SlideShare a Scribd company logo
1 of 13
Download to read offline
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
DOI : 10.5121/vlsic.2012.3306 57
DESIGN AND PERFORMANCE ANALYSIS OF NINE STAGES
CMOS BASED RING
OSCILLATOR
Sushil Kumar and Gurjit Kaur
School of Information and Communication Technology Gautam Buddha University, UP,
India
ABSTRACT
This paper deals with the design and performance analysis of a ring oscillator using CMOS 45nm
technology process in Cadence virtuoso environment. The design of optimal Analog and Mixed Signal
(AMS) very large scale integrated circuits (VLSI) is a challenging task for the integrated circuit(IC)
designer. A Ring Oscillator is an active device which is made up of odd number of NOT gates and whose
output oscillates between two voltage levels representing high and low. There are a number of challenges
ahead while designing the CMOS Ring Oscillator which are delay, noise and glitches. CMOS is the
technology of choice for many applications, CMOS oscillators with low power, phase noise and timing
jitter are highly desired. In this paper, we have designed a CMOS ring oscillator with nine
stages.Previously, the researchers were unable to reduce the phase noise in ring oscillators substantially
with nine stages. We have successfully reduced the phase noise to -6.4kdBc/Hz at 2GHz center frequency of
oscillation.
KEYWORDS
Analog and mixed signal (AMS), VLSI circuit, CMOS Ring oscillator (RO), integrated circuit (IC), phase
noise, center frequency of oscillation
1. INTRODUCTION
The ring oscillator is the most widely manufactured integrated circuit of all. Ring oscillators are
being used by semiconductor foundries on every semiconductor wafer to monitor the power
dissipation, delay, jitter of fabricated CMOS inverters. A particular measurements pattern of
oscillation frequency determines which wafers are to be accepted and which are to be
rejected.The ring oscillator is basically a closed loop comprised of an odd number of identical
inverters,which form an unstable negative feedback circuit. The period of oscillation of ring
oscillator is the twice the sum of the gate delays in the ring comprises of inverters. A voltage
controlled ring CMOS inverter based oscillator is first used for clock recovery in an Ethernet
controller [1]. Since then, the ring oscillator has become a widely used component in the
communication. Now a days, almost all ring oscillators use differential delay stages [2], because
of their greater immunity to supply disturbances. Thus, the ring oscillator is comparitively very
compact as compared to LC resonator based oscillator. A significantly large number of ring
oscillators take up the very small
chip area. It can also oscillate at very high frequencies i.e.; at very short periods limited only by
the sum of a few gate delays. The maximum oscillation frequency of ring oscillator is always
higher than the relaxation oscillator. There has been a stream of publications since the early 80s
on analytical estimation of delay in chains of CMOS inverters, and since the mid 90s on
estimation of jitter in ring oscillators. However, the analysis for gate delay becomes increasingly
non intuitive as it gets more accurate, and the latest editions of textbooks on VLSI designs [3],[4]
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
58
hold that is better to use the simplest possible analysis for a first order estimate of gate delay and
then refine it with simulation. VCO is the most important part of the PLL. It generates the
required frequency. The VCO used in the PLL is a ring oscillator having nine differential buffer
stages.
1.2. CMOS DELAY
Propagation delay ( td) is defined as the time between when the input crosses the switching
threshold [3] or toggle point (Vm) of the inverter to when its output crosses the toggle point of
next inverter in a chain. The first publications on the subject estimated delay by the time for the
output voltage of an NMOS and CMOS inverter driving the capacitance of the next stage to cross
the trip point in response to an input step [Fig. 3(a)]. However, the input waveforms in a practical
logic chain are not ideal steps but have a finite slop, which in the case of a chain of identical
stages is the same at the input and output of each inverter with opposite sign. This has led to a
refined calculation based on step response delay which takes into account of the finite slope of the
input ramp [6][fig. 3(b)].Generally, for large fanouts, a longer propagation delay than an input
step is calculated.
Figure 3. (a) Propagation delay defined in response to a step voltage input.
(b) Realistic ramp input, which can be approximated by a two-step input for any fanout [17].
Yet better estimates of propagation delay continue to be published; for example, [7] gives a
surprisingly complicated but complete analytical expression for delay, given that the circuit in
question contains only an NFET, a PFET, and a capacitor. The complexity of these analyses
forces designers to continue to use imple estimates based on RC delay for hand calculation, which
are refined on timing simulations[3],[4]. When the fanout is one as in a ring oscillator simple but
reasonably accurate models of dynamics can suffice. In [8] it is shown that delay can be estimated
within 10% by approximating a ramp with a delayed two level step input. The delay in the first
step is the time it takes the ramp to reach the inverter toggle point, and the delay in the second
step depends on the load capacitance and the ramp rate at the input.
1.3 RING OSCILLATOR JITTER
The first paper estimates jitter caused by FET noise in CMOS differential ring oscillators [9] cast
the problem correctly in the time domain, by finding fluctuations in the instants when the output
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
59
ramp in a delay element crosses the toggle point. This is similar to the analysis used to find jitter
and phase noise depends on the voltage gain of the delay circuit. Experience tells us that voltage
gain of the delay element should not matter as long as it is large; indeed, it can be infinite because
delay and therefore jitter depend mainly on charge and discharge current and capacitance . It also
gave the correct expression that links period jitter which we will define below with phase noise;
subsequent analyses, including our own, show that this relationship holds for white noise sources.
The paper does not address flicker noise. The second paper analyses the jitter focused on ring
oscillator using ECL like BJT delay stages [11]. The analysis as well as the results were in the
time domain, again defining jitter by fluctuations in instants of threshold crossings at each delay
stage in a closed chain. There was no attempt to link jitter to phase noise.Both the papers take into
account the time varying nature of the circuit by first analyzing the steady state RMS noise at
equilibrium, with the load RC setting the noise bandwidth; and modeling exponential decay or
builds up with this time constant to capture the time varying aspect of the large signal switching.
The next paper [12] applies the concept of the impulse sensitivity function to the waveforms of a
ring oscillator and from relation between the impulse sensitivity function and phase noise,
deduces an approximate expression for phase noise. The latest analysis of the ring oscillator
phase noise [13] explores details of the noise processes at the toggle point of the delay element
but at the end offers no analytical expressions, simple or otherwise, for the phase noise or jitter.
With this as background, this paper presents a comprehensive analysis of jitter and phase noise in
both CMOS inverter based and differential ring oscillators, pinpointing the most important
mechanisms whereby white and flicker noise manifest themselves. The physically based approach
and simple resulting expressions should make it easy to design ring oscillators for a given jitter
[14].
2. SYSTEM DESIGN
Figure 1. Proposed Block Diagram of 9 stages CMOS Ring Oscillator
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
60
Figure 2. Schematic diagram of 9 stages CMOS Ring Oscillator
Figure 3. One of the stages of 9 stages CMOS Ring Oscillator
The design entry of the circuits is carried out in the schematic editor of Cadence Virtuoso Analog
Design Environment using gpdk045 library. For performance analysis these circuits are simulated
in Spectre simulator of Cadence tool. The transistor sizes obtained as above for a set of
specifications are used to design the required ring oscillator circuit. The first ring oscillator is
designed for nine stages of CMOS inverters and the W/L ratio which is 45nm CMOS
Technology.
Table 1. Design Parameters of 9 stages Ring Oscillator
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
61
Even numbered circular inverter chain cannot be used as a ring oscillator because the eventual or
ultimate output is same as input in this case. Although, this sort of inverter configuration can be
used as a data storage element between input and output. A ring oscillator can comprise of a
mixture of inverting and non - inverting stages of nand gate but the number of stages should be
odd like; 9, 11 etc. The oscillation period of ring oscillator is equal to the twice the sum of each
and every individual stage delays. The ring oscillator must have the gain of greater than 1 at the
intended frequency of oscillation. Even a small noise can cause the ring oscillator output to rise
slightly. After having passed through the element of time delay, this small output voltage change
will be clearly visible to the ring oscillator input. The negative gain of more than 1 for ring
oscillator means that the output will change in the direction opposite to this input voltage. A
change will be observed by an amount larger than the input value for a ring oscillator gain of
greater than 1. A real ring oscillator only requires only power to operate; above a certain
threshold voltage oscillations begin spontaneously. The increase in the number of stages of
inverters in ring oscillator increases the total delay and thus decreases the frequency of
oscillation. Also, higher supply voltage decreases the delay and increases the frequency of
oscillation.
3. RESULTS AND ANALYSIS
Figure 4. Waveform for Transient Analysis of 9 stages CMOS Ring Oscillator
In figure 4, a transient analysis was performed to illustrate the effects of the parasitic parameters
over the oscillation frequency and to observe the behavior of the waveform with respect to time
e.g; for point M1,123.9 mV supply voltage is used at 764.1 ps by the 9 stages Ring Oscillator.
This kind of result is due to glitches in the waveform.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
62
Figure 5. Waveform for Power consumption of 9 stages CMOS Ring Oscillator
The above figure is for the power for 9 stage Ring Oscillator and for point M2, 26.7 uW power
dissipated at 703.2 ps and average power dissipated is 10.15x10-6 W. Till this point, the curve of
power consumed is linear because the CMOS transistor takes time to stabilize itself and after this
point, a typical waveform for power consumed by Ring Oscillator is obtained which is drastically
changing even a small change in time due to parasitic of the CMOS transistor.
Figure 6. Waveform for Voltage of 9 stages CMOS Ring Oscillator
Waveform shown above is of 9 stages Ring Oscillator for the voltage in volts with respect to the
PSS response over a period of 5 ns. At point M0 i.e; at 734.7 ps, the voltage is 385 mV which is
in agreement to the expected theoretical values because of the sinusoidal nature (chosen as
option) of the supply voltage in the given case.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
63
Figure 7. Waveform for THD of 9 stages CMOS Ring Oscillator
It is known from the above figure that the total harmonic distortion (THD) with respect to the
PSS response over a range varying from -5 to 5. At point M0 i.e; at -3.649, the total harmonic
distortion (THD) is 3.586x10-4and at point M1 i.e; at -.4011, the total harmonic distortion (THD)
is 3.409x10-4. THD is the measurement of the distortion created from the RO’s current draw.
Lesser THD, for example, allows the components in a loudspeaker, amplifier or microphone or
other equipment to make a violin sound like a violin when played back. THD is used to
characterize the linearity of audio systems and the power quality of electric power systems.
Figure 8. Waveform for Compression Point of 9 stages CMOS Ring Oscillator
The waveform shown above is of 9 stages Ring Oscillator for compression point the with respect
to the PSS Response over a range varying from 6.05 to 6.065. At point M2 i.e; at 6.063 dBm, the
value of compression point is 9.983 dB. At some power level, the gain response of the device is
reduced by a specific amount. This power level is called the compression point.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
64
Figure 9. Waveform for Power Added Efficiency of 9 stages CMOS Ring Oscillator
Waveform shown above is of 9 stages Ring Oscillator for the power added efficiency with respect
to the PSS Response over a range varying from -5 to 5.At point M0 i.e; at -3.694, the power
added efficiency is 1.424x103 and at point M2 i.e; at 2.859, the power is 1.415 x103. Power
Added Efficiency is basically method to rate the efficiency of power devices like ring oscillator.
Figure 10. Waveform for Phase Noise of 9 stages CMOS Ring Oscillator
Waveform shown above is of 9 stages Ring Oscillator for the phase noise with respect to the PSS
response over a range varying from 1.8 to 2.2.At point M0 i.e; at 2 GHz, the phase noise is -6.4
kdBc/Hz. Phase Noise is the random or sudden fluctuation in the phase of a waveform in
frequency domain.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
65
Figure 11. Waveform for Input Noise of 9 stages CMOS Ring Oscillator
The figure shown above is of 9 Stage Ring Oscillator for the input noise with respect to the PSS
response over a range varying from 1.8 to 2.2. At point M0 i.e; at 2 GHz, the input noise is
3.083kV/sqrt(Hz). It is actually a measure of how much noise a mic preamp will add to a
microfone’s signal.
Figure 12. Waveform for Output Noise of 9 stages CMOS Ring Oscillator
Waveform shown above is of 9 stages Ring Oscillator for the output noise with respect to the
PSS response over a range varying from 1.8 to 2.2. At point M0 i.e; at 2 GHz, the output noise is
– 6.4 kV /sqrt(Hz).
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
66
Figure 13. Waveform for Transfer Function of 9 stages CMOS Ring Oscillator
The waveform shown above is of 9 stages Ring Oscillator for the transfer function with respect
to the PSS Response over a range varying from 1.8 to 2.2.At point M0 i.e; at 2 GHz, the transfer
function is 148.5 nV /V. Transfer functions are commonly used in the analysis of systems such as
single input single output filter. The term is often used to refer to Linear Time Invariant Systems
(LTI).
Figure 14. Layout of 9 stages CMOS Ring Oscillator in 45nm CMOS Technology
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
67
Table: 2 Performance Parameters of 9 stages Ring Oscillator
A transient analysis (TA) is performed to illustrate the effects of the parameters over the
oscillation frequency and to observe the behavior of the waveform with respect to time. Periodic
steady state (PSS) analysis is generally done to determine the oscillation frequency and the
influence of the parameters such as power dissipation, noise, supply voltage etc. which have been
discussed above. PNOISE analysis normally calculates frequency convention effects and noise
folding.
4. CONCLUSION
The nine stages CMOS ring oscillator design has successively been designed and executed using
CMOS 45nm technology process in Cadence virtuoso environment. Also, various performance
parameters like noise, delay, glitches etc. were analysed and reduced accordingly to optimize the
efficiency of the nine stages ring oscillator. We improvised the previous research work by the
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
68
author by obtaining the value of period jitter 0 at 933.5 ps, phase noise -6.4 kdBc/Hz, Total
Harmonic Distortion (THD) 3.586 x10-4 at point -3.649 and Power Added Efficiency 91.424
x103 at point -3.694.
REFERENCES
[1] A. Bell and G. Borriello, “A single chip nMOS Ethernet controller,” IEEE International Solid-State
Circuits Conference (ISSCC) Dig. Tech. Papers, 1983, pp. 70–71.
[2] B. Kim, D. Helman, and P. Gray, “A 30 MHz hybrid analog/digital clock recovery circuit in 2 um
CMOS,” IEEE J. Solid State Circuits, vol. 25, no. 6, pp. 1385–1394, June 1990.
[3] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, Upper Saddle River, NJ:
Pearson/Prentice Hall, 2003.
[4] N. Weste and D. Harris, CMOS VLSI Design. Boston, MA: Pearson/Addison-Wesley, 2005.
[5] R. Bayruns, R. Johnston, D. Fraser , and S. C. Fang, “Delay analysis of Si nMOS Gbit/s logic
circuits,” IEEE J. Solid State Circuits, vol. 19, no. 5, pp. 755–764, May 1984.
[6] N. Hedenstierna and K. Jeppson, “CMOS circuit speed and buffer optimization,”IEEE Trans.
Computer Aided Deign. Integrated Circuits Systems, vol.6, no. 2, pp. 270–281, Mar. 1987.
[7] L. Bisdounis, S. Nikolaidis, and O. Loufopavlou, “Propagation delay and short circuit power
dissipation modeling of the CMOS inverter, ”IEEE Trans. Circuits System International, Fundamental
Theory Applications, vol. 45, no. 3, pp. 259–270, Mar. 1998.
[8] A. Kabbani, D. Al-Khalili, and A. Al-Khalili, “Technology portable analytical model for DSM
CMOS inverter transition time estimation, ”IEEE Trans. Computer Aided Design Integrated Circuits
Systems, vol. 22, no. 9,pp. 1177–1187, Sep. 2003.
[9] T.Weigandt, B. Kim, and P. Gray, “Analysis of timing jitter in CMOS ring oscillators,” in Proc. IEEE
Int. Symposium Circuits and Systems (ISCAS), 1994, pp. 27–30.
[10] A. A. Abidi and R. G. Meyer, “Noise in relaxation oscillators,” IEEE J. Solid State Circuits, vol. SC-
18, no. 6, pp. 794–802, Dec. 1983.
[11] J. McNeill, “Jitter in ring oscillators,” IEEE J. Solid State Circuits, vol. 32, no. 6, pp. 870–879, Jun.
1997.
[12] A. Hajimiri, S. Limotyrakis, and T. Lee, “Jitter and phase noise in ring oscillators,” IEEE J. Solid-
State Circuits, vol. 34, no. 6, pp. 790–804, Jun. 1999.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
69
[13] B. Leung, “Anovel model on phase noise of ring oscillator based on last passage time,” IEEE
Trans.Circuits System International, Fundamental Theory Application ,vol. 51, no. 3, pp. 471–482,
Mar.2004.
[14] Guang-Kaai Dehng, Ching-Yuan Yang, June-Ming Hsu, and Shen-Iuan Liu,"A 900 MHz 1 V CMOS
Frequency Synthesizer", IEEE Journal of solid state circuits, Vol. 35, No. 8, pp.1211-1214, 2000.
[15] Andrea Bonfanti, Davide De Caro, Alfio Dario Grasso, Salvatore Pennisi, Carlo Samori, and Antonio
G. M. Strollo, "A 2.5 GHz DDFS PLL with 1.8 MHz Bandwidth in 0.35 µm CMOS" IEEE Journal of
Solid state circuits, Vol. 43, No. 6, pp.1403-1413, 2008.
International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012
69
[16] Asad A. Abidi, Fellow, IEEE,” Phase Noise and Jitter in CMOS Ring Oscillators”, IEEE Journal of
Solid-State Circuits, Vol. 41, No. 8, August 2006.

More Related Content

What's hot

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Ad vlsi pass-transistor logic_yalagoud_patil
Ad vlsi pass-transistor logic_yalagoud_patilAd vlsi pass-transistor logic_yalagoud_patil
Ad vlsi pass-transistor logic_yalagoud_patilYalagoud Patil
 
Pulse & Linear Integrated Circuits
Pulse & Linear Integrated CircuitsPulse & Linear Integrated Circuits
Pulse & Linear Integrated CircuitsSRAVANIP22
 
Pipelining approach
Pipelining approachPipelining approach
Pipelining approachGopinathD17
 
FAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITFAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITILA SHARMA
 
A report on 2 to 1 mux using tg
A report on 2 to 1 mux using tgA report on 2 to 1 mux using tg
A report on 2 to 1 mux using tgvijay rastogi
 
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...Achintya Kumar
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...IJNSA Journal
 
Analysis of pocket double gate tunnel fet for low stand by power logic circuits
Analysis of pocket double gate tunnel fet for low stand by power logic circuitsAnalysis of pocket double gate tunnel fet for low stand by power logic circuits
Analysis of pocket double gate tunnel fet for low stand by power logic circuitsVLSICS Design
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
1182 apec2011
1182 apec20111182 apec2011
1182 apec2011dunisha
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitorGur Kan
 
CMOS Dynamic Logic: A Review
CMOS Dynamic Logic: A ReviewCMOS Dynamic Logic: A Review
CMOS Dynamic Logic: A Reviewijsrd.com
 
Switched capacitor filter
Switched capacitor filterSwitched capacitor filter
Switched capacitor filterMinh Anh Nguyen
 

What's hot (20)

Dynamic&p t-logic
Dynamic&p t-logicDynamic&p t-logic
Dynamic&p t-logic
 
Logic Gate
Logic GateLogic Gate
Logic Gate
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Switched capacitor circuits_shish
Switched capacitor circuits_shishSwitched capacitor circuits_shish
Switched capacitor circuits_shish
 
Ad vlsi pass-transistor logic_yalagoud_patil
Ad vlsi pass-transistor logic_yalagoud_patilAd vlsi pass-transistor logic_yalagoud_patil
Ad vlsi pass-transistor logic_yalagoud_patil
 
Pulse & Linear Integrated Circuits
Pulse & Linear Integrated CircuitsPulse & Linear Integrated Circuits
Pulse & Linear Integrated Circuits
 
Pipelining approach
Pipelining approachPipelining approach
Pipelining approach
 
FAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUITFAST XOR-XNOR CIRCUIT
FAST XOR-XNOR CIRCUIT
 
A report on 2 to 1 mux using tg
A report on 2 to 1 mux using tgA report on 2 to 1 mux using tg
A report on 2 to 1 mux using tg
 
Lecture08
Lecture08Lecture08
Lecture08
 
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...
Performance Analysis of Encoder in Different Logic Techniques for High-Speed ...
 
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
Multi carrier equalization by restoration of redundanc y (merry) for adaptive...
 
Lab sheet
Lab sheetLab sheet
Lab sheet
 
Analysis of pocket double gate tunnel fet for low stand by power logic circuits
Analysis of pocket double gate tunnel fet for low stand by power logic circuitsAnalysis of pocket double gate tunnel fet for low stand by power logic circuits
Analysis of pocket double gate tunnel fet for low stand by power logic circuits
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
1182 apec2011
1182 apec20111182 apec2011
1182 apec2011
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Combinational Logic
Combinational LogicCombinational Logic
Combinational Logic
 
CMOS Dynamic Logic: A Review
CMOS Dynamic Logic: A ReviewCMOS Dynamic Logic: A Review
CMOS Dynamic Logic: A Review
 
Switched capacitor filter
Switched capacitor filterSwitched capacitor filter
Switched capacitor filter
 

Similar to DESIGN AND PERFORMANCE ANALYSIS OF NINE STAGES CMOS BASED RING OSCILLATOR

CMOS ring oscillator delay cell performance: a comparative study
CMOS ring oscillator delay cell performance: a comparative studyCMOS ring oscillator delay cell performance: a comparative study
CMOS ring oscillator delay cell performance: a comparative studyIJECEIAES
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & MohammadKaveh Dehno
 
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...VLSICS Design
 
Performance analysis of gated ring oscillator designed for audio frequency ra...
Performance analysis of gated ring oscillator designed for audio frequency ra...Performance analysis of gated ring oscillator designed for audio frequency ra...
Performance analysis of gated ring oscillator designed for audio frequency ra...VLSICS Design
 
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...VLSICS Design
 
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...VLSICS Design
 
A 20 gbs injection locked clock and data recovery circuit
A 20 gbs injection locked clock and data recovery circuitA 20 gbs injection locked clock and data recovery circuit
A 20 gbs injection locked clock and data recovery circuitVLSICS Design
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaIISRT
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos otaRamesh Patriotic
 
Iisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIISRTJournals
 
Designing phase frequency detector using different design technologies
Designing phase frequency detector using different design technologiesDesigning phase frequency detector using different design technologies
Designing phase frequency detector using different design technologiesIAEME Publication
 
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIESDESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIESIAEME Publication
 
Compact low power high slew-rate cmos buffer amplifier with power gating tech...
Compact low power high slew-rate cmos buffer amplifier with power gating tech...Compact low power high slew-rate cmos buffer amplifier with power gating tech...
Compact low power high slew-rate cmos buffer amplifier with power gating tech...VLSICS Design
 
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...VLSICS Design
 
A novel low power high dynamic threshold swing limited repeater insertion for...
A novel low power high dynamic threshold swing limited repeater insertion for...A novel low power high dynamic threshold swing limited repeater insertion for...
A novel low power high dynamic threshold swing limited repeater insertion for...VLSICS Design
 
Optimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low PowerOptimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low Poweriosrjce
 
Analysis and design_of_a_low-voltage_low-power[1]
Analysis and design_of_a_low-voltage_low-power[1]Analysis and design_of_a_low-voltage_low-power[1]
Analysis and design_of_a_low-voltage_low-power[1]Srinivas Naidu
 

Similar to DESIGN AND PERFORMANCE ANALYSIS OF NINE STAGES CMOS BASED RING OSCILLATOR (20)

CMOS ring oscillator delay cell performance: a comparative study
CMOS ring oscillator delay cell performance: a comparative studyCMOS ring oscillator delay cell performance: a comparative study
CMOS ring oscillator delay cell performance: a comparative study
 
Project_Kaveh & Mohammad
Project_Kaveh & MohammadProject_Kaveh & Mohammad
Project_Kaveh & Mohammad
 
O0704080084
O0704080084O0704080084
O0704080084
 
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...
PERFORMANCE ANALYSIS OF GATED RING OSCILLATOR DESIGNED FOR AUDIO FREQUENCY RA...
 
Performance analysis of gated ring oscillator designed for audio frequency ra...
Performance analysis of gated ring oscillator designed for audio frequency ra...Performance analysis of gated ring oscillator designed for audio frequency ra...
Performance analysis of gated ring oscillator designed for audio frequency ra...
 
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...
Design of a High Precision, Wide Ranged Analog Clock Generator with Field Pro...
 
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...
DESIGN OF A HIGH PRECISION, WIDE RANGED ANALOG CLOCK GENERATOR WITH FIELD PRO...
 
A 20 gbs injection locked clock and data recovery circuit
A 20 gbs injection locked clock and data recovery circuitA 20 gbs injection locked clock and data recovery circuit
A 20 gbs injection locked clock and data recovery circuit
 
En34855860
En34855860En34855860
En34855860
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
Design of oscillators using cmos ota
Design of oscillators using cmos otaDesign of oscillators using cmos ota
Design of oscillators using cmos ota
 
Iisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos otaIisrt 5-design of oscillators using cmos ota
Iisrt 5-design of oscillators using cmos ota
 
Designing phase frequency detector using different design technologies
Designing phase frequency detector using different design technologiesDesigning phase frequency detector using different design technologies
Designing phase frequency detector using different design technologies
 
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIESDESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES
DESIGNING PHASE FREQUENCY DETECTOR USING DIFFERENT DESIGN TECHNOLOGIES
 
Compact low power high slew-rate cmos buffer amplifier with power gating tech...
Compact low power high slew-rate cmos buffer amplifier with power gating tech...Compact low power high slew-rate cmos buffer amplifier with power gating tech...
Compact low power high slew-rate cmos buffer amplifier with power gating tech...
 
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...
A NOVEL LOW POWER HIGH DYNAMIC THRESHOLD SWING LIMITED REPEATER INSERTION FOR...
 
A novel low power high dynamic threshold swing limited repeater insertion for...
A novel low power high dynamic threshold swing limited repeater insertion for...A novel low power high dynamic threshold swing limited repeater insertion for...
A novel low power high dynamic threshold swing limited repeater insertion for...
 
Terminaters
TerminatersTerminaters
Terminaters
 
Optimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low PowerOptimization of Digitally Controlled Oscillator with Low Power
Optimization of Digitally Controlled Oscillator with Low Power
 
Analysis and design_of_a_low-voltage_low-power[1]
Analysis and design_of_a_low-voltage_low-power[1]Analysis and design_of_a_low-voltage_low-power[1]
Analysis and design_of_a_low-voltage_low-power[1]
 

Recently uploaded

An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...Chandu841456
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 

Recently uploaded (20)

An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...An experimental study in using natural admixture as an alternative for chemic...
An experimental study in using natural admixture as an alternative for chemic...
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 

DESIGN AND PERFORMANCE ANALYSIS OF NINE STAGES CMOS BASED RING OSCILLATOR

  • 1. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 DOI : 10.5121/vlsic.2012.3306 57 DESIGN AND PERFORMANCE ANALYSIS OF NINE STAGES CMOS BASED RING OSCILLATOR Sushil Kumar and Gurjit Kaur School of Information and Communication Technology Gautam Buddha University, UP, India ABSTRACT This paper deals with the design and performance analysis of a ring oscillator using CMOS 45nm technology process in Cadence virtuoso environment. The design of optimal Analog and Mixed Signal (AMS) very large scale integrated circuits (VLSI) is a challenging task for the integrated circuit(IC) designer. A Ring Oscillator is an active device which is made up of odd number of NOT gates and whose output oscillates between two voltage levels representing high and low. There are a number of challenges ahead while designing the CMOS Ring Oscillator which are delay, noise and glitches. CMOS is the technology of choice for many applications, CMOS oscillators with low power, phase noise and timing jitter are highly desired. In this paper, we have designed a CMOS ring oscillator with nine stages.Previously, the researchers were unable to reduce the phase noise in ring oscillators substantially with nine stages. We have successfully reduced the phase noise to -6.4kdBc/Hz at 2GHz center frequency of oscillation. KEYWORDS Analog and mixed signal (AMS), VLSI circuit, CMOS Ring oscillator (RO), integrated circuit (IC), phase noise, center frequency of oscillation 1. INTRODUCTION The ring oscillator is the most widely manufactured integrated circuit of all. Ring oscillators are being used by semiconductor foundries on every semiconductor wafer to monitor the power dissipation, delay, jitter of fabricated CMOS inverters. A particular measurements pattern of oscillation frequency determines which wafers are to be accepted and which are to be rejected.The ring oscillator is basically a closed loop comprised of an odd number of identical inverters,which form an unstable negative feedback circuit. The period of oscillation of ring oscillator is the twice the sum of the gate delays in the ring comprises of inverters. A voltage controlled ring CMOS inverter based oscillator is first used for clock recovery in an Ethernet controller [1]. Since then, the ring oscillator has become a widely used component in the communication. Now a days, almost all ring oscillators use differential delay stages [2], because of their greater immunity to supply disturbances. Thus, the ring oscillator is comparitively very compact as compared to LC resonator based oscillator. A significantly large number of ring oscillators take up the very small chip area. It can also oscillate at very high frequencies i.e.; at very short periods limited only by the sum of a few gate delays. The maximum oscillation frequency of ring oscillator is always higher than the relaxation oscillator. There has been a stream of publications since the early 80s on analytical estimation of delay in chains of CMOS inverters, and since the mid 90s on estimation of jitter in ring oscillators. However, the analysis for gate delay becomes increasingly non intuitive as it gets more accurate, and the latest editions of textbooks on VLSI designs [3],[4]
  • 2. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 58 hold that is better to use the simplest possible analysis for a first order estimate of gate delay and then refine it with simulation. VCO is the most important part of the PLL. It generates the required frequency. The VCO used in the PLL is a ring oscillator having nine differential buffer stages. 1.2. CMOS DELAY Propagation delay ( td) is defined as the time between when the input crosses the switching threshold [3] or toggle point (Vm) of the inverter to when its output crosses the toggle point of next inverter in a chain. The first publications on the subject estimated delay by the time for the output voltage of an NMOS and CMOS inverter driving the capacitance of the next stage to cross the trip point in response to an input step [Fig. 3(a)]. However, the input waveforms in a practical logic chain are not ideal steps but have a finite slop, which in the case of a chain of identical stages is the same at the input and output of each inverter with opposite sign. This has led to a refined calculation based on step response delay which takes into account of the finite slope of the input ramp [6][fig. 3(b)].Generally, for large fanouts, a longer propagation delay than an input step is calculated. Figure 3. (a) Propagation delay defined in response to a step voltage input. (b) Realistic ramp input, which can be approximated by a two-step input for any fanout [17]. Yet better estimates of propagation delay continue to be published; for example, [7] gives a surprisingly complicated but complete analytical expression for delay, given that the circuit in question contains only an NFET, a PFET, and a capacitor. The complexity of these analyses forces designers to continue to use imple estimates based on RC delay for hand calculation, which are refined on timing simulations[3],[4]. When the fanout is one as in a ring oscillator simple but reasonably accurate models of dynamics can suffice. In [8] it is shown that delay can be estimated within 10% by approximating a ramp with a delayed two level step input. The delay in the first step is the time it takes the ramp to reach the inverter toggle point, and the delay in the second step depends on the load capacitance and the ramp rate at the input. 1.3 RING OSCILLATOR JITTER The first paper estimates jitter caused by FET noise in CMOS differential ring oscillators [9] cast the problem correctly in the time domain, by finding fluctuations in the instants when the output
  • 3. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 59 ramp in a delay element crosses the toggle point. This is similar to the analysis used to find jitter and phase noise depends on the voltage gain of the delay circuit. Experience tells us that voltage gain of the delay element should not matter as long as it is large; indeed, it can be infinite because delay and therefore jitter depend mainly on charge and discharge current and capacitance . It also gave the correct expression that links period jitter which we will define below with phase noise; subsequent analyses, including our own, show that this relationship holds for white noise sources. The paper does not address flicker noise. The second paper analyses the jitter focused on ring oscillator using ECL like BJT delay stages [11]. The analysis as well as the results were in the time domain, again defining jitter by fluctuations in instants of threshold crossings at each delay stage in a closed chain. There was no attempt to link jitter to phase noise.Both the papers take into account the time varying nature of the circuit by first analyzing the steady state RMS noise at equilibrium, with the load RC setting the noise bandwidth; and modeling exponential decay or builds up with this time constant to capture the time varying aspect of the large signal switching. The next paper [12] applies the concept of the impulse sensitivity function to the waveforms of a ring oscillator and from relation between the impulse sensitivity function and phase noise, deduces an approximate expression for phase noise. The latest analysis of the ring oscillator phase noise [13] explores details of the noise processes at the toggle point of the delay element but at the end offers no analytical expressions, simple or otherwise, for the phase noise or jitter. With this as background, this paper presents a comprehensive analysis of jitter and phase noise in both CMOS inverter based and differential ring oscillators, pinpointing the most important mechanisms whereby white and flicker noise manifest themselves. The physically based approach and simple resulting expressions should make it easy to design ring oscillators for a given jitter [14]. 2. SYSTEM DESIGN Figure 1. Proposed Block Diagram of 9 stages CMOS Ring Oscillator
  • 4. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 60 Figure 2. Schematic diagram of 9 stages CMOS Ring Oscillator Figure 3. One of the stages of 9 stages CMOS Ring Oscillator The design entry of the circuits is carried out in the schematic editor of Cadence Virtuoso Analog Design Environment using gpdk045 library. For performance analysis these circuits are simulated in Spectre simulator of Cadence tool. The transistor sizes obtained as above for a set of specifications are used to design the required ring oscillator circuit. The first ring oscillator is designed for nine stages of CMOS inverters and the W/L ratio which is 45nm CMOS Technology. Table 1. Design Parameters of 9 stages Ring Oscillator
  • 5. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 61 Even numbered circular inverter chain cannot be used as a ring oscillator because the eventual or ultimate output is same as input in this case. Although, this sort of inverter configuration can be used as a data storage element between input and output. A ring oscillator can comprise of a mixture of inverting and non - inverting stages of nand gate but the number of stages should be odd like; 9, 11 etc. The oscillation period of ring oscillator is equal to the twice the sum of each and every individual stage delays. The ring oscillator must have the gain of greater than 1 at the intended frequency of oscillation. Even a small noise can cause the ring oscillator output to rise slightly. After having passed through the element of time delay, this small output voltage change will be clearly visible to the ring oscillator input. The negative gain of more than 1 for ring oscillator means that the output will change in the direction opposite to this input voltage. A change will be observed by an amount larger than the input value for a ring oscillator gain of greater than 1. A real ring oscillator only requires only power to operate; above a certain threshold voltage oscillations begin spontaneously. The increase in the number of stages of inverters in ring oscillator increases the total delay and thus decreases the frequency of oscillation. Also, higher supply voltage decreases the delay and increases the frequency of oscillation. 3. RESULTS AND ANALYSIS Figure 4. Waveform for Transient Analysis of 9 stages CMOS Ring Oscillator In figure 4, a transient analysis was performed to illustrate the effects of the parasitic parameters over the oscillation frequency and to observe the behavior of the waveform with respect to time e.g; for point M1,123.9 mV supply voltage is used at 764.1 ps by the 9 stages Ring Oscillator. This kind of result is due to glitches in the waveform.
  • 6. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 62 Figure 5. Waveform for Power consumption of 9 stages CMOS Ring Oscillator The above figure is for the power for 9 stage Ring Oscillator and for point M2, 26.7 uW power dissipated at 703.2 ps and average power dissipated is 10.15x10-6 W. Till this point, the curve of power consumed is linear because the CMOS transistor takes time to stabilize itself and after this point, a typical waveform for power consumed by Ring Oscillator is obtained which is drastically changing even a small change in time due to parasitic of the CMOS transistor. Figure 6. Waveform for Voltage of 9 stages CMOS Ring Oscillator Waveform shown above is of 9 stages Ring Oscillator for the voltage in volts with respect to the PSS response over a period of 5 ns. At point M0 i.e; at 734.7 ps, the voltage is 385 mV which is in agreement to the expected theoretical values because of the sinusoidal nature (chosen as option) of the supply voltage in the given case.
  • 7. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 63 Figure 7. Waveform for THD of 9 stages CMOS Ring Oscillator It is known from the above figure that the total harmonic distortion (THD) with respect to the PSS response over a range varying from -5 to 5. At point M0 i.e; at -3.649, the total harmonic distortion (THD) is 3.586x10-4and at point M1 i.e; at -.4011, the total harmonic distortion (THD) is 3.409x10-4. THD is the measurement of the distortion created from the RO’s current draw. Lesser THD, for example, allows the components in a loudspeaker, amplifier or microphone or other equipment to make a violin sound like a violin when played back. THD is used to characterize the linearity of audio systems and the power quality of electric power systems. Figure 8. Waveform for Compression Point of 9 stages CMOS Ring Oscillator The waveform shown above is of 9 stages Ring Oscillator for compression point the with respect to the PSS Response over a range varying from 6.05 to 6.065. At point M2 i.e; at 6.063 dBm, the value of compression point is 9.983 dB. At some power level, the gain response of the device is reduced by a specific amount. This power level is called the compression point.
  • 8. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 64 Figure 9. Waveform for Power Added Efficiency of 9 stages CMOS Ring Oscillator Waveform shown above is of 9 stages Ring Oscillator for the power added efficiency with respect to the PSS Response over a range varying from -5 to 5.At point M0 i.e; at -3.694, the power added efficiency is 1.424x103 and at point M2 i.e; at 2.859, the power is 1.415 x103. Power Added Efficiency is basically method to rate the efficiency of power devices like ring oscillator. Figure 10. Waveform for Phase Noise of 9 stages CMOS Ring Oscillator Waveform shown above is of 9 stages Ring Oscillator for the phase noise with respect to the PSS response over a range varying from 1.8 to 2.2.At point M0 i.e; at 2 GHz, the phase noise is -6.4 kdBc/Hz. Phase Noise is the random or sudden fluctuation in the phase of a waveform in frequency domain.
  • 9. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 65 Figure 11. Waveform for Input Noise of 9 stages CMOS Ring Oscillator The figure shown above is of 9 Stage Ring Oscillator for the input noise with respect to the PSS response over a range varying from 1.8 to 2.2. At point M0 i.e; at 2 GHz, the input noise is 3.083kV/sqrt(Hz). It is actually a measure of how much noise a mic preamp will add to a microfone’s signal. Figure 12. Waveform for Output Noise of 9 stages CMOS Ring Oscillator Waveform shown above is of 9 stages Ring Oscillator for the output noise with respect to the PSS response over a range varying from 1.8 to 2.2. At point M0 i.e; at 2 GHz, the output noise is – 6.4 kV /sqrt(Hz).
  • 10. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 66 Figure 13. Waveform for Transfer Function of 9 stages CMOS Ring Oscillator The waveform shown above is of 9 stages Ring Oscillator for the transfer function with respect to the PSS Response over a range varying from 1.8 to 2.2.At point M0 i.e; at 2 GHz, the transfer function is 148.5 nV /V. Transfer functions are commonly used in the analysis of systems such as single input single output filter. The term is often used to refer to Linear Time Invariant Systems (LTI). Figure 14. Layout of 9 stages CMOS Ring Oscillator in 45nm CMOS Technology
  • 11. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 67 Table: 2 Performance Parameters of 9 stages Ring Oscillator A transient analysis (TA) is performed to illustrate the effects of the parameters over the oscillation frequency and to observe the behavior of the waveform with respect to time. Periodic steady state (PSS) analysis is generally done to determine the oscillation frequency and the influence of the parameters such as power dissipation, noise, supply voltage etc. which have been discussed above. PNOISE analysis normally calculates frequency convention effects and noise folding. 4. CONCLUSION The nine stages CMOS ring oscillator design has successively been designed and executed using CMOS 45nm technology process in Cadence virtuoso environment. Also, various performance parameters like noise, delay, glitches etc. were analysed and reduced accordingly to optimize the efficiency of the nine stages ring oscillator. We improvised the previous research work by the
  • 12. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 68 author by obtaining the value of period jitter 0 at 933.5 ps, phase noise -6.4 kdBc/Hz, Total Harmonic Distortion (THD) 3.586 x10-4 at point -3.649 and Power Added Efficiency 91.424 x103 at point -3.694. REFERENCES [1] A. Bell and G. Borriello, “A single chip nMOS Ethernet controller,” IEEE International Solid-State Circuits Conference (ISSCC) Dig. Tech. Papers, 1983, pp. 70–71. [2] B. Kim, D. Helman, and P. Gray, “A 30 MHz hybrid analog/digital clock recovery circuit in 2 um CMOS,” IEEE J. Solid State Circuits, vol. 25, no. 6, pp. 1385–1394, June 1990. [3] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits, Upper Saddle River, NJ: Pearson/Prentice Hall, 2003. [4] N. Weste and D. Harris, CMOS VLSI Design. Boston, MA: Pearson/Addison-Wesley, 2005. [5] R. Bayruns, R. Johnston, D. Fraser , and S. C. Fang, “Delay analysis of Si nMOS Gbit/s logic circuits,” IEEE J. Solid State Circuits, vol. 19, no. 5, pp. 755–764, May 1984. [6] N. Hedenstierna and K. Jeppson, “CMOS circuit speed and buffer optimization,”IEEE Trans. Computer Aided Deign. Integrated Circuits Systems, vol.6, no. 2, pp. 270–281, Mar. 1987. [7] L. Bisdounis, S. Nikolaidis, and O. Loufopavlou, “Propagation delay and short circuit power dissipation modeling of the CMOS inverter, ”IEEE Trans. Circuits System International, Fundamental Theory Applications, vol. 45, no. 3, pp. 259–270, Mar. 1998. [8] A. Kabbani, D. Al-Khalili, and A. Al-Khalili, “Technology portable analytical model for DSM CMOS inverter transition time estimation, ”IEEE Trans. Computer Aided Design Integrated Circuits Systems, vol. 22, no. 9,pp. 1177–1187, Sep. 2003. [9] T.Weigandt, B. Kim, and P. Gray, “Analysis of timing jitter in CMOS ring oscillators,” in Proc. IEEE Int. Symposium Circuits and Systems (ISCAS), 1994, pp. 27–30. [10] A. A. Abidi and R. G. Meyer, “Noise in relaxation oscillators,” IEEE J. Solid State Circuits, vol. SC- 18, no. 6, pp. 794–802, Dec. 1983. [11] J. McNeill, “Jitter in ring oscillators,” IEEE J. Solid State Circuits, vol. 32, no. 6, pp. 870–879, Jun. 1997. [12] A. Hajimiri, S. Limotyrakis, and T. Lee, “Jitter and phase noise in ring oscillators,” IEEE J. Solid- State Circuits, vol. 34, no. 6, pp. 790–804, Jun. 1999. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 69 [13] B. Leung, “Anovel model on phase noise of ring oscillator based on last passage time,” IEEE Trans.Circuits System International, Fundamental Theory Application ,vol. 51, no. 3, pp. 471–482, Mar.2004. [14] Guang-Kaai Dehng, Ching-Yuan Yang, June-Ming Hsu, and Shen-Iuan Liu,"A 900 MHz 1 V CMOS Frequency Synthesizer", IEEE Journal of solid state circuits, Vol. 35, No. 8, pp.1211-1214, 2000. [15] Andrea Bonfanti, Davide De Caro, Alfio Dario Grasso, Salvatore Pennisi, Carlo Samori, and Antonio G. M. Strollo, "A 2.5 GHz DDFS PLL with 1.8 MHz Bandwidth in 0.35 µm CMOS" IEEE Journal of Solid state circuits, Vol. 43, No. 6, pp.1403-1413, 2008.
  • 13. International Journal of VLSI design & Communication Systems (VLSICS) Vol.3, No.3, June 2012 69 [16] Asad A. Abidi, Fellow, IEEE,” Phase Noise and Jitter in CMOS Ring Oscillators”, IEEE Journal of Solid-State Circuits, Vol. 41, No. 8, August 2006.