
↓
K → K+ + e +Eθ
Sodium – Highest∆H change
- Least energeticallyfavourable
+∆H = NON spontaneous/favourable
+∆H = NON spontaneous/favourable
↓
Na → Na+ + e +Eθ
Li Na
K
Lithium – Size smaller
↓
Easily hydrated → - ∆H favourable
↓
IE High – strong NC due to small size
Potassium– Size bigger
↓
Diff hydrated → +∆H non favourable
↓
IE Low – weak NC due to large size
ElectrochemicalSeries
STD Oxidation
potential
Reduced sp ↔ Oxidized sp Eθ/V
Li ↔ Li+ + e +3.04
K ↔ K+ + e +2.93
Na ↔ Na+ + e +2.71
Li(s)
Li → Li+
(g)
∆Ha = +161
∆HI = +519 ∆Hhyd = - 499
Li+
(g) → Li+
(aq)
Li(s) → Li +
(aq) ∆H = +181
Li(s) → Li (g)
∆Ha = +90
K (s)
K (s) → K (g)
∆HI = +418 ∆Hhyd = - 305
K+
(g) → K+
(aq)
K(s) → K +
(aq) ∆H = +203
Na (s)
∆Ha = +108
Na(s) → Na(g)
∆HI = +494
K → K+
(g)
Na → Na+
(g)
∆Hhyd = - 390
Na+
(g) → Na+
(aq)
Na(s) → Na+
(aq) ∆H = +212
Lithium – least ∆H change
- Most energetically favourable
-∆H = spontaneous/favourable
-∆H = spontaneous/favourable
↓
Li → Li+ + e +Eθ
Potassium – High ∆H change
- Less energetically favourable
-∆H = spontaneous/favourable
-∆H = spontaneous/favourable
↓
K → K+ + e +Eθ
Sodium – Highest∆H change
- Least energeticallyfavourable
+∆H = NON spontaneous/favourable
+∆H = NON spontaneous/favourable
↓
Na → Na+ + e +Eθ
ReactivitySeries
Potassium > Sodium > Lithium Lithium > Potassium > Sodium
vs
Reactivityvs ElectrochemicalSeries
Lithium is above Potassium in electrochemicalseries
↓
Lithium is below Potassium in ReactivitySeries
↓
Due to kinetics factors/activationenergy, Rxn is slower
Potassium K
Sodium Na
Lithium Li

More Related Content

What's hot

IB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberIB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberLawrence kok
 
IB Chemistry on Entropy and Laws of Thermodynamics
IB Chemistry on Entropy and Laws of ThermodynamicsIB Chemistry on Entropy and Laws of Thermodynamics
IB Chemistry on Entropy and Laws of ThermodynamicsLawrence kok
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawLawrence kok
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesLawrence kok
 
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell PotentialLawrence kok
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellLawrence kok
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsLawrence kok
 
Unit 4 A2 Chemistry Notes Edexcel
Unit 4 A2 Chemistry Notes EdexcelUnit 4 A2 Chemistry Notes Edexcel
Unit 4 A2 Chemistry Notes EdexcelJosh Wanklyn
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.Lawrence kok
 
IB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingIB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingLawrence kok
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...Lawrence kok
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantLawrence kok
 
A2 chemistry organic reactions
A2  chemistry organic reactionsA2  chemistry organic reactions
A2 chemistry organic reactionsSamith Senadeera
 
A2 Chemistry Unit 5
A2 Chemistry Unit 5A2 Chemistry Unit 5
A2 Chemistry Unit 5Kelvin Lam
 
Chapter 4 notes
Chapter 4 notes  Chapter 4 notes
Chapter 4 notes Wong Hsiung
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.Lawrence kok
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...Lawrence kok
 
IB Chemistry on Energetics experiment, Thermodynamics and Hess's Law
IB Chemistry on Energetics experiment, Thermodynamics and Hess's LawIB Chemistry on Energetics experiment, Thermodynamics and Hess's Law
IB Chemistry on Energetics experiment, Thermodynamics and Hess's LawLawrence kok
 
Chapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryChapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryMary Beth Smith
 

What's hot (20)

IB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation numberIB Chemistry on Redox, Oxidation states, oxidation number
IB Chemistry on Redox, Oxidation states, oxidation number
 
IB Chemistry on Entropy and Laws of Thermodynamics
IB Chemistry on Entropy and Laws of ThermodynamicsIB Chemistry on Entropy and Laws of Thermodynamics
IB Chemistry on Entropy and Laws of Thermodynamics
 
IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
IB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical SeriesIB Chemistry on Reactivity Series vs Electrochemical Series
IB Chemistry on Reactivity Series vs Electrochemical Series
 
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell PotentialIB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
IB Chemistry on Gibbs Free energy, Equilibrium constant and Cell Potential
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
IB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of ThermodynamicsIB Chemistry on Entropy and Law of Thermodynamics
IB Chemistry on Entropy and Law of Thermodynamics
 
Unit 4 A2 Chemistry Notes Edexcel
Unit 4 A2 Chemistry Notes EdexcelUnit 4 A2 Chemistry Notes Edexcel
Unit 4 A2 Chemistry Notes Edexcel
 
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
IB Chemistry on Equilibrium Constant, Kc and Equilibrium Law.
 
IB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bondingIB Chemistry on Lewis structure, ionic and covalent bonding
IB Chemistry on Lewis structure, ionic and covalent bonding
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium ConstantIB Chemistry on Dynamic Equilibrium and Equilibrium Constant
IB Chemistry on Dynamic Equilibrium and Equilibrium Constant
 
A2 chemistry organic reactions
A2  chemistry organic reactionsA2  chemistry organic reactions
A2 chemistry organic reactions
 
A2 Chemistry Unit 5
A2 Chemistry Unit 5A2 Chemistry Unit 5
A2 Chemistry Unit 5
 
Chapter 4 notes
Chapter 4 notes  Chapter 4 notes
Chapter 4 notes
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
IB Chemistry on Equilibrium Constant, Kc and Reaction Quotient, Qc.
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
IB Chemistry on Energetics experiment, Thermodynamics and Hess's Law
IB Chemistry on Energetics experiment, Thermodynamics and Hess's LawIB Chemistry on Energetics experiment, Thermodynamics and Hess's Law
IB Chemistry on Energetics experiment, Thermodynamics and Hess's Law
 
Chapter Three Lecture- Stoichiometry
Chapter Three Lecture- StoichiometryChapter Three Lecture- Stoichiometry
Chapter Three Lecture- Stoichiometry
 

Viewers also liked

IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyLawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...Lawrence kok
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationLawrence kok
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumLawrence kok
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureLawrence kok
 
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...Lawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentLawrence kok
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyLawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentLawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...Lawrence kok
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternLawrence kok
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismLawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...Lawrence kok
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesLawrence kok
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...Lawrence kok
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...Lawrence kok
 
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentLawrence kok
 
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationLawrence kok
 
IB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesIB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesLawrence kok
 

Viewers also liked (20)

IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation EnergyIB Chemistry on Bond Enthalpy and Bond Dissociation Energy
IB Chemistry on Bond Enthalpy and Bond Dissociation Energy
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst EquationIB Chemistry on Redox Design and Nernst Equation
IB Chemistry on Redox Design and Nernst Equation
 
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption SpectrumIB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
IB Chemistry on Absorption Spectrum and Line Emission/Absorption Spectrum
 
IB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene StructureIB Chemistry on Structural Isomers and Benzene Structure
IB Chemistry on Structural Isomers and Benzene Structure
 
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
IB Chemistry on Stereoisomers, E/Z, Cis Trans, Geometric, Optical and Polarim...
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared SpectroscopyIB Chemistry on Infrared Spectroscopy
IB Chemistry on Infrared Spectroscopy
 
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Pymol and Rasmol for Internal Assessment
 
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
IB Chemistry on ICT, 3D software, Jmol, Pymol, Rasmol and ACD for Internal As...
 
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting PatternIB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
IB Chemistry on Nuclear Magnetic Resonance, Chemical Shift and Splitting Pattern
 
IB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and MagnetismIB Chemistry on Properties of Transition Metal and Magnetism
IB Chemistry on Properties of Transition Metal and Magnetism
 
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
IB Chemistry on ICT, 3D software, Avogadro, Jmol, Swiss PDB, Pymol for Intern...
 
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and IsotopesIB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
IB Chemistry on Mass Spectrometry, Index Hydrogen Deficiency and Isotopes
 
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
IB Chemistry on ICT, 3D software, Chimera, Jmol, Swiss PDB, Pymol for Interna...
 
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
IB Chemistry on ICT, 3D software, Avogadro, AngusLab, Swiss PDB Viewer for In...
 
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal AssessmentIB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
IB Chemistry on ICT, 3D software, Jmol, Rasmol and Pymol for Internal Assessment
 
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomizationIB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
IB Chemistry on Bond Enthalpy, Enthalpy formation, combustion and atomization
 
IB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic moleculesIB Chemistry on Homologous series and functional groups of organic molecules
IB Chemistry on Homologous series and functional groups of organic molecules
 

Similar to IB Chemistry on Reactivity Series vs Electrochemical Series

Chem class(22apr)
Chem class(22apr)Chem class(22apr)
Chem class(22apr)BeelingLim
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionLawrence kok
 
Chem 101 week 6 pt2
Chem 101 week 6 pt2Chem 101 week 6 pt2
Chem 101 week 6 pt2tdean1
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redoxRawat DA Greatt
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactionsguestffe6a0
 
Electrochemistry presentation 1
Electrochemistry  presentation 1Electrochemistry  presentation 1
Electrochemistry presentation 1AbdulakilMuanje
 
Chemical Reactions 1196945876279030 3
Chemical Reactions 1196945876279030 3Chemical Reactions 1196945876279030 3
Chemical Reactions 1196945876279030 3Laura Verastegui
 
Replacement reactions
Replacement reactionsReplacement reactions
Replacement reactionsJoanne Cox
 
Chemistry of Alkali Metals MANIK
Chemistry  of  Alkali Metals  MANIKChemistry  of  Alkali Metals  MANIK
Chemistry of Alkali Metals MANIKImran Nur Manik
 
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)DindaKamaliya
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointMel Anthony Pepito
 
New chm 152 unit 7 power points su13
New chm 152 unit 7 power points su13New chm 152 unit 7 power points su13
New chm 152 unit 7 power points su13caneman1
 

Similar to IB Chemistry on Reactivity Series vs Electrochemical Series (20)

Redox
RedoxRedox
Redox
 
Chem class(22apr)
Chem class(22apr)Chem class(22apr)
Chem class(22apr)
 
Corrosion
CorrosionCorrosion
Corrosion
 
IB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reactionIB Chemistry on Redox, Reactivity Series and Displacement reaction
IB Chemistry on Redox, Reactivity Series and Displacement reaction
 
Redox titration
Redox titrationRedox titration
Redox titration
 
Chem 101 week 6 pt2
Chem 101 week 6 pt2Chem 101 week 6 pt2
Chem 101 week 6 pt2
 
REDOX REACTION
REDOX REACTIONREDOX REACTION
REDOX REACTION
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redox
 
Chemical Reactions
Chemical ReactionsChemical Reactions
Chemical Reactions
 
apchapt17.ppt
apchapt17.pptapchapt17.ppt
apchapt17.ppt
 
Electrochemistry presentation 1
Electrochemistry  presentation 1Electrochemistry  presentation 1
Electrochemistry presentation 1
 
Chemical Reactions 1196945876279030 3
Chemical Reactions 1196945876279030 3Chemical Reactions 1196945876279030 3
Chemical Reactions 1196945876279030 3
 
Replacement reactions
Replacement reactionsReplacement reactions
Replacement reactions
 
Chemistry of Alkali Metals MANIK
Chemistry  of  Alkali Metals  MANIKChemistry  of  Alkali Metals  MANIK
Chemistry of Alkali Metals MANIK
 
Redox
RedoxRedox
Redox
 
Redox Reaction.ppt
Redox Reaction.pptRedox Reaction.ppt
Redox Reaction.ppt
 
Group IA.pdf
Group IA.pdfGroup IA.pdf
Group IA.pdf
 
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)
Redox Reaction and Electrochemical Cell (Reaksi Redoks dan Sel Elektrokimia)
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
 
New chm 152 unit 7 power points su13
New chm 152 unit 7 power points su13New chm 152 unit 7 power points su13
New chm 152 unit 7 power points su13
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...pradhanghanshyam7136
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxDr. Ravikiran H M Gowda
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxJisc
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jisc
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...Poonam Aher Patil
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 

Recently uploaded (20)

Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 

IB Chemistry on Reactivity Series vs Electrochemical Series

  • 1. 2Li + CI2 -> 2LiCI 2Na + CI2 -> 2NaCI 2K + CI2 -> 2KCI Chemical PropertiesGroup 1 Size increase Reactionwith water Click here video potassium in water shell 2.1 2.8.1 2.8.8.1 2.8.8.18.1 Na Li K Rb lose electron easily electropositive Reactivity increase Group 1 (Alkali Metal) Chemicalreaction 2Li + 2H2O -> 2LiOH + H2 2Na + 2H2O -> 2NaOH + H2 2K + 2H2O -> 2KOH + H2 Reaction with oxygen Reactionwith halogen Lithium – move slowly surface water – red flame Sodium – move fast, hissing sound – yellow flame Potassium – move fast, ignite - lilac flame Turn red litmus blue- produce hydrogen gas Solution of metal hydroxide/alkaline produced Click here video sodium in water Similar chemical property but diff reactivity Lithium –burn slowly , red flame Sodium – burn brightly, yellow flame Potassium –burn very brightly, lilac flame Kept in paraffin oil Strong reducing agent Reduce H+ ion to H2 gas (losing e to H+) Oxidizing agent using potassium chlorate ReactivityGp 1 4Li + O2 -> 2Li2O 4Na + O2 -> 2Na2O 4K + O2 -> 2K2O
  • 2. Reactivity Series Reactivityseries Metals with water, acids, oxygen Reactivity series Non metal, Hydrogen and Carbon Displacement rxn (H atom from H2O/HCI) Reactive metal displace H atom from water 2K + 2H2O → 2KOH + H2 Ca + 2H2O → Ca(OH)2 + H2 Less reactive metal displace H atom from acid Mg + 2HCI → MgCI2 + H2 Zn + H2SO4 → ZnSO4 + H2 Unreactive metal – No rxn with water /acid Au + HCI → Displacement rxn (REDOXreaction) Reactive metaldisplace less reactive metalfrom its solReactivity series Displacement rxn (O atom from less reactive) Reactive metal displace O from less reactive metal 2Al + Fe2O3 → Al2O3 + 2Fe Zn + PbO → ZnO + Pb Displacement rxn (O atom from less reactive) Reactive non metal displace O from less reactive metal C + 2Fe2O3→ 3CO2 + 4Fe H2 + CuO→ H2O + Cu Displacement rxn (less reactive ions) Reactive metal displace less reactive ions from its salt Zn + CuSO4 → ZnSO4 + Cu 2Al + 3CuCI2 → 2AlCI3 + 3Cu Reactive metal Click here AI/CuCI3 displacement Click here to view Flinn Scientific Click here Iron extraction (Thermite) • Metal arranged accordingto their ability to lose electron - form +ve ions • Measure tendency of metals in losing electrons (Undergooxidation) • Metals – lose electrons – form electropositiveions – Oxidation Process Click here microscale Fe reduction lithium How fast rxn happen? (Kinetics)
  • 3. ElectrochemicalSeries STANDARD Reduction potential – H2 as std Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Mn2+ + 2e- ↔ Mn -1.19 H2O + e- ↔ H2+OH- -0.83 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Sn2+ + 2e- ↔ Sn -0.14 Pb2+ + 2e- ↔ Pb -0.13 H+ + e- ↔ H2 0.00 Cu2+ + e- ↔ Cu+ +0.15 SO4 2- + 4H+ + 2e- ↔ H2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 1/2O2 + 2H+ +2e- ↔ H2O +1.23 Cr2O7 2-+14H+ +6e- ↔ 2Cr3+ +7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F +2.87 - ve reduction potential + ve reduction potential Compared to H2 as std Eθ cell/Cell Potential = EMF in volt EMF when half cell connect to SHE std condition Std potential written as std reduction potential TOP right • High ↑ tendency lose e • Li → Li + + e • Eθ Li = +3.04V • STRONG reducing Agent •Oxi favourable(Eθ = +ve) STRONG Reducing Agent WEAK Reducing Agent BOTTOM right • Low ↓ tendency lose e • F - → 1/2F2 + e • Eθ F2 = - 2.87V • WEAK reducing Agent •Oxi NOT favourable (Eθ =-ve) WEAK Oxidizing Agent Strong Oxidizing Agent TOP left • Low ↓ tendency gain e • Li+ + e → Li • Eθ Li= - 3.04V • WEAK oxidizingAgent • Red NOT favourable (Eθ = -ve) BOTTOM left • High ↑ tendency gain e • F2 + 2e → 2F- • Eθ F2= +2.87V • STRONG oxidizing Agent •Red favourable (Eθ = +ve) Thermodynamics measurement
  • 4. ReactivitySeries lithium Li Potassium > Sodium > Lithium ElectrochemicalSeries Reactivityvs ElectrochemicalSeries Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- ↔ Li -3.04 K+ + e- ↔ K -2.93 Ca2+ + 2e- ↔ Ca -2.87 Na+ + e- ↔ Na -2.71 Mg 2+ + 2e- ↔ Mg -2.37 Al3+ + 3e- ↔ AI -1.66 Zn2+ + 2e- ↔ Zn -0.76 Fe2+ + 2e- ↔ Fe -0.45 Ni2+ + 2e- ↔ Ni -0.26 Pb2+ + 2e- ↔ Pb -0.13 Cu2+ + 2e- ↔ Cu +0.34 Ag+ + e- ↔ Ag +0.80 Lithium > Potassium > Sodium Electrochemical Series - Thermodynamics measurement ↓ Eθ value give – energetics feasibility of rxn- not rate/kinetics ↓ Rxn may be feasible, but to slow to happen/no observable sign – Ea too high ↓ Measurement of voltage/potential using Std H2 Electrode Reactivity – Kinetics ↓ How fast/metal with water and acid ↓ Due to low Ea – easier to react ↓ Potassium + water = faster/reactive Lithium + water = slower/less reactive Strong Correlation but may not be the same ↓ Li to Li+ ion more thermodynamically favourable than K to K+ ion ↓ K more reactive than Li in water/acid – due to kinetics factor
  • 5. ElectrochemicalSeries - Thermodynamics measurement M(s) → M+ (g) + e ∆Ha/kJ mol-1 ∆Hhyd/kJ mol-1 Li +161 +519 -499 Na +108 +494 -390 K +90 +418 -305 3 Steps rxn: M (s) → M (g) ∆H = enthalpy of atomization M (g) → M+ (g) ∆H = enthalpy of ionization M+ (g) → M+ (aq) ∆H = enthalpy of hydration ElectrochemicalSeries STD Oxidation potential Reduced sp ↔ Oxidized sp Eθ/V Li ↔ Li+ + e +3.04 K ↔ K+ + e +2.93 Na ↔ Na+ + e +2.71 Li(s) Li → Li+ (g) ∆Ha = +161 ∆HI = +519 ∆Hhyd = - 499 Li+ (g) → Li+ (aq) Li(s) → Li + (aq) ∆H = +181 Li(s) → Li (g) ∆Ha = +90 K (s) K (s) → K (g) ∆HI = +418 ∆Hhyd = - 305 K+ (g) → K+ (aq) K(s) → K + (aq) ∆H = +203 Na (s) ∆Ha = +108 Na(s) → Na(g) ∆HI = +494 K → K+ (g) Na → Na+ (g) ∆Hhyd = - 390 Na+ (g) → Na+ (aq) Na(s) → Na+ (aq) ∆H = +212 Lithium – least ∆H change - Most energetically favourable -∆H = spontaneous/favourable -∆H = spontaneous/favourable ↓ Li → Li+ + e +Eθ Potassium – High ∆H change - Less energetically favourable -∆H = spontaneous/favourable -∆H = spontaneous/favourable ↓ K → K+ + e +Eθ Sodium – Highest∆H change - Least energeticallyfavourable +∆H = NON spontaneous/favourable +∆H = NON spontaneous/favourable ↓ Na → Na+ + e +Eθ Li Na K Lithium – Size smaller ↓ Easily hydrated → - ∆H favourable ↓ IE High – strong NC due to small size Potassium– Size bigger ↓ Diff hydrated → +∆H non favourable ↓ IE Low – weak NC due to large size
  • 6. ElectrochemicalSeries STD Oxidation potential Reduced sp ↔ Oxidized sp Eθ/V Li ↔ Li+ + e +3.04 K ↔ K+ + e +2.93 Na ↔ Na+ + e +2.71 Li(s) Li → Li+ (g) ∆Ha = +161 ∆HI = +519 ∆Hhyd = - 499 Li+ (g) → Li+ (aq) Li(s) → Li + (aq) ∆H = +181 Li(s) → Li (g) ∆Ha = +90 K (s) K (s) → K (g) ∆HI = +418 ∆Hhyd = - 305 K+ (g) → K+ (aq) K(s) → K + (aq) ∆H = +203 Na (s) ∆Ha = +108 Na(s) → Na(g) ∆HI = +494 K → K+ (g) Na → Na+ (g) ∆Hhyd = - 390 Na+ (g) → Na+ (aq) Na(s) → Na+ (aq) ∆H = +212 Lithium – least ∆H change - Most energetically favourable -∆H = spontaneous/favourable -∆H = spontaneous/favourable ↓ Li → Li+ + e +Eθ Potassium – High ∆H change - Less energetically favourable -∆H = spontaneous/favourable -∆H = spontaneous/favourable ↓ K → K+ + e +Eθ Sodium – Highest∆H change - Least energeticallyfavourable +∆H = NON spontaneous/favourable +∆H = NON spontaneous/favourable ↓ Na → Na+ + e +Eθ ReactivitySeries Potassium > Sodium > Lithium Lithium > Potassium > Sodium vs Reactivityvs ElectrochemicalSeries Lithium is above Potassium in electrochemicalseries ↓ Lithium is below Potassium in ReactivitySeries ↓ Due to kinetics factors/activationenergy, Rxn is slower Potassium K Sodium Na Lithium Li