SlideShare a Scribd company logo
1 of 15
1Input-Output Organization
Computer Organization Computer Architectures Lab
• Peripheral Devices
• Input-Output Interface
• Asynchronous Data Transfer
• Modes of Transfer
• Priority Interrupt
• Direct Memory Access
• Input-Output Processor
• Serial Communication
INPUT-OUTPUT ORGANIZATION
2Input-Output Organization
Computer Organization Computer Architectures Lab
PERIPHERAL DEVICES
Input Devices
• Keyboard
• Optical input devices
- Card Reader
- Paper Tape Reader
- Bar code reader
- Digitizer
- Optical Mark Reader
• Magnetic Input Devices
- Magnetic Stripe Reader
• Screen Input Devices
- Touch Screen
- Light Pen
- Mouse
• Analog Input Devices
Output Devices
• Card Puncher, Paper Tape Puncher
• CRT
• Printer (Impact, Ink Jet,
Laser, Dot Matrix)
• Plotter
• Analog
• Voice
Peripheral Devices
3Input-Output Organization
Computer Organization Computer Architectures Lab
* Provides a method for transferring information between internal storage
(such as memory and CPU registers) and external I/O devices
* Resolves the differences between the computer and peripheral devices
- Peripherals - Electromechanical Devices
CPU or Memory - Electronic Device
- Data Transfer Rate
Peripherals - Usually slower
CPU or Memory - Usually faster than peripherals
Some kinds of Synchronization mechanism may be needed
- Unit of Information
Peripherals - Byte
CPU or Memory - Word
- Operating Modes
Peripherals - Autonomous, Asynchronous
CPU or Memory - Synchronous
INPUT/OUTPUT INTERFACES
Input/Output Interfaces
4Input-Output Organization
Computer Organization Computer Architectures Lab
I/O BUS AND INTERFACE MODULES
Each peripheral has an interface module associated with it
Interface
- Decodes the device address (device code)
- Decodes the commands (operation)
- Provides signals for the peripheral controller
- Synchronizes the data flow and supervises
the transfer rate between peripheral and CPU or Memory
Typical I/O instruction
(Command)
Op. code Device address Function code
Input/Output Interfaces
Processor
Interface
Keyboard
and
display
terminal
Magnetic
tape
Printer
Interface Interface Interface
Data
Address
Control
Magnetic
disk
I/O bus
5Input-Output Organization
Computer Organization Computer Architectures Lab
CONNECTION OF I/O BUS
Connection of I/O Bus to One Interface
Connection of I/O Bus to CPU
Input/Output Interfaces
I/O
bus
Op.
code
Device
address
Function
code
Accumulator
register
Computer
I/O
control
Sense lines
Data lines
Function code lines
Device address lines
CPU
I/O
bus
Device
address
Command
decoder
Function code
Data lines
Buffer register
Peripheral
register
Status
register
Sense lines
Output
peripheral
device
and
controller
AD = 1101 Interface
Logic
6Input-Output Organization
Computer Organization Computer Architectures Lab
I/O BUS AND MEMORY BUS
* MEMORY BUS is for information transfers between CPU and the MM
* I/O BUS is for information transfers between CPU
and I/O devices through their I/O interface
* Many computers use a common single bus system
for both memory and I/O interface units
- Use one common bus but separate control lines for each function
- Use one common bus with common control lines for both functions
* Some computer systems use two separate buses,
one to communicate with memory and the other with I/O interfaces
- Communication between CPU and all interface units is via a common
I/O Bus
- An interface connected to a peripheral device may have a number of
data registers , a control register, and a status register
- A command is passed to the peripheral by sending
to the appropriate interface register
- Function code and sense lines are not needed (Transfer of data, control,
and status information is always via the common I/O Bus)
Functions of Buses
Physical Organizations
I/O Bus
Input/Output Interfaces
7Input-Output Organization
Computer Organization Computer Architectures Lab
ISOLATED vs MEMORY MAPPED I/O
- Separate I/O read/write control lines in addition to memory read/write
control lines
- Separate (isolated) memory and I/O address spaces
- Distinct input and output instructions
Isolated I/O
Memory-mapped I/O
- A single set of read/write control lines
(no distinction between memory and I/O transfer)
- Memory and I/O addresses share the common address space
-> reduces memory address range available
- No specific input or output instruction
-> The same memory reference instructions can
be used for I/O transfers
- Considerable flexibility in handling I/O operations
Input/Output Interfaces
8Input-Output Organization
Computer Organization Computer Architectures Lab
I/O INTERFACE
- Information in each port can be assigned a meaning
depending on the mode of operation of the I/O device
-> Port A = Data; Port B = Command; Port C = Status
- CPU initializes(loads) each port by transferring a byte to the Control Register
-> Allows CPU can define the mode of operation of each port
-> Programmable Port: By changing the bits in the control register, it is
possible to change the interface characteristics
CS RS1 RS0 Register selected
0 x x None - data bus in high-impedence
1 0 0 Port A register
1 0 1 Port B register
1 1 0 Control register
1 1 1 Status register
Programmable Interface
Input/Output Interfaces
Chip select
Register select
Register select
I/O read
I/O write
CS
RS1
RS0
RD
WR
Timing
and
Control
Bus
buffers
Bidirectional
data bus
Port A
register
Port B
register
Control
register
Status
register
I/O data
I/O data
Control
Status
Internalbus
CPU I/O
Device
9Input-Output Organization
Computer Organization Computer Architectures Lab
ASYNCHRONOUS DATA TRANSFER
Synchronous - All devices derive the timing
information from common clock line
Asynchronous - No common clock
Asynchronous data transfer between two independent units requires that
control signals be transmitted between the communicating units to
indicate the time at which data is being transmitted
Strobe pulse
- A strobe pulse is supplied by one unit to indicate
the other unit when the transfer has to occur
Handshaking
- A control signal is accompanied with each data
being transmitted to indicate the presence of data
- The receiving unit responds with another control
signal to acknowledge receipt of the data
Synchronous and Asynchronous Operations
Asynchronous Data Transfer
Two Asynchronous Data Transfer Methods
Asynchronous Data Transfer
10Input-Output Organization
Computer Organization Computer Architectures Lab
* Employs a single control line to time each transfer
* The strobe may be activated by either the source or the destination unit
STROBE CONTROL
Source
unit
Destination
unit
Data bus
Strobe
Data
Strobe
Valid data
Block Diagram
Timing Diagram
Source-Initiated Strobe
for Data Transfer
Source
unit
Destination
unit
Data bus
Strobe
Data
Strobe
Valid data
Block Diagram
Asynchronous Data Transfer
Destination-Initiated Strobe
for Data Transfer
Timing Diagram
11Input-Output Organization
Computer Organization Computer Architectures Lab
HANDSHAKING
Strobe Methods
Source-Initiated
The source unit that initiates the transfer has
no way of knowing whether the destination unit
has actually received data
Destination-Initiated
The destination unit that initiates the transfer
no way of knowing whether the source has
actually placed the data on the bus
To solve this problem, the HANDSHAKE method
introduces a second control signal to provide a Reply
to the unit that initiates the transfer
Asynchronous Data Transfer
12Input-Output Organization
Computer Organization Computer Architectures Lab
SOURCE-INITIATED TRANSFER USING HANDSHAKE
* Allows arbitrary delays from one state to the next
* Permits each unit to respond at its own data transfer rate
* The rate of transfer is determined by the slower unit
Block Diagram
Timing Diagram
Accept data from bus.
Enable data accepted
Disable data accepted.
Ready to accept data
(initial state).
Sequence of Events
Place data on bus.
Enable data valid.
Source unit Destination unit
Disable data valid.
Invalidate data on bus.
Source
unit
Destination
unit
Data bus
Data accepted
Data bus
Data valid
Valid data
Data valid
Data accepted
Asynchronous Data Transfer
13Input-Output Organization
Computer Organization Computer Architectures Lab
DESTINATION-INITIATED TRANSFER USING HANDSHAKE
* Handshaking provides a high degree of flexibility and reliability because the
successful completion of a data transfer relies on active participation by both units
* If one unit is faulty, data transfer will not be completed
-> Can be detected by means of a timeout mechanism
Block Diagram
Timing Diagram
Source
unit
Destination
unit
Data bus
Ready for data
Data valid
Sequence of Events
Place data on bus.
Enable data valid.
Source unit Destination unit
Ready to accept data.
Enable ready for data.
Disable data valid.
Invalidate data on bus
(initial state).
Accept data from bus.
Disable ready for data.
Ready for data
Data valid
Data bus
Valid data
Asynchronous Data Transfer
14Input-Output Organization
Computer Organization Computer Architectures Lab
ASYNCHRONOUS SERIAL TRANSFER
Asynchronous serial transfer
Synchronous serial transfer
Asynchronous parallel transfer
Synchronous parallel transfer
- Employs special bits which are inserted at both
ends of the character code
- Each character consists of three parts; Start bit; Data bits; Stop bits.
A character can be detected by the receiver from the knowledge of 4 rules;
- When data are not being sent, the line is kept in the 1-state (idle state)
- The initiation of a character transmission is detected
by a Start Bit , which is always a 0
- The character bits always follow the Start Bit
- After the last character , a Stop Bit is detected when
the line returns to the 1-state for at least 1 bit time
The receiver knows in advance the transfer rate of the
bits and the number of information bits to expect
Four Different Types of Transfer
Asynchronous Serial Transfer
Start
bit
(1 bit)
Stop
bits
Character bits
1 1 0 0 0 1 0 1
(at least 1 bit)
Asynchronous Data Transfer
15Input-Output Organization
Computer Organization Computer Architectures Lab
UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER
- UART -
A typical asynchronous communication interface available as an IC
Transmitter Register
- Accepts a data byte(from CPU) through the data bus
- Transferred to a shift register for serial transmission
Receiver
- Receives serial information into another shift register
- Complete data byte is sent to the receiver register
Status Register Bits
- Used for I/O flags and for recording errors
Control Register Bits
- Define baud rate, no. of bits in each character, whether
to generate and check parity, and no. of stop bits
Chip select
Register select
I/O read
I/O write
CS
RS
RD
WR
Timing
and
Control
Bus
buffers
Bidirectional
data bus
Transmitter
register
Control
register
Status
register
Receiver
register
Shift
register
Transmitter
control
and clock
Receiver
control
and clock
Shift
register
Transmit
data
Transmitter
clock
Receiver
clock
Receive
data
Asynchronous Data Transfer
CS RS Oper. Register selected
0 x x None
1 0 WR Transmitter register
1 1 WR Control register
1 0 RD Receiver register
1 1 RD Status register
InternalBus

More Related Content

What's hot

Data transfer techniques 8085
Data transfer techniques 8085Data transfer techniques 8085
Data transfer techniques 8085ShivamSood22
 
Input Output Organization
Input Output OrganizationInput Output Organization
Input Output OrganizationKamal Acharya
 
Io processing
Io processingIo processing
Io processingTech_MX
 
Input output organisation
Input output organisationInput output organisation
Input output organisationSanjeev Patel
 
Input Output Operations
Input Output OperationsInput Output Operations
Input Output Operationskdisthere
 
Unit 4-lecte3-io interface
Unit 4-lecte3-io interfaceUnit 4-lecte3-io interface
Unit 4-lecte3-io interfacevishal choudhary
 
Unit – 2
Unit – 2Unit – 2
Unit – 2techbed
 
input and output organisation
input and output organisation input and output organisation
input and output organisation sree deepika
 
Computer oganization input-output
Computer oganization input-outputComputer oganization input-output
Computer oganization input-outputDeepak John
 
Input output accessing
Input output accessingInput output accessing
Input output accessingankitraosingh
 
Introduction to Interfacing Technique
Introduction to Interfacing TechniqueIntroduction to Interfacing Technique
Introduction to Interfacing TechniqueMabeth MaRiyah Ramos
 
8237 / 8257 DMA
8237 / 8257 DMA8237 / 8257 DMA
8237 / 8257 DMAAJAL A J
 
INTERFACING WITH INTEL 8251A (USART)
INTERFACING WITH INTEL 8251A (USART)INTERFACING WITH INTEL 8251A (USART)
INTERFACING WITH INTEL 8251A (USART)Prof Ansari
 

What's hot (19)

Data transfer techniques 8085
Data transfer techniques 8085Data transfer techniques 8085
Data transfer techniques 8085
 
Input Output Organization
Input Output OrganizationInput Output Organization
Input Output Organization
 
Io processing
Io processingIo processing
Io processing
 
Input output organisation
Input output organisationInput output organisation
Input output organisation
 
Input Output Operations
Input Output OperationsInput Output Operations
Input Output Operations
 
Unit-4 (IO Interface).pptx
Unit-4 (IO Interface).pptxUnit-4 (IO Interface).pptx
Unit-4 (IO Interface).pptx
 
Unit 4-lecte3-io interface
Unit 4-lecte3-io interfaceUnit 4-lecte3-io interface
Unit 4-lecte3-io interface
 
Unit – 2
Unit – 2Unit – 2
Unit – 2
 
Io devies
Io deviesIo devies
Io devies
 
input and output organisation
input and output organisation input and output organisation
input and output organisation
 
Computer oganization input-output
Computer oganization input-outputComputer oganization input-output
Computer oganization input-output
 
Input output interface
Input output interfaceInput output interface
Input output interface
 
1.ppi 8255
1.ppi 8255 1.ppi 8255
1.ppi 8255
 
Unit 5
Unit 5Unit 5
Unit 5
 
Input output accessing
Input output accessingInput output accessing
Input output accessing
 
Introduction to Interfacing Technique
Introduction to Interfacing TechniqueIntroduction to Interfacing Technique
Introduction to Interfacing Technique
 
I/O Channel IBM 370
I/O Channel IBM 370I/O Channel IBM 370
I/O Channel IBM 370
 
8237 / 8257 DMA
8237 / 8257 DMA8237 / 8257 DMA
8237 / 8257 DMA
 
INTERFACING WITH INTEL 8251A (USART)
INTERFACING WITH INTEL 8251A (USART)INTERFACING WITH INTEL 8251A (USART)
INTERFACING WITH INTEL 8251A (USART)
 

Similar to Io organization

io orgnz.ppt
io orgnz.pptio orgnz.ppt
io orgnz.pptVetriM4
 
Unit 4-l ecture3-io interface
Unit 4-l ecture3-io interfaceUnit 4-l ecture3-io interface
Unit 4-l ecture3-io interfacevishal choudhary
 
Unit 4-lecte3-io interface
Unit 4-lecte3-io interfaceUnit 4-lecte3-io interface
Unit 4-lecte3-io interfacevishal choudhary
 
input output organization.pptx
input output organization.pptxinput output organization.pptx
input output organization.pptxMeenakshiR43
 
INTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxINTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxNidaKhan232565
 
Input_Output_Organization.pptx
Input_Output_Organization.pptxInput_Output_Organization.pptx
Input_Output_Organization.pptxSherinRappai
 
Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecturevikram patel
 
Computer organisation and architecture module 1
Computer organisation and architecture module 1Computer organisation and architecture module 1
Computer organisation and architecture module 1abinrj123
 
CS304PC:Computer Organization and Architecture Unit IV_merged.pdf
CS304PC:Computer Organization and Architecture Unit IV_merged.pdfCS304PC:Computer Organization and Architecture Unit IV_merged.pdf
CS304PC:Computer Organization and Architecture Unit IV_merged.pdfAsst.prof M.Gokilavani
 
Iosystemspre final-160922112930
Iosystemspre final-160922112930Iosystemspre final-160922112930
Iosystemspre final-160922112930marangburu42
 
The primary purpose of memory interfacing is to facilitate the transfer of da...
The primary purpose of memory interfacing is to facilitate the transfer of da...The primary purpose of memory interfacing is to facilitate the transfer of da...
The primary purpose of memory interfacing is to facilitate the transfer of da...Sindhu Mani
 

Similar to Io organization (20)

io orgnz.ppt
io orgnz.pptio orgnz.ppt
io orgnz.ppt
 
Unit 4-l ecture3-io interface
Unit 4-l ecture3-io interfaceUnit 4-l ecture3-io interface
Unit 4-l ecture3-io interface
 
Unit 4-lecte3-io interface
Unit 4-lecte3-io interfaceUnit 4-lecte3-io interface
Unit 4-lecte3-io interface
 
Unit4_IO_13623_AnilRawat.ppt
Unit4_IO_13623_AnilRawat.pptUnit4_IO_13623_AnilRawat.ppt
Unit4_IO_13623_AnilRawat.ppt
 
Interfacingiodevice
InterfacingiodeviceInterfacingiodevice
Interfacingiodevice
 
Lecture 36
Lecture 36Lecture 36
Lecture 36
 
input output organization.pptx
input output organization.pptxinput output organization.pptx
input output organization.pptx
 
Ca 2 note mano
Ca 2 note manoCa 2 note mano
Ca 2 note mano
 
INTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptxINTERFACE UNIT IV.pptx
INTERFACE UNIT IV.pptx
 
Input output
Input outputInput output
Input output
 
Input_Output_Organization.pptx
Input_Output_Organization.pptxInput_Output_Organization.pptx
Input_Output_Organization.pptx
 
interface
interfaceinterface
interface
 
Input output in computer Orgranization and architecture
Input output in computer Orgranization and architectureInput output in computer Orgranization and architecture
Input output in computer Orgranization and architecture
 
Lecture 34
Lecture 34Lecture 34
Lecture 34
 
Computer organisation and architecture module 1
Computer organisation and architecture module 1Computer organisation and architecture module 1
Computer organisation and architecture module 1
 
Chapter 4
Chapter 4Chapter 4
Chapter 4
 
1.instrumentation ii
1.instrumentation ii1.instrumentation ii
1.instrumentation ii
 
CS304PC:Computer Organization and Architecture Unit IV_merged.pdf
CS304PC:Computer Organization and Architecture Unit IV_merged.pdfCS304PC:Computer Organization and Architecture Unit IV_merged.pdf
CS304PC:Computer Organization and Architecture Unit IV_merged.pdf
 
Iosystemspre final-160922112930
Iosystemspre final-160922112930Iosystemspre final-160922112930
Iosystemspre final-160922112930
 
The primary purpose of memory interfacing is to facilitate the transfer of da...
The primary purpose of memory interfacing is to facilitate the transfer of da...The primary purpose of memory interfacing is to facilitate the transfer of da...
The primary purpose of memory interfacing is to facilitate the transfer of da...
 

Recently uploaded

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

Io organization

  • 1. 1Input-Output Organization Computer Organization Computer Architectures Lab • Peripheral Devices • Input-Output Interface • Asynchronous Data Transfer • Modes of Transfer • Priority Interrupt • Direct Memory Access • Input-Output Processor • Serial Communication INPUT-OUTPUT ORGANIZATION
  • 2. 2Input-Output Organization Computer Organization Computer Architectures Lab PERIPHERAL DEVICES Input Devices • Keyboard • Optical input devices - Card Reader - Paper Tape Reader - Bar code reader - Digitizer - Optical Mark Reader • Magnetic Input Devices - Magnetic Stripe Reader • Screen Input Devices - Touch Screen - Light Pen - Mouse • Analog Input Devices Output Devices • Card Puncher, Paper Tape Puncher • CRT • Printer (Impact, Ink Jet, Laser, Dot Matrix) • Plotter • Analog • Voice Peripheral Devices
  • 3. 3Input-Output Organization Computer Organization Computer Architectures Lab * Provides a method for transferring information between internal storage (such as memory and CPU registers) and external I/O devices * Resolves the differences between the computer and peripheral devices - Peripherals - Electromechanical Devices CPU or Memory - Electronic Device - Data Transfer Rate Peripherals - Usually slower CPU or Memory - Usually faster than peripherals Some kinds of Synchronization mechanism may be needed - Unit of Information Peripherals - Byte CPU or Memory - Word - Operating Modes Peripherals - Autonomous, Asynchronous CPU or Memory - Synchronous INPUT/OUTPUT INTERFACES Input/Output Interfaces
  • 4. 4Input-Output Organization Computer Organization Computer Architectures Lab I/O BUS AND INTERFACE MODULES Each peripheral has an interface module associated with it Interface - Decodes the device address (device code) - Decodes the commands (operation) - Provides signals for the peripheral controller - Synchronizes the data flow and supervises the transfer rate between peripheral and CPU or Memory Typical I/O instruction (Command) Op. code Device address Function code Input/Output Interfaces Processor Interface Keyboard and display terminal Magnetic tape Printer Interface Interface Interface Data Address Control Magnetic disk I/O bus
  • 5. 5Input-Output Organization Computer Organization Computer Architectures Lab CONNECTION OF I/O BUS Connection of I/O Bus to One Interface Connection of I/O Bus to CPU Input/Output Interfaces I/O bus Op. code Device address Function code Accumulator register Computer I/O control Sense lines Data lines Function code lines Device address lines CPU I/O bus Device address Command decoder Function code Data lines Buffer register Peripheral register Status register Sense lines Output peripheral device and controller AD = 1101 Interface Logic
  • 6. 6Input-Output Organization Computer Organization Computer Architectures Lab I/O BUS AND MEMORY BUS * MEMORY BUS is for information transfers between CPU and the MM * I/O BUS is for information transfers between CPU and I/O devices through their I/O interface * Many computers use a common single bus system for both memory and I/O interface units - Use one common bus but separate control lines for each function - Use one common bus with common control lines for both functions * Some computer systems use two separate buses, one to communicate with memory and the other with I/O interfaces - Communication between CPU and all interface units is via a common I/O Bus - An interface connected to a peripheral device may have a number of data registers , a control register, and a status register - A command is passed to the peripheral by sending to the appropriate interface register - Function code and sense lines are not needed (Transfer of data, control, and status information is always via the common I/O Bus) Functions of Buses Physical Organizations I/O Bus Input/Output Interfaces
  • 7. 7Input-Output Organization Computer Organization Computer Architectures Lab ISOLATED vs MEMORY MAPPED I/O - Separate I/O read/write control lines in addition to memory read/write control lines - Separate (isolated) memory and I/O address spaces - Distinct input and output instructions Isolated I/O Memory-mapped I/O - A single set of read/write control lines (no distinction between memory and I/O transfer) - Memory and I/O addresses share the common address space -> reduces memory address range available - No specific input or output instruction -> The same memory reference instructions can be used for I/O transfers - Considerable flexibility in handling I/O operations Input/Output Interfaces
  • 8. 8Input-Output Organization Computer Organization Computer Architectures Lab I/O INTERFACE - Information in each port can be assigned a meaning depending on the mode of operation of the I/O device -> Port A = Data; Port B = Command; Port C = Status - CPU initializes(loads) each port by transferring a byte to the Control Register -> Allows CPU can define the mode of operation of each port -> Programmable Port: By changing the bits in the control register, it is possible to change the interface characteristics CS RS1 RS0 Register selected 0 x x None - data bus in high-impedence 1 0 0 Port A register 1 0 1 Port B register 1 1 0 Control register 1 1 1 Status register Programmable Interface Input/Output Interfaces Chip select Register select Register select I/O read I/O write CS RS1 RS0 RD WR Timing and Control Bus buffers Bidirectional data bus Port A register Port B register Control register Status register I/O data I/O data Control Status Internalbus CPU I/O Device
  • 9. 9Input-Output Organization Computer Organization Computer Architectures Lab ASYNCHRONOUS DATA TRANSFER Synchronous - All devices derive the timing information from common clock line Asynchronous - No common clock Asynchronous data transfer between two independent units requires that control signals be transmitted between the communicating units to indicate the time at which data is being transmitted Strobe pulse - A strobe pulse is supplied by one unit to indicate the other unit when the transfer has to occur Handshaking - A control signal is accompanied with each data being transmitted to indicate the presence of data - The receiving unit responds with another control signal to acknowledge receipt of the data Synchronous and Asynchronous Operations Asynchronous Data Transfer Two Asynchronous Data Transfer Methods Asynchronous Data Transfer
  • 10. 10Input-Output Organization Computer Organization Computer Architectures Lab * Employs a single control line to time each transfer * The strobe may be activated by either the source or the destination unit STROBE CONTROL Source unit Destination unit Data bus Strobe Data Strobe Valid data Block Diagram Timing Diagram Source-Initiated Strobe for Data Transfer Source unit Destination unit Data bus Strobe Data Strobe Valid data Block Diagram Asynchronous Data Transfer Destination-Initiated Strobe for Data Transfer Timing Diagram
  • 11. 11Input-Output Organization Computer Organization Computer Architectures Lab HANDSHAKING Strobe Methods Source-Initiated The source unit that initiates the transfer has no way of knowing whether the destination unit has actually received data Destination-Initiated The destination unit that initiates the transfer no way of knowing whether the source has actually placed the data on the bus To solve this problem, the HANDSHAKE method introduces a second control signal to provide a Reply to the unit that initiates the transfer Asynchronous Data Transfer
  • 12. 12Input-Output Organization Computer Organization Computer Architectures Lab SOURCE-INITIATED TRANSFER USING HANDSHAKE * Allows arbitrary delays from one state to the next * Permits each unit to respond at its own data transfer rate * The rate of transfer is determined by the slower unit Block Diagram Timing Diagram Accept data from bus. Enable data accepted Disable data accepted. Ready to accept data (initial state). Sequence of Events Place data on bus. Enable data valid. Source unit Destination unit Disable data valid. Invalidate data on bus. Source unit Destination unit Data bus Data accepted Data bus Data valid Valid data Data valid Data accepted Asynchronous Data Transfer
  • 13. 13Input-Output Organization Computer Organization Computer Architectures Lab DESTINATION-INITIATED TRANSFER USING HANDSHAKE * Handshaking provides a high degree of flexibility and reliability because the successful completion of a data transfer relies on active participation by both units * If one unit is faulty, data transfer will not be completed -> Can be detected by means of a timeout mechanism Block Diagram Timing Diagram Source unit Destination unit Data bus Ready for data Data valid Sequence of Events Place data on bus. Enable data valid. Source unit Destination unit Ready to accept data. Enable ready for data. Disable data valid. Invalidate data on bus (initial state). Accept data from bus. Disable ready for data. Ready for data Data valid Data bus Valid data Asynchronous Data Transfer
  • 14. 14Input-Output Organization Computer Organization Computer Architectures Lab ASYNCHRONOUS SERIAL TRANSFER Asynchronous serial transfer Synchronous serial transfer Asynchronous parallel transfer Synchronous parallel transfer - Employs special bits which are inserted at both ends of the character code - Each character consists of three parts; Start bit; Data bits; Stop bits. A character can be detected by the receiver from the knowledge of 4 rules; - When data are not being sent, the line is kept in the 1-state (idle state) - The initiation of a character transmission is detected by a Start Bit , which is always a 0 - The character bits always follow the Start Bit - After the last character , a Stop Bit is detected when the line returns to the 1-state for at least 1 bit time The receiver knows in advance the transfer rate of the bits and the number of information bits to expect Four Different Types of Transfer Asynchronous Serial Transfer Start bit (1 bit) Stop bits Character bits 1 1 0 0 0 1 0 1 (at least 1 bit) Asynchronous Data Transfer
  • 15. 15Input-Output Organization Computer Organization Computer Architectures Lab UNIVERSAL ASYNCHRONOUS RECEIVER-TRANSMITTER - UART - A typical asynchronous communication interface available as an IC Transmitter Register - Accepts a data byte(from CPU) through the data bus - Transferred to a shift register for serial transmission Receiver - Receives serial information into another shift register - Complete data byte is sent to the receiver register Status Register Bits - Used for I/O flags and for recording errors Control Register Bits - Define baud rate, no. of bits in each character, whether to generate and check parity, and no. of stop bits Chip select Register select I/O read I/O write CS RS RD WR Timing and Control Bus buffers Bidirectional data bus Transmitter register Control register Status register Receiver register Shift register Transmitter control and clock Receiver control and clock Shift register Transmit data Transmitter clock Receiver clock Receive data Asynchronous Data Transfer CS RS Oper. Register selected 0 x x None 1 0 WR Transmitter register 1 1 WR Control register 1 0 RD Receiver register 1 1 RD Status register InternalBus