SlideShare a Scribd company logo
1 of 27
http://lawrencekok.blogspot.com
Prepared by
Lawrence Kok
Tutorial on Electrolysis and Faraday’s Law.
Types voltaic cell
Conversion electrical energy
to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
NH4CI and ZnCI2
Chemical and electrical energy
Redox rxn
(Oxidation/reduction)
Movement electron
Produce electricity
Conversion chemical energy
to electrical energy
Electrodes – different metal (Half cell) Electrodes – same metal (Half cell)
Chemical
rxn
Electric current
Daniell cell Alkaline cellDry cell Nickel cadmium cell
Primary cell (Non rechargeable)
MnO2 and KOH
Secondary cell (Rechargeable)
Conversion electrical to chemical energy
Electrochemistry
Electrolytic cellVoltaic cell
Conversion chemical to electrical energy
Cathode (+ve) - Reduction Cathode (-ve) - Reduction
Vs
Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode
Anode
(-ve)
Spontaneous rxn Non Spontaneous rxn
Anode (-ve) – Oxidation Anode (+ve) – Oxidation
++
О
О
О
О
- -
Zn → Zn 2+
+ 2e
(oxidized)
Cu2+
+ 2e → Cu
(reduced)
Zn2+
Zn2+
Zn2+
Zn2+-
-
-
-
→ +
+
+
Cu2+
Cu2+
Cu2+
-e
-e
+
+
+ -
-
-
X-
X + -e→
(oxidized)
X
-
X
-
X
-
Anode
(+ve)
Cathode
(-ve)
Cathode
(+ve)
-e
-e
Y+
+ e- Y→
(reduced)
Y+
Y+
Y+-e
-e
-e
-e
Anode Cathode
Voltaic Cell Electrolytic Cell
Anode Oxidation Negative (-ve) Oxidation Positive (+ve)
Cathode Reduction Positive (+ve) Reduction Negative (-ve)
Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
Zn → Zn 2+
+ 2e
Conversion electrical to chemical energy
Electrochemistry
Conversion chemical to electrical energy
Cathode (-ve)
Reduction
Vs
Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode
Anode
(-ve)
Spontaneous rxn Non Spontaneous rxn
Anode (+ve)
Oxidation
+
О
О
-
Zn → Zn 2+
+ 2e
(oxidized)
Cu2+
+ 2e → Cu
(reduced)
Zn2+
Zn2+
Zn2+
Zn2+
-
--
-→ + +
+
Cu2+
Cu2+
Cu2+
-e
-e +
+
+
-
-
-
2Br-
Br→ 2 + 2e-
(oxidized)
Br
-
Br
-
Br
-
Anode
(+ve)
Cathode
(-ve)Cathode
(+ve)
-e
-e
Pb2+
+ 2e- Pb→
(reduced)
Pb2+
-e
-e
-e
Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
1.10Volt -e -e
-
-
-
-
+
+
+
+
Anode Cathode
Zn half cell (-ve)
Oxidation
Cu half cell (+ve)
Reduction
Cu2+
+ 2e → Cu
Zn + Cu2+
→ Zn2+
+ Cu
2Br- → Br2 + 2e
Zn/Cu Voltaic Cell PbBr2 molten Electrolytic Cell
Pb2+
+ 2e → Pb
PbBr2 → Pb+ Br2
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Pb2+
Pb2+
Conversion electrical to chemical energy
Electrochemistry
Conversion chemical to electrical energy
Cathode (-ve)
Reduction
Vs
Spontaneous rxn Non Spontaneous rxn
Anode (+ve)
Oxidation
+
О
О
-
-e
1.10 Volt
-e -e
-
-
-
-
+
+
+
+
Anode Cathode
Zn/Cu Voltaic Cell PbBr2 molten Electrolytic Cell
PbBr2 Pb→ + Br2 Eθ
= ???
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Find Eθ
cell (use reduction potential)
Zn 2+
+ 2e Zn E↔ θ
= -0.76V
Cu2+
+ 2e Cu E↔ θ
= +0.34V
Cu half cell (+ve)
Reduction
Zn half cell (-ve)
Oxidation
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= ?????
Zn Zn↔ 2+
+ 2e Eθ
= +0.76
Cu2+
+ 2e Cu E↔ θ
= +0.34
Zn + Cu2+
Zn→ 2+
+ Cu Eθ
= +1.10V
Eθ
= +1.10V
+ve (spontaneous)
Pb2+
+ 2e Pb E↔ θ
= -0.13V
Br-
+ e Br↔ -
Eθ
= +1.07V
Find Eθ
cell (use reduction potential)
2Br -
Br↔ 2+ 2e Eθ
= -1.07
Pb2+
+ 2e Pb E↔ θ
= -0.13
Pb2+
+ 2Br -
Pb→ +Br2 Eθ
= -1.20V
Compound broken down
(LYSIS)
energy needed
Eθ
= -1.20V
-ve (NON spontaneous)
Conversion chemical to electrical energy Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Discharge of ions
1 Cation + 1 Anion
Electrolysis (Molten Salt)
Oxidation ← Anode (+ve) ← Anion
PbBr2 molten Electrolytic Cell
Eθ
=-ve → supply +1.20v to breakdown PbBr2 Pb→ + Br2
Find Eθ
cell (use reduction potential)
Pb2+
+ 2e Pb E↔ θ
= -0.13
2Br -
Br↔ 2+ 2e Eθ
= -1.07
Pb2+
+ 2Br -
Pb→ +Br2 Eθ
= -1.20V
Eθ
= -1.20V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Liquid – Pb2+
and Br-
ions
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn -0.76↔
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged Br-
ion Br2 gas (brown gas seen) Discharged Pb2+
ion to Pb (grey deposit)
2Br -
Br↔ 2+ 2e Pb2+
+ 2e Pb↔
Compound broken down
(LYSIS)
energy needed
О
О
Eθ
Oxidation = -1.07
E
θ Reduction =
-0.13
Pb2+
Br -
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Inert electrode
Carbon/graphite
Br -
Br -
Br -
Pb2+
Pb2+
Pb2+
Discharge of ions
1 Cation + 1 Anion
Oxidation ← Anode (+ve) ← Anion
CaCI2 molten Electrolytic Cell
Find Eθ
cell (use reduction potential)
Ca2+
+ 2e Ca E↔ θ
= -2.87
2CI -
CI↔ 2+ 2e Eθ
= -1.36
Ca2+
+ 2CI -
Ca→ +CI2 Eθ
= -4.23V
Eθ
= -4.23V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Liquid – Ca2+
and CI-
ions
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
H2O + e- 1/2H↔ 2 + OH-
-0.83
Zn2+
+ 2e- Zn -0.76↔
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+ 7H2O +1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged CI-
ion CI2 gas (yellow gas) Discharged Ca2+
ion to Ca
2CI -
CI↔ 2+ 2e Ca2+
+ 2e Ca↔
Compound broken down
(LYSIS)
energy needed
О
О
Eθ
Oxidation = -1.36
Eθ
Reduction
=
-2.87
Ca2+
CI -
Eθ
=-ve → supply +4.23v to breakdown CaCI2 Ca→ + CI2
Electrolysis (Molten Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Inert electrode
Carbon/graphite
CI -
CI -
CI -
Ca2+
Ca2+
Ca2+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
NaCI aqueous Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
4OH -
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 2H→ 2 + O2 Eθ
= -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Na+
, CI-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
O2 + 4H+
+4e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F-
+2.87
Discharged OH-
ion O2 gas Discharged H+
ion to H2 gas
О
О
Na+
/H+
CI-
/OH-
Eθ
=-ve → supply +2.06v to breakdown NaCI H→ 2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
Na+
+ e Na E↔ θ
= -2.71
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2CI-
CI↔ 2 + 2e Eθ
= -1.36
О
Inert electrode
Carbon/graphite
OH-
OH-
CI -
CI -
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
NaI aqueous Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
2I -
I↔ 2 + 2e Eθ
= -0.54
NaI H→ 2 + I2 Eθ
= -1.37V
Eθ
= -1.37V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Na+
, I-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged I-
ion I2 Discharged H+
ion to H2 gas
О
О
Na+
/H+
I-
/OH-
Eθ
= -ve → supply +1.37 v to breakdown NaI H→ 2 + I2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
Na+
+ e Na E↔ θ
= -2.71
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
О
Oxidation
Eθ
> more +ve easier to lose e
2I-
I↔ 2 + 2e Eθ
= -0.54
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
О
Inert electrode
Carbon/graphite
I -
I -
OH-
OH-
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuCI2 aqueous Electrolytic Cell
Cu2+
+ 2e Cu↔ Eθ
= +0.34
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
CuCI2 Cu + O→ 2 Eθ
= -0.89V
Eθ
= -0.89V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Cu2+
, CI-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
Cu+
+ e- ↔ Cu +0.52
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F-
+2.87
Discharged OH-
ion O2 Discharged Cu2+
ion to Cu metal
О
Cu2+
/H+
CI-
/OH-
Eθ
= -ve → supply +0.89 v to breakdown CuCI2 Cu→ + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Cu2+
+ 2e Cu E↔ θ
= +0.34
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2CI-
CI↔ 2 + 2e Eθ
= -1.36
ОО
Inert electrode
Carbon/graphite
OH-
OH-
CI -
CI -
H+
H+
Cu2+
Cu2+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuBr2 aqueous Electrolytic Cell
Cu2+
+ 2e Cu↔ Eθ
= +0.34
2Br-
Br↔ 2 + 2e Eθ
= -1.07
CuBr2 Cu + Br→ 2 Eθ
= -0.73V
Eθ
= -0.73V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Cu2+
, Br-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
Cu+
+ e- ↔ Cu +0.52
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged Br-
ion Br2 Discharged Cu2+
ion to Cu
О
Cu2+
/H+
Br-
/OH-
Eθ
= -ve → supply +0.73 v to breakdown CuBr2 Cu→ + Br2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Cu2+
+ 2e Cu E↔ θ
= +0.34
О
Oxidation
Eθ
> more +ve easier to lose e
2Br-
Br↔ 2 + 2e Eθ
= -1.07
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
Inert electrode
Carbon/graphite
Br-
Br-
OH-
OH-
Cu2+
Cu2+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
KI aqueous Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
2I-
I↔ 2 + 2e Eθ
= -0.54
KI H→ 2+ Br2 Eθ
= -1.37V
Eθ
= -1.37V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
K+
, I-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged I-
ion I2 Discharged H+
ion to H2
О
K+
/H+
I-
/OH-
Eθ
= -ve → supply +1.37 v to breakdown KI H→ 2 + I2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
K+
+ e K E↔ θ
= -2.93
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
О
Oxidation
Eθ
> more +ve easier to lose e
2I-
I↔ 2 + 2e Eθ
= -0.54
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
ОО
Inert electrode
Carbon/graphite
OH-
OH-
I -
I -
H+
H+
K+
K+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
K2SO4 aqueous Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
4OH-
2H↔ 2O+ O2 + 4e Eθ
= -1.23
K2SO4 H→ 2+ O2 Eθ
= -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
K+
, SO4
2-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
S2 O8
2-
+ 2e ↔ SO4
2-
+2.01
-
Discharged OH-
ion O2 Discharged H+
ion to H2
О
K+
/H+
SO4
2-
/OH-
Eθ
= -ve → supply +2.06 v to breakdown K2SO4 H→ 2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
K+
+ e K E↔ θ
= -2.93
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2SO4
2-
S↔ 2O8
2-
+ 2e Eθ
= -2.01
ОО
H2 gas
Ratio 1:2
O2 gas
Inert electrode
Carbon/graphite
OH-
OH-
SO4
2-
SO4
2-
K+
K+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
AgNO3 aqueous Electrolytic Cell
Ag+
+ e Ag E↔ θ
= +0.80
4OH-
2H↔ 2O+ O2 + 4e Eθ
= -1.23
AgNO3 Ag + O→ 2 Eθ
= -0.43V
Eθ
= -0.43V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
Ag+
, NO3
-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + 2e- ↔ 2I-
+0.54
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
S2 O8
2-
+ 2e ↔ SO4
2-
+2.01
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
Discharged OH-
ion O2 Discharged Ag+
ion to Ag
О
Ag+
/H+
NO3
-
/OH-
Eθ
= -ve → supply +0.43 v to breakdown AgNO3 Ag + O→ 2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Ag+
+ e Ag E↔ θ
= +0.80
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
NO3
-
cannot be discharged
Inert electrode
Carbon/graphite
OH-
OH-
NO3
-
NO3
-
H+
H+
Ag+
Ag+
Discharge of ions
1 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
H2SO4 aqueous Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
4OH -
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 2H→ 2 + O2 Eθ
= -2.06V
Eθ
= -2.06V
-ve (NON spontaneous)
Conversion electrical to chemical energy
Energy needed to decompose compound!!!!!!!!
Cation → Cathode (-ve) → Reduction
H+
, SO4
2-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
O2 + 4H+
+4e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
S2 O8
2-
+ 2e ↔ SO4
2-
+2.01
1/2F + e- ↔ F-
+2.87
Discharged OH-
ion O2 gas Discharged H+
ion to H2 gas
О
О
H+
SO4
2-
/OH-
Eθ
=-ve → supply +2.06v to breakdown H2SO4 H→ 2 + O2
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2SO4
2-
S↔ 2O8
2-
+ 2e Eθ
= -2.01
О
H2 gas
O2 gas
Ratio 1:2
Inert electrode
Carbon/graphite
OH-
OH-
SO4
2-
SO4
2-
H+
H+
H+
H+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
Conc NaCI Electrolytic Cell
2H+
+ 2e H↔ 2 Eθ
= -0.83
2CI -
CI↔ 2 + 2e Eθ
= -1.36
NaCI 2H→ 2 + CI2 + NaOH Eθ
= -2.19
Cation → Cathode (-ve) → Reduction
Na+
, CI-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
Cu+
+ e- ↔ Cu +0.52
1/2I2 + e- ↔ I-
+0.54
Fe3+
+ e- ↔ Fe2+
+ 0.77
Ag+
+ e- ↔ Ag +0.80
O2 + 4H+
+4e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F-
+2.87
Discharged CI-
ion CI2 gas Discharged H+
ion to H2 gas
О
О
Na+
/H+
CI-
/OH-
Inert electrode
Carbon/graphite
Eθ
=-ve → supply +2.19v to breakdown NaCI H→ 2 + CI2 + NaOH
Electrolysis (Concentrated Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
Na+
+ e Na E↔ θ
= -2.71
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2CI-
CI↔ 2 + 2e Eθ
= -1.36
О
Ratio 1:2
H2 gas
CI2 gas
Dilute NaCI – OH-
discharged due to Eθ
value
Conc NaCI – CI-
discharged due to overpotential factor
Discharged of H+
and OH-
ion need addition voltage
due to high activation energy for H2/O2 production
If Conc CI-
is high ↑ – it is preferred !!!!!!
OH-
OH-
CI -
CI -
H+
H+
Na+
Na+
Discharge of ions
2 Cation + 2 Anion
Oxidation ← Anode (+ve) ← Anion
Conc CuCI2 Electrolytic Cell
Cu2+
+ 2e Cu↔ Eθ
= +0.34
2CI-
CI↔ 2 + 2e Eθ
= -1.36
CuCI2 Cu + O→ 2 Eθ
= -0.89V
Cation → Cathode (-ve) → Reduction
Cu2+
, CI-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
Cu+
+ e- ↔ Cu +0.52
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
1/2CI2 + e- ↔ CI-
+1.36
1/2F2 + e- ↔ F-
+2.87
Discharged CI-
ion CI2 Discharged Cu2+
ion to Cu metal
О
Cu2+
/H+
CI-
/OH-
Eθ
= -ve → supply +0.89 v to breakdown CuCI2 Cu→ + O2
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Cu2+
+ 2e Cu E↔ θ
= +0.34
О
Oxidation
Eθ
> more +ve easier to lose e
4OH-
2H↔ 2O + O2 + 4e Eθ
= -1.23
2H2O 4H↔ +
+ O2 + 4e Eθ
= -1.23
2CI-
CI↔ 2 + 2e Eθ
= -1.36
ОО
Inert electrode
Carbon/graphite
Electrolysis (Concentrated Salt)
Dilute CuCI2 – OH-
discharged due to Eθ
value
Conc CuCI2 – CI-
discharged due to overpotential factor
Discharged of H+
and OH-
ion need addition voltage
due to high activation energy for H2/O2 production
If Conc CI-
is high ↑ – it is preferred !!!!!!
CI2 gas
copper
OH -
OH -
CI -
CI -
Cu2+
Cu2+
H+
H+
Carbon electrode
Discharge of ions
2 Cation 2 Anion
Oxidation ← Anode (+ve) ← Anion
CuCI2 aqueous Electrolytic Cell
Cation → Cathode (-ve) → Reduction
Cu2+
, CI-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
Oxidized sp ↔ Reduced sp Eθ
/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
Cu+
+ e- ↔ Cu +0.52
I2 + 2e- ↔ 2I-
+0.54
Fe3+
+ e- ↔ Fe2+
+0.77
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
1/2F2 + e- ↔ F-
+2.87
Discharged Cu2+
ion to Cu metal
О
CI-
/OH-
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Cu2+
+ 2e Cu E↔ θ
= +0.34
О
Copper electrode
as anode
Cu easier discharge
↓
due nature electrode
↓
Cu → Cu2+
+ 2e
↓
Cu electrode dissolve
Copper electrode
OH-
discharged
↓
due to Eθ
value
↓
4OH-
2H↔ 2O+O2 + 4e
↓
O2 gas
+
+
+
+
+
Cu → Cu2+
+ 2e
copper
electrode
Cu → 2e + Cu2+
Cu2+
Cu2+
Cu2+
Cu2+
Cu → 2e + Cu2+
Cu → 2e + Cu2+
Cu2+
Cu2+
e-
e-
e e
e- e- e -
At Anode
Copper electrode oxidizes/dissolve
Conc copper ions unchanged
Mass of Cu anode decreased
Mass of Cu cathode increased
Cu2+
Cu2+
Cu2+
OH-
OH-
CI -
CI -
H+
H+
Cu2+
Cu2+
Cu2+
/H+
AgNO3 aqueous Electrolytic Cell
Carbon electrode
Discharge of ions
2 Anion
Oxidation ← Anode (+ve) ← Anion Cation → Cathode (-ve) → Reduction
Ag+
, NO3
-
+ H+
, OH-
(from water)
+
+
+
+
+
+
-
-
-
-
-
NO3
-
/OH-
Electrolysis (Aqueous Salt)
Factor affecting ion discharged
(Selective Discharge)
↓
- Molten/aqueous
- Relative E values of ion
- Conc ion – conc/diluted
- Nature of electrode
Reduction
Eθ
> more +ve easier gain e
2H+
+ 2e H↔ 2 Eθ
= -0.83
2H2O +2e- H↔ 2 + 2OH-
Eθ
= -0.83
Ag+
+ e Ag E↔ θ
= +0.80
Copper electrode
as anode
Ag easier discharge
↓
due nature electrode
↓
Ag → Ag+
+ e
↓
Ag electrode dissolve
Silver electrode
OH-
discharged
↓
due to Eθ
value
↓
4OH-
2H↔ 2O+O2 + 4e
↓
O2 gas
+
+
+
+
+
Ag → Ag+
+ e
silver
electrode
Ag → e + Ag+
Ag+
Ag+
Ag+
Ag+
Ag → e + Ag+
Ag → e + Ag+
Ag+
Ag+
e-
e-
e e
e- e- e -
At Anode
Silver electrode oxidizes/dissolve
Conc silver ions unchanged
Mass of Ag anode decreased
Mass of Ag cathode increased
Ag+
Ag+
Ag+
Oxidized sp ↔ Reduced sp Eθ/V
Li+
+ e- Li↔ -3.04
K+
+ e- K↔ -2.93
Ca2+
+ 2e- Ca↔ -2.87
Na+
+ e- Na↔ -2.71
Mg2+
+ 2e- Mg↔ -2.37
Al3+
+ 3e- AI -1.66↔
Mn2+
+ 2e- Mn -1.19↔
2H2O +2e- H↔ 2 + 2OH-
-0.83
Fe2+
+ 2e- Fe -0.45↔
Ni2+
+ 2e- Ni↔ -0.26
Sn2+
+ 2e- Sn -0.14↔
Pb2+
+ 2e- Pb -0.13↔
H+
+ e- 1/2H↔ 2 0.00
Cu2+
+ e- Cu↔ +
+0.15
SO4
2-
+ 4H+
+ 2e- H↔ 2SO3 + H2O +0.17
Cu2+
+ 2e- ↔ Cu +0.34
1/2O2 + H2O +2e- ↔ 2OH-
+0.40
I2 + 2e- ↔ 2I-
+0.54
Ag+
+ e- ↔ Ag +0.80
1/2Br2 + e- ↔ Br-
+1.07
O2 + 4H+
+4e- ↔ H2O +1.23
Cr2O7
2-
+14H+
+6e- ↔ 2Cr3+
+1.33
1/2CI2 + e- ↔ CI-
+1.36
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
S2 O8
2-
+ 2e ↔ SO4
2-
+2.01
MnO4
-
+ 8H+
+ 5e- ↔ Mn2+
+ 4H2O +1.51
ОО
Discharged Ag+
ion to Ag
-
-
-
-
-
OH -
OH -
NO3
-
NO3
-
Ag+
Ag+
H+
H+
Ag+
/H+
Electrolyte Electrode Ions Cathode (-) Anode (+)
PbBr2 (molten) Carbon Pb2+
/ Br-
Pb2+
+ 2e Pb→
Pb
2Br-
Br→ 2 + 2e
Br2
CaCI2 (molten) Carbon Ca2+
/CI-
Ca2+
+2e Ca→
Ca
2CI-
CI→ 2 + 2e
CI2
NaCI Carbon Na+
/ CI –
H+
/OH-
2H+
+ 2e H→ 2
H2
4OH-
2H↔ 2O +O2 + 4e
O2
NaCI
(conc)
Carbon Na+
/ CI–
H+
/OH-
2H+
+ 2e H→ 2
H2
2CI-
CI→ 2 + 2e
CI2
NaI Carbon Na+
/ I–
H+
/OH-
2H+
+ 2e H→ 2
H2
2I-
I→ 2 + 2e
I2
CuCI2 Carbon Cu2+
/ CI–
H+
/OH-
2H+
+ 2e H→ 2
H2
4OH-
2H↔ 2O +O2 + 4e
O2
CuCI2
(conc)
Carbon Cu2+
/CI-
H+
/OH -
2H+
+ 2e H→ 2
H2
2CI-
CI→ 2 + 2e
CI2
CuCI2 Copper Cu2+
/CI-
Cu2+
+2e Cu→
Cu
Cu Cu→ 2+
+ 2e
Cu
CuBr2 Carbon Cu2+
/Br-
H+
/OH -
2H+
+ 2e H→ 2
H2
2Br-
Br→ 2 + 2e
Br2
KI Carbon K+
/I-
H+
/OH -
2H+
+ 2e H→ 2
H2
2I-
I→ 2 + 2e
I2
AgNO3 Carbon Ag+
/NO3
-
H+
/OH -
Ag+
+ e Ag→
Ag
4OH-
2H↔ 2O +O2 + 4e
O2
AgNO3 Silver Ag+
/NO3
- Ag+
+ e Ag→ Ag Ag→ +
+ e
K2SO4 Carbon K+
/SO4
2-
H+
/OH -
2H+
+ 2e H→ 2
H2
4OH-
2H↔ 2O +O2 + 4e
O2
H2SO4 Carbon H+
/SO4
2-
H+
/OH -
2H+
+ 2e H→ 2
H2
4OH-
2H↔ 2O +O2 + 4e
O2
HCI Carbon H+
/CI-
H+
/OH -
2H+
+ 2e H→ 2
H2
4OH-
2H↔ 2O +O2 + 4e
O2
+ - + -
Ease Anion discharged
NO3
–
SO4
2-
CI–
Br–
I–
OH–
Ease Cation discharged
K+
Ca2+
Na+
Mg2+
Al 3+
Zn2+
Fe2+
Sn2+
Pb2+
H+
Cu2+
Ag+
easier
easier
Electrolytic cell
Conversion electrical to chemical energy
+ -
Anode (+ve)
Oxidation
Cathode (-ve)
Reduction
CathodeAnode
Factor affecting ion discharged
(Selective Discharge)
Relative E
values of ion
Conc ion
conc/diluted
Nature of
electrode
PANIC
Positive is Anode, Negative Is Cathode
NO3
–
- diff to discharge
- ON for N is +5 (very high)
- Diff to lose e to get higher
Current – measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass through a point in 1 second = 1C/s
1 Coulomb charge (electron) = 6.28 x 10 18
electrons passing in 1 second
1 electron - carry charge of – 1.6 x 10 -19
C
6.28 x 10 18
electron - carry charge of - 1 C 1A
6.02 x 10 23
electron (1 Mol) - carry charge of - 96500C 1F
Electric current
Flow electric charges (electron)
From High electric potential – low potential
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18
×
==
Current
Flow of
charges
-
-
-
ItQ = t = Time/ s
Find amt charges pass through a sol if
Current is 2.ooA, time is 15 mins
ItQ =
Q = Amt Charges/ C
I = Current/ A
CQ 1800601500.2 =××=
Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1
1
1923
965001
106.11002.6
−
−
=
×××=
×=
CmolF
CF
eLF
1A = 6.28 x 1018
e
1 second
L = Avogadro constant
1 Faraday – Quantity charge 96500C supply to 1 mol electron
Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Charge on ion
Current Time
ItQ =
Mass produce is inversely proportional
to
charges on ion
Cu2+
+ 2e Cu↔Ag+
+ e Ag↔ AI3+
+ 3e AI↔
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol e 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Current – measured in Amperes or Coulombs per second
1A = 1 Coulomb charge pass through a point in 1 second = 1C/s
1 Coulomb charge (electron) = 6.28 x 10 18
electrons passing in 1 second
1 electron - carry charge of – 1.6 x 10 -19
C
6.28 x 10 18
electron - carry charge of - 1 C 1A
6.02 x 10 23
electron (1 Mol) - carry charge of - 96500C 1F
Electric current
Flow electric charges (electron)
From High electric potential – low potential
ond
electron
ond
Coulomb
A
sec.1
.1028.6
sec1
1
1
18
×
==
Current
Flow of
charges
-
-
-
ItQ = t = Time/ s
Find amt charges pass through a sol if
Current is 2.ooA, time is 15 mins
ItQ =
Q = Amt Charges/ C
I = Current/ A
CQ 1800601500.2 =××=
Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1
1
1923
965001
106.11002.6
−
−
=
×××=
×=
CmolF
CF
eLF
1A = 6.28 x 1018
e
1 second
L = Avogadro constant
1 Faraday – Quantity charge 96500C supply to 1 mol electron
Copper (II) sulfate electrolyzed using current -- 0.150A for 5 hrs. Cal mass of Cu deposited
CQ
Q
ItQ
2700
60605150.0
=
×××=
=
Cu2+
+ 2e Cu↔
2 mol e → 1 mol Cu
0.028 mol e 0.014 mol Cu→
emolC
emolC
...028.0
96500
2700
2700
...196500
=→
→
Find Current/I → Find Charge/Q → Find mol electron → Find Mass deposited
use Faraday’s constant
Mass = mol x RAM
Mass = 0.014 x 63.5
Mass = 0.889 g
Mass deposited
(Cathode)
Cu
11
Cu2+
Cu2+
Electrolysis
AI
t
Q
I
ItQ
4.6
605.12
4787
=
×
==
=Cr3+
+ 3e Cr↔
1 mol Cr → 3 mol e
0.0165 mol Cr → 0.0495 mol e
Find Mass → Find mol electron → Find Charges/Q → Find current/I
use Faraday’s constant
Mass = mol x RAM
0.86 = mol x 52.00
mol = 0.0165
Electrolysis Cr2(SO4)3 yield 0.86g of Cr after passing current for 12.5 min. Find amt of current used.
1 mol e → 96500C
0.0495mol e 96500 x 0.0495→
= 4787 C
Find time /hrs need to produce 25g of Cr from Cr2(SO4)3 with current of 1.1A
Find Mass → Find mol electron → Find Charges/Q →Find current/I
Cr3+
+ 3e Cr↔ use Faraday’s constant
1 mol Cr → 3 mol e
0.48 mol Cr → 1.44 mol e
Mass = mol x RAM
25 = mol x 52.00
mol = 0.48
1 mol e → 96500C
1.44mol e 96500 x 1.44→
= 138960 C
1.35
1.1
138960
=
==
=
t
I
Q
t
ItQ
Mass deposited
(Cathode)
Cr3+
Cr3+
Cr
Find vol of H2 gas collect at cathode when aq sol Na2SO4 electrolyzed for 2.00 hours with a 10A.
Mass deposited
(Cathode)
Cr
Cr3+
Cr3+
Find Current/I → Find Charge/Q → Find mol electron → Find Vol
2H+
+ 2e H↔ 2
CQ
Q
ItQ
72000
6060200.2
=
×××=
=
use Faraday’s constant
emolC
emolC
...746.0
96500
72000
72000
...196500
=→
→
2 mol e → 1 mol H2
0.746 mol e 0.373 mol H→ 2
H2 O2
22
33
44
Vol = 8.35 dm3
Faraday's 1st Law Electrolysis
Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Charge on ion
Current Time
ItQ =
Mass produce is inversely proportional to charges on ion
Cu2+
+ 2e Cu↔Ag+
+ e Ag↔ AI3+
+ 3e AI↔
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol electron across
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Ag+
Ag+
-
-
-
-
-
-
+
+
+
+
+
+ Cu2+
Cu2+
AI3+
AI3+
AgNO3,CuSO4, AICI3 connect in series. Same amt current used.
Cal mass Cu and Al when 10.8 g Ag deposited.
Ag+
+ e Ag↔
1 mol Ag → 1 mol e
0.1 mol Ag →0.1 mol e
Mass = mol x RAM
10.8 = mol x 108
mol = 0.1
Cu2+
+ 2e Cu↔
2 mol e → 1 mol Cu
0.1 mol e → 0.05 mol Cu
AI3+
+ 3e AI↔
3 mol e → 1 mol AI
0.1 mol e → 0.03 mol AI
Mass Cu = 0.05 mol Mass AI = 0.03 mol
AgNO3, H3SO4 connect in series. Same amt current used
Cal vol H2,O2 when 10.8 g Ag deposited.
-
-
Ag+
Ag+
O2
H2
Ag+
+ e Ag↔
1 mol Ag → 1 mol e
0.1 mol Ag → 0.1 mol e
Mass = mol x RAM
10.8 = mol x 108
mol = 0.1
2H+
+ 2e H↔ 2
2 mol e → 1 mol H2
0.1 mol e 0.05 mol H→ 2
4OH-
2H↔ 2O +O2 + 4e
4 mol e → 1 mol O2
0.1 mol e 0.025 mol O→ 2
2.24 dm3
0.56 dm3
Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis
Amt charges (Q)
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Charge on ion
Current Time
ItQ =
Mass produce is inversely proportional to charges on ion
Cu2+
+ 2e Cu↔Ag+
+ e Ag↔ AI3+
+ 3e AI↔
+1 +2 +3
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI
Pass 1 mol electron across
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
Purification of metal
Application of Electrolysis
Extraction reactive metal
Aluminium Sodium
- ve
electrode
Aluminium
metal
AI2O3
Al3+
+ 3e → Al
Electroplating
- Prevent corrosion
- Improve appearance
Copper, chromium, silver
- ve
Sodium
metal
Na+
+ e → Na
NaCI + ve
-
-
-
-
-
-
-
-
+
+
+
+
+
+
+
+
+
+
+
+
-
-
-
-
Anode (+ve)
Plating metal
Cathode (-ve)
Object
+
+
-
-
Anode (+ve)
Impure Cu metal
Mass decrease
Cathode (-ve)
Pure Cu metal
Mass increase
Cu2+
+ 2e Cu↔
Cu2+
Cu2+
Cu2+
Cu Cu↔ 2+
+ 2e
2CI-
-2e → CI2
Electrolysis of KI
Electrolysis of waterExcellent Silver crystal formation
Galvanizing Iron with Zinc
PANIC
Positive is Anode, Negative Is Cathode
Factor affecting ion discharged
(Selective Discharge)
Relative E
values of ion
Conc ion
conc/diluted
Nature of
electrode
Ease Cation discharged
K+
Ca2+
Na+
Mg2+
Al 3+
Zn2+
Fe2+
Sn2+
Pb2+
H+
Cu2+
Ag+ easier
Ease Anion discharged
NO3
–
SO4
2-
CI–
Br–
I–
OH–
easier
NO3
–
- diff to discharge
- ON for N is +5 (very high)
- Diff to lose e to get higher
Anode (+ve)
Oxidation
Cathode (-ve)
Reduction
Conversion electrical to chemical energy
Electrolytic cell
+ -
Faraday's 1st Law Electrolysis
Mass produce is directly proportional
to the quantity of electricity/charges ( C )
Factor affecting mass substance liberated
Amt charges (Q)
Charge on ion
Current Time
ItQ =
Faraday's 2nd Law Electrolysis
Mass produce is inversely proportional
to charges on ion
+1 +2
Ag+
+ e Ag↔ Cu2+
+ 2e Cu↔
1 mol e → 1 mol Ag 2 mol e → 1 mol Cu
1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu
Pass 1 mol electron across
Acknowledgements
Thanks to source of pictures and video used in this presentation
Thanks to Creative Commons for excellent contribution on licenses
http://creativecommons.org/licenses/
http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html
http://www.chemguide.co.uk/physical/redoxeqia/introduction.html
http://educationia.tk/reduction-potential-table
http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23-
electrochemistry.html
Prepared by Lawrence Kok
Check out more video tutorials from my site and hope you enjoy this tutorial
http://lawrencekok.blogspot.com

More Related Content

What's hot

Concept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgyConcept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgyArunesh Gupta
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistryomar_egypt
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTAMithil Fal Desai
 
Electrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsElectrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsKavya Liyanage
 
Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Arunesh Gupta
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 ClassesLOURDU ANTHONI
 
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka julius
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka juliusSynthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka julius
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka juliusMakerere University
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointMel Anthony Pepito
 
C11 redox reactions
C11 redox reactionsC11 redox reactions
C11 redox reactionsdean dundas
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistryDagobert Aldus
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase EquilibriumSHILPA JOY
 
Mphil electrochemistry
Mphil electrochemistryMphil electrochemistry
Mphil electrochemistryShehman Assad
 
Chemistry of Alkaline Earth Metals MANIK
Chemistry  of Alkaline Earth  Metals MANIKChemistry  of Alkaline Earth  Metals MANIK
Chemistry of Alkaline Earth Metals MANIKImran Nur Manik
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraToru Hara
 

What's hot (20)

Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Concept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgyConcept on Ellingham diagram & metallurgy
Concept on Ellingham diagram & metallurgy
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Electrolytic cells
Electrolytic cellsElectrolytic cells
Electrolytic cells
 
Estimate the amount Ni by EDTA
Estimate the amount Ni by EDTAEstimate the amount Ni by EDTA
Estimate the amount Ni by EDTA
 
Electrochemistry – electrochemical cells
Electrochemistry – electrochemical cellsElectrochemistry – electrochemical cells
Electrochemistry – electrochemical cells
 
Ionic equilibrium
Ionic equilibriumIonic equilibrium
Ionic equilibrium
 
Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.Class XII Electrochemistry - Nernst equation.
Class XII Electrochemistry - Nernst equation.
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
P – block elements 12 Classes
P – block elements 12 ClassesP – block elements 12 Classes
P – block elements 12 Classes
 
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka julius
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka juliusSynthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka julius
Synthesis of tris (thiourea) copper (i) sulphate by kwezi mwaka julius
 
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPointChemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
Chemistry - Chp 20 - Oxidation Reduction Reactions - PowerPoint
 
Alkali metals
Alkali metalsAlkali metals
Alkali metals
 
C11 redox reactions
C11 redox reactionsC11 redox reactions
C11 redox reactions
 
Basic concepts in electrochemistry
Basic concepts in electrochemistryBasic concepts in electrochemistry
Basic concepts in electrochemistry
 
Phase Equilibrium
Phase EquilibriumPhase Equilibrium
Phase Equilibrium
 
F block element
F block elementF block element
F block element
 
Mphil electrochemistry
Mphil electrochemistryMphil electrochemistry
Mphil electrochemistry
 
Chemistry of Alkaline Earth Metals MANIK
Chemistry  of Alkaline Earth  Metals MANIKChemistry  of Alkaline Earth  Metals MANIK
Chemistry of Alkaline Earth Metals MANIK
 
Introduction to electrochemistry by t. hara
Introduction to electrochemistry by t. haraIntroduction to electrochemistry by t. hara
Introduction to electrochemistry by t. hara
 

Similar to IB Chemistry on Electrolysis and Faraday's Law

IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawLawrence kok
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistrysmitamalik
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...Lawrence kok
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsMary Beth Smith
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...Lawrence kok
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevchelss
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdfLUXMIKANTGIRI
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdfLUXMIKANTGIRI
 
Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02Cleophas Rwemera
 
4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdffedosys
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellLawrence kok
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redoxRawat DA Greatt
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathSurendran Parambadath
 
Electrochemistry by rawat
Electrochemistry by rawatElectrochemistry by rawat
Electrochemistry by rawatRawat DA Greatt
 
Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Cleophas Rwemera
 

Similar to IB Chemistry on Electrolysis and Faraday's Law (20)

IB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's LawIB Chemistry on Electrolysis and Faraday's Law
IB Chemistry on Electrolysis and Faraday's Law
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
Lecture 21- Electrochemical cells
Lecture 21- Electrochemical cellsLecture 21- Electrochemical cells
Lecture 21- Electrochemical cells
 
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
IB Chemistry on Standard Reduction Potential, Standard Hydrogen Electrode and...
 
Lect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrevLect w13 152_electrochemistry_abbrev
Lect w13 152_electrochemistry_abbrev
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdf
 
electrochemistry12.pdf
electrochemistry12.pdfelectrochemistry12.pdf
electrochemistry12.pdf
 
Electrochemistry ch 14
Electrochemistry ch 14Electrochemistry ch 14
Electrochemistry ch 14
 
Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02Electrochemistrych14 140626154750-phpapp02
Electrochemistrych14 140626154750-phpapp02
 
Electrochemistry 12
Electrochemistry 12Electrochemistry 12
Electrochemistry 12
 
apchapt17.ppt
apchapt17.pptapchapt17.ppt
apchapt17.ppt
 
4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf4. For each of the following electrochemical cells i. Identify the a.pdf
4. For each of the following electrochemical cells i. Identify the a.pdf
 
Option C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration CellOption C Nernst Equation, Voltaic Cell and Concentration Cell
Option C Nernst Equation, Voltaic Cell and Concentration Cell
 
Electrochemistry apps of redox
Electrochemistry apps of redoxElectrochemistry apps of redox
Electrochemistry apps of redox
 
lecture37.pdf
lecture37.pdflecture37.pdf
lecture37.pdf
 
Acids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadathAcids and bases dr.surendran prambadath
Acids and bases dr.surendran prambadath
 
Electrochemistry by rawat
Electrochemistry by rawatElectrochemistry by rawat
Electrochemistry by rawat
 
23sec3
23sec323sec3
23sec3
 
Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02Ch17z5eelectrochem 110115232747-phpapp02
Ch17z5eelectrochem 110115232747-phpapp02
 

More from Lawrence kok

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...Lawrence kok
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...Lawrence kok
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...Lawrence kok
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...Lawrence kok
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...Lawrence kok
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...Lawrence kok
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...Lawrence kok
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...Lawrence kok
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...Lawrence kok
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...Lawrence kok
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...Lawrence kok
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...Lawrence kok
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...Lawrence kok
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...Lawrence kok
 

More from Lawrence kok (20)

IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
IA on effect of duration on efficiency of immobilized enzyme amylase (yeast e...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
IA on efficiency of immobilized enzyme amylase (yeast extract) in alginate be...
 
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
IA on effect of duration on the efficiency of immobilized enzyme amylase (fun...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
IA on efficiency of immobilized enzyme amylase (fungal extract) in alginate b...
 
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
IA on effect of duration on efficiency of immobilized MnO2 in alginate beads ...
 
IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...IA on effect of concentration of sodium alginate and calcium chloride in maki...
IA on effect of concentration of sodium alginate and calcium chloride in maki...
 
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
IA on effect of temperature on polyphenol (tannins) of white wine, using pota...
 
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
IA on effect of temperature on polyphenol (tannins) of green tea, using potas...
 
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
IA on effect of duration (steeping time) on polyphenol (tannins) of tea, usin...
 
IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...IA on polyphenol (tannins) quantification between green and black tea using p...
IA on polyphenol (tannins) quantification between green and black tea using p...
 
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...IA on temperature on polyphenol (tannins strawberry) quantification using pot...
IA on temperature on polyphenol (tannins strawberry) quantification using pot...
 
IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...IA on temperature on polyphenol (tannins apple cider) quantification using po...
IA on temperature on polyphenol (tannins apple cider) quantification using po...
 
IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...IA on effect of temperature on polyphenol (tannins) quantification using pota...
IA on effect of temperature on polyphenol (tannins) quantification using pota...
 
IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...IA on polyphenol quantification using potassium permanganate titration (Lowen...
IA on polyphenol quantification using potassium permanganate titration (Lowen...
 
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...IA on rate of hydrolysis of aspirin at different temperature, measured using ...
IA on rate of hydrolysis of aspirin at different temperature, measured using ...
 
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
IA on hydrolysis of aspirin in water, duration over 5 days, measured using vi...
 
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
IA on aspirin hydrolysis in different HCI concentration (0.0625 -1M), measure...
 
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
IA on aspirin hydrolysis in different medium, water vs acid (1M) medium, meas...
 

Recently uploaded

Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........LeaCamillePacle
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationAadityaSharma884161
 

Recently uploaded (20)

Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........Atmosphere science 7 quarter 4 .........
Atmosphere science 7 quarter 4 .........
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
Raw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptxRaw materials used in Herbal Cosmetics.pptx
Raw materials used in Herbal Cosmetics.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint PresentationROOT CAUSE ANALYSIS PowerPoint Presentation
ROOT CAUSE ANALYSIS PowerPoint Presentation
 

IB Chemistry on Electrolysis and Faraday's Law

  • 2. Types voltaic cell Conversion electrical energy to chemical energy Electrochemistry Electrolytic cellVoltaic cell NH4CI and ZnCI2 Chemical and electrical energy Redox rxn (Oxidation/reduction) Movement electron Produce electricity Conversion chemical energy to electrical energy Electrodes – different metal (Half cell) Electrodes – same metal (Half cell) Chemical rxn Electric current Daniell cell Alkaline cellDry cell Nickel cadmium cell Primary cell (Non rechargeable) MnO2 and KOH Secondary cell (Rechargeable)
  • 3. Conversion electrical to chemical energy Electrochemistry Electrolytic cellVoltaic cell Conversion chemical to electrical energy Cathode (+ve) - Reduction Cathode (-ve) - Reduction Vs Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode Anode (-ve) Spontaneous rxn Non Spontaneous rxn Anode (-ve) – Oxidation Anode (+ve) – Oxidation ++ О О О О - - Zn → Zn 2+ + 2e (oxidized) Cu2+ + 2e → Cu (reduced) Zn2+ Zn2+ Zn2+ Zn2+- - - - → + + + Cu2+ Cu2+ Cu2+ -e -e + + + - - - X- X + -e→ (oxidized) X - X - X - Anode (+ve) Cathode (-ve) Cathode (+ve) -e -e Y+ + e- Y→ (reduced) Y+ Y+ Y+-e -e -e -e Anode Cathode Voltaic Cell Electrolytic Cell Anode Oxidation Negative (-ve) Oxidation Positive (+ve) Cathode Reduction Positive (+ve) Reduction Negative (-ve) Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve)
  • 4. Zn → Zn 2+ + 2e Conversion electrical to chemical energy Electrochemistry Conversion chemical to electrical energy Cathode (-ve) Reduction Vs Electron flow from anode (-ve) to cathode (+ve) electrode Electron flow from anode (+ve) to cathode (-ve) electrode Anode (-ve) Spontaneous rxn Non Spontaneous rxn Anode (+ve) Oxidation + О О - Zn → Zn 2+ + 2e (oxidized) Cu2+ + 2e → Cu (reduced) Zn2+ Zn2+ Zn2+ Zn2+ - -- -→ + + + Cu2+ Cu2+ Cu2+ -e -e + + + - - - 2Br- Br→ 2 + 2e- (oxidized) Br - Br - Br - Anode (+ve) Cathode (-ve)Cathode (+ve) -e -e Pb2+ + 2e- Pb→ (reduced) Pb2+ -e -e -e Cation (+ve ion) to cathode (-ve)Anion (-ve ion) to anode (+ve) 1.10Volt -e -e - - - - + + + + Anode Cathode Zn half cell (-ve) Oxidation Cu half cell (+ve) Reduction Cu2+ + 2e → Cu Zn + Cu2+ → Zn2+ + Cu 2Br- → Br2 + 2e Zn/Cu Voltaic Cell PbBr2 molten Electrolytic Cell Pb2+ + 2e → Pb PbBr2 → Pb+ Br2 Br - Br - Br - Pb2+ Pb2+ Pb2+ Pb2+ Pb2+
  • 5. Conversion electrical to chemical energy Electrochemistry Conversion chemical to electrical energy Cathode (-ve) Reduction Vs Spontaneous rxn Non Spontaneous rxn Anode (+ve) Oxidation + О О - -e 1.10 Volt -e -e - - - - + + + + Anode Cathode Zn/Cu Voltaic Cell PbBr2 molten Electrolytic Cell PbBr2 Pb→ + Br2 Eθ = ??? Br - Br - Br - Pb2+ Pb2+ Pb2+ Find Eθ cell (use reduction potential) Zn 2+ + 2e Zn E↔ θ = -0.76V Cu2+ + 2e Cu E↔ θ = +0.34V Cu half cell (+ve) Reduction Zn half cell (-ve) Oxidation Zn + Cu2+ Zn→ 2+ + Cu Eθ = ????? Zn Zn↔ 2+ + 2e Eθ = +0.76 Cu2+ + 2e Cu E↔ θ = +0.34 Zn + Cu2+ Zn→ 2+ + Cu Eθ = +1.10V Eθ = +1.10V +ve (spontaneous) Pb2+ + 2e Pb E↔ θ = -0.13V Br- + e Br↔ - Eθ = +1.07V Find Eθ cell (use reduction potential) 2Br - Br↔ 2+ 2e Eθ = -1.07 Pb2+ + 2e Pb E↔ θ = -0.13 Pb2+ + 2Br - Pb→ +Br2 Eθ = -1.20V Compound broken down (LYSIS) energy needed Eθ = -1.20V -ve (NON spontaneous) Conversion chemical to electrical energy Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!!
  • 6. Discharge of ions 1 Cation + 1 Anion Electrolysis (Molten Salt) Oxidation ← Anode (+ve) ← Anion PbBr2 molten Electrolytic Cell Eθ =-ve → supply +1.20v to breakdown PbBr2 Pb→ + Br2 Find Eθ cell (use reduction potential) Pb2+ + 2e Pb E↔ θ = -0.13 2Br - Br↔ 2+ 2e Eθ = -1.07 Pb2+ + 2Br - Pb→ +Br2 Eθ = -1.20V Eθ = -1.20V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Liquid – Pb2+ and Br- ions + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn -0.76↔ Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Br- ion Br2 gas (brown gas seen) Discharged Pb2+ ion to Pb (grey deposit) 2Br - Br↔ 2+ 2e Pb2+ + 2e Pb↔ Compound broken down (LYSIS) energy needed О О Eθ Oxidation = -1.07 E θ Reduction = -0.13 Pb2+ Br - Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Inert electrode Carbon/graphite Br - Br - Br - Pb2+ Pb2+ Pb2+
  • 7. Discharge of ions 1 Cation + 1 Anion Oxidation ← Anode (+ve) ← Anion CaCI2 molten Electrolytic Cell Find Eθ cell (use reduction potential) Ca2+ + 2e Ca E↔ θ = -2.87 2CI - CI↔ 2+ 2e Eθ = -1.36 Ca2+ + 2CI - Ca→ +CI2 Eθ = -4.23V Eθ = -4.23V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Liquid – Ca2+ and CI- ions + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ H2O + e- 1/2H↔ 2 + OH- -0.83 Zn2+ + 2e- Zn -0.76↔ Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ + 7H2O +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 gas (yellow gas) Discharged Ca2+ ion to Ca 2CI - CI↔ 2+ 2e Ca2+ + 2e Ca↔ Compound broken down (LYSIS) energy needed О О Eθ Oxidation = -1.36 Eθ Reduction = -2.87 Ca2+ CI - Eθ =-ve → supply +4.23v to breakdown CaCI2 Ca→ + CI2 Electrolysis (Molten Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Inert electrode Carbon/graphite CI - CI - CI - Ca2+ Ca2+ Ca2+
  • 8. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion NaCI aqueous Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 4OH - 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 2H→ 2 + O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Na+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 gas Discharged H+ ion to H2 gas О О Na+ /H+ CI- /OH- Eθ =-ve → supply +2.06v to breakdown NaCI H→ 2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e Na E↔ θ = -2.71 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2CI- CI↔ 2 + 2e Eθ = -1.36 О Inert electrode Carbon/graphite OH- OH- CI - CI - H+ H+ Na+ Na+
  • 9. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion NaI aqueous Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 2I - I↔ 2 + 2e Eθ = -0.54 NaI H→ 2 + I2 Eθ = -1.37V Eθ = -1.37V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Na+ , I- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged I- ion I2 Discharged H+ ion to H2 gas О О Na+ /H+ I- /OH- Eθ = -ve → supply +1.37 v to breakdown NaI H→ 2 + I2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e Na E↔ θ = -2.71 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 2I- I↔ 2 + 2e Eθ = -0.54 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 О Inert electrode Carbon/graphite I - I - OH- OH- H+ H+ Na+ Na+
  • 10. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion CuCI2 aqueous Electrolytic Cell Cu2+ + 2e Cu↔ Eθ = +0.34 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 CuCI2 Cu + O→ 2 Eθ = -0.89V Eθ = -0.89V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged OH- ion O2 Discharged Cu2+ ion to Cu metal О Cu2+ /H+ CI- /OH- Eθ = -ve → supply +0.89 v to breakdown CuCI2 Cu→ + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Cu2+ + 2e Cu E↔ θ = +0.34 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2CI- CI↔ 2 + 2e Eθ = -1.36 ОО Inert electrode Carbon/graphite OH- OH- CI - CI - H+ H+ Cu2+ Cu2+
  • 11. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion CuBr2 aqueous Electrolytic Cell Cu2+ + 2e Cu↔ Eθ = +0.34 2Br- Br↔ 2 + 2e Eθ = -1.07 CuBr2 Cu + Br→ 2 Eθ = -0.73V Eθ = -0.73V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Cu2+ , Br- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Br- ion Br2 Discharged Cu2+ ion to Cu О Cu2+ /H+ Br- /OH- Eθ = -ve → supply +0.73 v to breakdown CuBr2 Cu→ + Br2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Cu2+ + 2e Cu E↔ θ = +0.34 О Oxidation Eθ > more +ve easier to lose e 2Br- Br↔ 2 + 2e Eθ = -1.07 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 Inert electrode Carbon/graphite Br- Br- OH- OH- Cu2+ Cu2+ H+ H+
  • 12. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion KI aqueous Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 2I- I↔ 2 + 2e Eθ = -0.54 KI H→ 2+ Br2 Eθ = -1.37V Eθ = -1.37V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction K+ , I- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged I- ion I2 Discharged H+ ion to H2 О K+ /H+ I- /OH- Eθ = -ve → supply +1.37 v to breakdown KI H→ 2 + I2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e K+ + e K E↔ θ = -2.93 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 2I- I↔ 2 + 2e Eθ = -0.54 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 ОО Inert electrode Carbon/graphite OH- OH- I - I - H+ H+ K+ K+
  • 13. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion K2SO4 aqueous Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 4OH- 2H↔ 2O+ O2 + 4e Eθ = -1.23 K2SO4 H→ 2+ O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction K+ , SO4 2- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 - Discharged OH- ion O2 Discharged H+ ion to H2 О K+ /H+ SO4 2- /OH- Eθ = -ve → supply +2.06 v to breakdown K2SO4 H→ 2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e K+ + e K E↔ θ = -2.93 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2SO4 2- S↔ 2O8 2- + 2e Eθ = -2.01 ОО H2 gas Ratio 1:2 O2 gas Inert electrode Carbon/graphite OH- OH- SO4 2- SO4 2- K+ K+ H+ H+
  • 14. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion AgNO3 aqueous Electrolytic Cell Ag+ + e Ag E↔ θ = +0.80 4OH- 2H↔ 2O+ O2 + 4e Eθ = -1.23 AgNO3 Ag + O→ 2 Eθ = -0.43V Eθ = -0.43V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction Ag+ , NO3 - + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 Discharged OH- ion O2 Discharged Ag+ ion to Ag О Ag+ /H+ NO3 - /OH- Eθ = -ve → supply +0.43 v to breakdown AgNO3 Ag + O→ 2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Ag+ + e Ag E↔ θ = +0.80 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 NO3 - cannot be discharged Inert electrode Carbon/graphite OH- OH- NO3 - NO3 - H+ H+ Ag+ Ag+
  • 15. Discharge of ions 1 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion H2SO4 aqueous Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 4OH - 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 2H→ 2 + O2 Eθ = -2.06V Eθ = -2.06V -ve (NON spontaneous) Conversion electrical to chemical energy Energy needed to decompose compound!!!!!!!! Cation → Cathode (-ve) → Reduction H+ , SO4 2- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 S2 O8 2- + 2e ↔ SO4 2- +2.01 1/2F + e- ↔ F- +2.87 Discharged OH- ion O2 gas Discharged H+ ion to H2 gas О О H+ SO4 2- /OH- Eθ =-ve → supply +2.06v to breakdown H2SO4 H→ 2 + O2 Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2SO4 2- S↔ 2O8 2- + 2e Eθ = -2.01 О H2 gas O2 gas Ratio 1:2 Inert electrode Carbon/graphite OH- OH- SO4 2- SO4 2- H+ H+ H+ H+
  • 16. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion Conc NaCI Electrolytic Cell 2H+ + 2e H↔ 2 Eθ = -0.83 2CI - CI↔ 2 + 2e Eθ = -1.36 NaCI 2H→ 2 + CI2 + NaOH Eθ = -2.19 Cation → Cathode (-ve) → Reduction Na+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 Cu+ + e- ↔ Cu +0.52 1/2I2 + e- ↔ I- +0.54 Fe3+ + e- ↔ Fe2+ + 0.77 Ag+ + e- ↔ Ag +0.80 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 gas Discharged H+ ion to H2 gas О О Na+ /H+ CI- /OH- Inert electrode Carbon/graphite Eθ =-ve → supply +2.19v to breakdown NaCI H→ 2 + CI2 + NaOH Electrolysis (Concentrated Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e Na+ + e Na E↔ θ = -2.71 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2CI- CI↔ 2 + 2e Eθ = -1.36 О Ratio 1:2 H2 gas CI2 gas Dilute NaCI – OH- discharged due to Eθ value Conc NaCI – CI- discharged due to overpotential factor Discharged of H+ and OH- ion need addition voltage due to high activation energy for H2/O2 production If Conc CI- is high ↑ – it is preferred !!!!!! OH- OH- CI - CI - H+ H+ Na+ Na+
  • 17. Discharge of ions 2 Cation + 2 Anion Oxidation ← Anode (+ve) ← Anion Conc CuCI2 Electrolytic Cell Cu2+ + 2e Cu↔ Eθ = +0.34 2CI- CI↔ 2 + 2e Eθ = -1.36 CuCI2 Cu + O→ 2 Eθ = -0.89V Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 1/2CI2 + e- ↔ CI- +1.36 1/2F2 + e- ↔ F- +2.87 Discharged CI- ion CI2 Discharged Cu2+ ion to Cu metal О Cu2+ /H+ CI- /OH- Eθ = -ve → supply +0.89 v to breakdown CuCI2 Cu→ + O2 Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Cu2+ + 2e Cu E↔ θ = +0.34 О Oxidation Eθ > more +ve easier to lose e 4OH- 2H↔ 2O + O2 + 4e Eθ = -1.23 2H2O 4H↔ + + O2 + 4e Eθ = -1.23 2CI- CI↔ 2 + 2e Eθ = -1.36 ОО Inert electrode Carbon/graphite Electrolysis (Concentrated Salt) Dilute CuCI2 – OH- discharged due to Eθ value Conc CuCI2 – CI- discharged due to overpotential factor Discharged of H+ and OH- ion need addition voltage due to high activation energy for H2/O2 production If Conc CI- is high ↑ – it is preferred !!!!!! CI2 gas copper OH - OH - CI - CI - Cu2+ Cu2+ H+ H+
  • 18. Carbon electrode Discharge of ions 2 Cation 2 Anion Oxidation ← Anode (+ve) ← Anion CuCI2 aqueous Electrolytic Cell Cation → Cathode (-ve) → Reduction Cu2+ , CI- + H+ , OH- (from water) + + + + + + - - - - - Oxidized sp ↔ Reduced sp Eθ /V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 Cu+ + e- ↔ Cu +0.52 I2 + 2e- ↔ 2I- +0.54 Fe3+ + e- ↔ Fe2+ +0.77 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 1/2F2 + e- ↔ F- +2.87 Discharged Cu2+ ion to Cu metal О CI- /OH- Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Cu2+ + 2e Cu E↔ θ = +0.34 О Copper electrode as anode Cu easier discharge ↓ due nature electrode ↓ Cu → Cu2+ + 2e ↓ Cu electrode dissolve Copper electrode OH- discharged ↓ due to Eθ value ↓ 4OH- 2H↔ 2O+O2 + 4e ↓ O2 gas + + + + + Cu → Cu2+ + 2e copper electrode Cu → 2e + Cu2+ Cu2+ Cu2+ Cu2+ Cu2+ Cu → 2e + Cu2+ Cu → 2e + Cu2+ Cu2+ Cu2+ e- e- e e e- e- e - At Anode Copper electrode oxidizes/dissolve Conc copper ions unchanged Mass of Cu anode decreased Mass of Cu cathode increased Cu2+ Cu2+ Cu2+ OH- OH- CI - CI - H+ H+ Cu2+ Cu2+ Cu2+ /H+
  • 19. AgNO3 aqueous Electrolytic Cell Carbon electrode Discharge of ions 2 Anion Oxidation ← Anode (+ve) ← Anion Cation → Cathode (-ve) → Reduction Ag+ , NO3 - + H+ , OH- (from water) + + + + + + - - - - - NO3 - /OH- Electrolysis (Aqueous Salt) Factor affecting ion discharged (Selective Discharge) ↓ - Molten/aqueous - Relative E values of ion - Conc ion – conc/diluted - Nature of electrode Reduction Eθ > more +ve easier gain e 2H+ + 2e H↔ 2 Eθ = -0.83 2H2O +2e- H↔ 2 + 2OH- Eθ = -0.83 Ag+ + e Ag E↔ θ = +0.80 Copper electrode as anode Ag easier discharge ↓ due nature electrode ↓ Ag → Ag+ + e ↓ Ag electrode dissolve Silver electrode OH- discharged ↓ due to Eθ value ↓ 4OH- 2H↔ 2O+O2 + 4e ↓ O2 gas + + + + + Ag → Ag+ + e silver electrode Ag → e + Ag+ Ag+ Ag+ Ag+ Ag+ Ag → e + Ag+ Ag → e + Ag+ Ag+ Ag+ e- e- e e e- e- e - At Anode Silver electrode oxidizes/dissolve Conc silver ions unchanged Mass of Ag anode decreased Mass of Ag cathode increased Ag+ Ag+ Ag+ Oxidized sp ↔ Reduced sp Eθ/V Li+ + e- Li↔ -3.04 K+ + e- K↔ -2.93 Ca2+ + 2e- Ca↔ -2.87 Na+ + e- Na↔ -2.71 Mg2+ + 2e- Mg↔ -2.37 Al3+ + 3e- AI -1.66↔ Mn2+ + 2e- Mn -1.19↔ 2H2O +2e- H↔ 2 + 2OH- -0.83 Fe2+ + 2e- Fe -0.45↔ Ni2+ + 2e- Ni↔ -0.26 Sn2+ + 2e- Sn -0.14↔ Pb2+ + 2e- Pb -0.13↔ H+ + e- 1/2H↔ 2 0.00 Cu2+ + e- Cu↔ + +0.15 SO4 2- + 4H+ + 2e- H↔ 2SO3 + H2O +0.17 Cu2+ + 2e- ↔ Cu +0.34 1/2O2 + H2O +2e- ↔ 2OH- +0.40 I2 + 2e- ↔ 2I- +0.54 Ag+ + e- ↔ Ag +0.80 1/2Br2 + e- ↔ Br- +1.07 O2 + 4H+ +4e- ↔ H2O +1.23 Cr2O7 2- +14H+ +6e- ↔ 2Cr3+ +1.33 1/2CI2 + e- ↔ CI- +1.36 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 S2 O8 2- + 2e ↔ SO4 2- +2.01 MnO4 - + 8H+ + 5e- ↔ Mn2+ + 4H2O +1.51 ОО Discharged Ag+ ion to Ag - - - - - OH - OH - NO3 - NO3 - Ag+ Ag+ H+ H+ Ag+ /H+
  • 20. Electrolyte Electrode Ions Cathode (-) Anode (+) PbBr2 (molten) Carbon Pb2+ / Br- Pb2+ + 2e Pb→ Pb 2Br- Br→ 2 + 2e Br2 CaCI2 (molten) Carbon Ca2+ /CI- Ca2+ +2e Ca→ Ca 2CI- CI→ 2 + 2e CI2 NaCI Carbon Na+ / CI – H+ /OH- 2H+ + 2e H→ 2 H2 4OH- 2H↔ 2O +O2 + 4e O2 NaCI (conc) Carbon Na+ / CI– H+ /OH- 2H+ + 2e H→ 2 H2 2CI- CI→ 2 + 2e CI2 NaI Carbon Na+ / I– H+ /OH- 2H+ + 2e H→ 2 H2 2I- I→ 2 + 2e I2 CuCI2 Carbon Cu2+ / CI– H+ /OH- 2H+ + 2e H→ 2 H2 4OH- 2H↔ 2O +O2 + 4e O2 CuCI2 (conc) Carbon Cu2+ /CI- H+ /OH - 2H+ + 2e H→ 2 H2 2CI- CI→ 2 + 2e CI2 CuCI2 Copper Cu2+ /CI- Cu2+ +2e Cu→ Cu Cu Cu→ 2+ + 2e Cu CuBr2 Carbon Cu2+ /Br- H+ /OH - 2H+ + 2e H→ 2 H2 2Br- Br→ 2 + 2e Br2 KI Carbon K+ /I- H+ /OH - 2H+ + 2e H→ 2 H2 2I- I→ 2 + 2e I2 AgNO3 Carbon Ag+ /NO3 - H+ /OH - Ag+ + e Ag→ Ag 4OH- 2H↔ 2O +O2 + 4e O2 AgNO3 Silver Ag+ /NO3 - Ag+ + e Ag→ Ag Ag→ + + e K2SO4 Carbon K+ /SO4 2- H+ /OH - 2H+ + 2e H→ 2 H2 4OH- 2H↔ 2O +O2 + 4e O2 H2SO4 Carbon H+ /SO4 2- H+ /OH - 2H+ + 2e H→ 2 H2 4OH- 2H↔ 2O +O2 + 4e O2 HCI Carbon H+ /CI- H+ /OH - 2H+ + 2e H→ 2 H2 4OH- 2H↔ 2O +O2 + 4e O2 + - + - Ease Anion discharged NO3 – SO4 2- CI– Br– I– OH– Ease Cation discharged K+ Ca2+ Na+ Mg2+ Al 3+ Zn2+ Fe2+ Sn2+ Pb2+ H+ Cu2+ Ag+ easier easier Electrolytic cell Conversion electrical to chemical energy + - Anode (+ve) Oxidation Cathode (-ve) Reduction CathodeAnode Factor affecting ion discharged (Selective Discharge) Relative E values of ion Conc ion conc/diluted Nature of electrode PANIC Positive is Anode, Negative Is Cathode NO3 – - diff to discharge - ON for N is +5 (very high) - Diff to lose e to get higher
  • 21. Current – measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass through a point in 1 second = 1C/s 1 Coulomb charge (electron) = 6.28 x 10 18 electrons passing in 1 second 1 electron - carry charge of – 1.6 x 10 -19 C 6.28 x 10 18 electron - carry charge of - 1 C 1A 6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F Electric current Flow electric charges (electron) From High electric potential – low potential ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18 × == Current Flow of charges - - - ItQ = t = Time/ s Find amt charges pass through a sol if Current is 2.ooA, time is 15 mins ItQ = Q = Amt Charges/ C I = Current/ A CQ 1800601500.2 =××= Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1 1 1923 965001 106.11002.6 − − = ×××= ×= CmolF CF eLF 1A = 6.28 x 1018 e 1 second L = Avogadro constant 1 Faraday – Quantity charge 96500C supply to 1 mol electron Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Charge on ion Current Time ItQ = Mass produce is inversely proportional to charges on ion Cu2+ + 2e Cu↔Ag+ + e Ag↔ AI3+ + 3e AI↔ +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol e 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI
  • 22. Current – measured in Amperes or Coulombs per second 1A = 1 Coulomb charge pass through a point in 1 second = 1C/s 1 Coulomb charge (electron) = 6.28 x 10 18 electrons passing in 1 second 1 electron - carry charge of – 1.6 x 10 -19 C 6.28 x 10 18 electron - carry charge of - 1 C 1A 6.02 x 10 23 electron (1 Mol) - carry charge of - 96500C 1F Electric current Flow electric charges (electron) From High electric potential – low potential ond electron ond Coulomb A sec.1 .1028.6 sec1 1 1 18 × == Current Flow of charges - - - ItQ = t = Time/ s Find amt charges pass through a sol if Current is 2.ooA, time is 15 mins ItQ = Q = Amt Charges/ C I = Current/ A CQ 1800601500.2 =××= Faraday’s constant (F) – charge on 1 mol of electron 96500 C mol-1 1 1923 965001 106.11002.6 − − = ×××= ×= CmolF CF eLF 1A = 6.28 x 1018 e 1 second L = Avogadro constant 1 Faraday – Quantity charge 96500C supply to 1 mol electron Copper (II) sulfate electrolyzed using current -- 0.150A for 5 hrs. Cal mass of Cu deposited CQ Q ItQ 2700 60605150.0 = ×××= = Cu2+ + 2e Cu↔ 2 mol e → 1 mol Cu 0.028 mol e 0.014 mol Cu→ emolC emolC ...028.0 96500 2700 2700 ...196500 =→ → Find Current/I → Find Charge/Q → Find mol electron → Find Mass deposited use Faraday’s constant Mass = mol x RAM Mass = 0.014 x 63.5 Mass = 0.889 g Mass deposited (Cathode) Cu 11 Cu2+ Cu2+
  • 23. Electrolysis AI t Q I ItQ 4.6 605.12 4787 = × == =Cr3+ + 3e Cr↔ 1 mol Cr → 3 mol e 0.0165 mol Cr → 0.0495 mol e Find Mass → Find mol electron → Find Charges/Q → Find current/I use Faraday’s constant Mass = mol x RAM 0.86 = mol x 52.00 mol = 0.0165 Electrolysis Cr2(SO4)3 yield 0.86g of Cr after passing current for 12.5 min. Find amt of current used. 1 mol e → 96500C 0.0495mol e 96500 x 0.0495→ = 4787 C Find time /hrs need to produce 25g of Cr from Cr2(SO4)3 with current of 1.1A Find Mass → Find mol electron → Find Charges/Q →Find current/I Cr3+ + 3e Cr↔ use Faraday’s constant 1 mol Cr → 3 mol e 0.48 mol Cr → 1.44 mol e Mass = mol x RAM 25 = mol x 52.00 mol = 0.48 1 mol e → 96500C 1.44mol e 96500 x 1.44→ = 138960 C 1.35 1.1 138960 = == = t I Q t ItQ Mass deposited (Cathode) Cr3+ Cr3+ Cr Find vol of H2 gas collect at cathode when aq sol Na2SO4 electrolyzed for 2.00 hours with a 10A. Mass deposited (Cathode) Cr Cr3+ Cr3+ Find Current/I → Find Charge/Q → Find mol electron → Find Vol 2H+ + 2e H↔ 2 CQ Q ItQ 72000 6060200.2 = ×××= = use Faraday’s constant emolC emolC ...746.0 96500 72000 72000 ...196500 =→ → 2 mol e → 1 mol H2 0.746 mol e 0.373 mol H→ 2 H2 O2 22 33 44 Vol = 8.35 dm3
  • 24. Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Charge on ion Current Time ItQ = Mass produce is inversely proportional to charges on ion Cu2+ + 2e Cu↔Ag+ + e Ag↔ AI3+ + 3e AI↔ +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol electron across 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI Ag+ Ag+ - - - - - - + + + + + + Cu2+ Cu2+ AI3+ AI3+ AgNO3,CuSO4, AICI3 connect in series. Same amt current used. Cal mass Cu and Al when 10.8 g Ag deposited. Ag+ + e Ag↔ 1 mol Ag → 1 mol e 0.1 mol Ag →0.1 mol e Mass = mol x RAM 10.8 = mol x 108 mol = 0.1 Cu2+ + 2e Cu↔ 2 mol e → 1 mol Cu 0.1 mol e → 0.05 mol Cu AI3+ + 3e AI↔ 3 mol e → 1 mol AI 0.1 mol e → 0.03 mol AI Mass Cu = 0.05 mol Mass AI = 0.03 mol AgNO3, H3SO4 connect in series. Same amt current used Cal vol H2,O2 when 10.8 g Ag deposited. - - Ag+ Ag+ O2 H2 Ag+ + e Ag↔ 1 mol Ag → 1 mol e 0.1 mol Ag → 0.1 mol e Mass = mol x RAM 10.8 = mol x 108 mol = 0.1 2H+ + 2e H↔ 2 2 mol e → 1 mol H2 0.1 mol e 0.05 mol H→ 2 4OH- 2H↔ 2O +O2 + 4e 4 mol e → 1 mol O2 0.1 mol e 0.025 mol O→ 2 2.24 dm3 0.56 dm3
  • 25. Faraday's 1st Law Electrolysis Faraday's 2nd Law Electrolysis Amt charges (Q) Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Charge on ion Current Time ItQ = Mass produce is inversely proportional to charges on ion Cu2+ + 2e Cu↔Ag+ + e Ag↔ AI3+ + 3e AI↔ +1 +2 +3 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 3 mol e → 1 mol AI Pass 1 mol electron across 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu 1 mol e → 1/3 mol AI Purification of metal Application of Electrolysis Extraction reactive metal Aluminium Sodium - ve electrode Aluminium metal AI2O3 Al3+ + 3e → Al Electroplating - Prevent corrosion - Improve appearance Copper, chromium, silver - ve Sodium metal Na+ + e → Na NaCI + ve - - - - - - - - + + + + + + + + + + + + - - - - Anode (+ve) Plating metal Cathode (-ve) Object + + - - Anode (+ve) Impure Cu metal Mass decrease Cathode (-ve) Pure Cu metal Mass increase Cu2+ + 2e Cu↔ Cu2+ Cu2+ Cu2+ Cu Cu↔ 2+ + 2e 2CI- -2e → CI2
  • 26. Electrolysis of KI Electrolysis of waterExcellent Silver crystal formation Galvanizing Iron with Zinc PANIC Positive is Anode, Negative Is Cathode Factor affecting ion discharged (Selective Discharge) Relative E values of ion Conc ion conc/diluted Nature of electrode Ease Cation discharged K+ Ca2+ Na+ Mg2+ Al 3+ Zn2+ Fe2+ Sn2+ Pb2+ H+ Cu2+ Ag+ easier Ease Anion discharged NO3 – SO4 2- CI– Br– I– OH– easier NO3 – - diff to discharge - ON for N is +5 (very high) - Diff to lose e to get higher Anode (+ve) Oxidation Cathode (-ve) Reduction Conversion electrical to chemical energy Electrolytic cell + - Faraday's 1st Law Electrolysis Mass produce is directly proportional to the quantity of electricity/charges ( C ) Factor affecting mass substance liberated Amt charges (Q) Charge on ion Current Time ItQ = Faraday's 2nd Law Electrolysis Mass produce is inversely proportional to charges on ion +1 +2 Ag+ + e Ag↔ Cu2+ + 2e Cu↔ 1 mol e → 1 mol Ag 2 mol e → 1 mol Cu 1 mol e → 1 mol Ag 1 mol e → 1/2 mol Cu Pass 1 mol electron across
  • 27. Acknowledgements Thanks to source of pictures and video used in this presentation Thanks to Creative Commons for excellent contribution on licenses http://creativecommons.org/licenses/ http://spmchemistry.onlinetuition.com.my/2013/10/electrolytic-cell.html http://www.chemguide.co.uk/physical/redoxeqia/introduction.html http://educationia.tk/reduction-potential-table http://2012books.lardbucket.org/books/principles-of-general-chemistry-v1.0/s23- electrochemistry.html Prepared by Lawrence Kok Check out more video tutorials from my site and hope you enjoy this tutorial http://lawrencekok.blogspot.com