SlideShare a Scribd company logo
1 of 44
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1
CMOS Digital Circuit Design
How to Make Both Ends Meet?
Susanta Sen
Institute of Radio Physics and Electronics
University of Calcutta
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2
Review of
MOS Transistor
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3
The MOS Transistor
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4
MOS Transistor
Zero Bias
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5
MOS Transistor (contd.)
VDS
ID
Channel Pinches off → Current Saturates
VG
Saturation Current increases with VG
Vt
Threshold Voltage Vt → Device Turns ON
MOS can be used as SWITCH
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6
MOS as SWITCH
Designing Logic Circuits
Logic ‘0’ = 0V : Logic ‘1’ = VDD
n-MOS : VG ≤ Vt → OFF : VG = VDD → ON
p-MOS: Negative VGS required
Connect Source to VDD
Gate Voltage → Negative w.r.t. Channel
VG ≥ VDD– |Vt| → OFF : VG = 0 → ON
S
VDD
VG0 to VDD D
G
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7
n-MOS SWITCH
Transferring Logic ‘1’ (VDD):
VDD
Vin = VDD Vt
VDD
Vo
t
Transistor
OFF
Source
Impedance
High
Weak ‘1’
Transistor
ON
Source
Impedance
Low
Strong ‘0’VDD
Vin = 0 V
Vo
t
VDD
Transferring Logic ‘0’ (0 V):
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8
p – MOS Switch
Transferring Logic ‘1’ (VDD):
VDD
Vo
t
0V
VDD Strong ‘1’
Transferring Logic ‘0’ (0 V):
0V
0 V
t
Vo
VDD
Vt
Weak ‘0’
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9
CMOS Logic
• Use n-MOS to produce Logic ‘0’ → Pull DOWN
• Use p-MOS to produce Logic ‘1’ → Pull UP
The CMOS Inverter
Equivalent
Circuit
Logic ‘1’
Output
Logic ‘0’
Output
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10
Switching Theory
Revisited
MOS Circuit Design
Digital Logic
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11
Review of Switching Theory
C
A B
F = C iff (A and B)
Switches in Series
A
B
C F = C iff (A or B)
Switches in Parallel
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12
Using n-MOS Switch
Constraint : C = ‘0’
A B
Series Connection
C = ‘0’ F = ‘0’ when (A . B) is TRUE
⇒ A nand B
A
B
C = ‘0’ F = ‘0’ when (A or B) is TRUE
⇒ A nor B
Parallel Connection
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13
Using p-MOS Switch
Constraint : C = ‘1’
A B
C = ‘1’ F = ‘1’ when ( A . B) is TRUE
⇒ A + B
Series Connection
C = ‘1’
A
B
F = ‘1’ when ( A + B) is TRUE
⇒ A . B
Parallel Connection
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14
CMOS Logic Design
• Pull UP Network
– Build using p-MOS
– Turns ON when Function is TRUE
• Pull DOWN Network
– Build using n-MOS
– Turns ON when Function is FALSE
• Operationally Complement
• Topologically Dual
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15
CMOS Logic (contd.)
A
A
B
BA
A
B
B
F
F
NAND GateNOR Gate
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16
CMOS Design Example
Consider the Function
f = A . (B + C)
Design the
Pull Down
Network first
A
B C
PullUp
F
B
A
C
f = [A . (B + C)] is true
The Pull Down Network connects
‘f ’ to ground when
Connect Ground
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17
Assignments
1. F = A.B + C
2. F = (A + B).(C + D)
3. F = A + B.C
4. F = A + B.C
5. F = A.C + B.C
6. F = A ⊕ B
Steady State
Input-Output Characteristics
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19
V
DD
VO
Vi
(=VG)
MOS Amplifier
VDS
ID
V
DD
VG
Vi
VO
Load Line
RL
ID
VO = VDD – ID.RL
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20
Non Linear Load
VDSVDD
ID
VDD
VO
Vi
LOAD LINEVO= VDD – Vdiode
VO
Vi
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21
Non Linear Load (contd.)
Vi
VO
VB
VDD
VDD
VDS
ID
VDD
VO
Vi
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22
The CMOS InverterAmplifier or Inverter ?
Vi VO
VO
Vi
Gate Bias of PMOS changes with
Input Voltage
VDD
VDD
VDS
ID
VDD
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24
A Closer Look
In presence of Noise
VOn = f (Vi + vn)
= f (Vi) + vn(∂VO/∂Vi) + vn
2
(∂2
VO/∂Vi
2
)+…VO
Vi
noisy_output = noiseless_output +
noise x gain + higher order terms
VO= f (Vi) → Gain =
∂VO/∂Vi
ViHViL
VOL
VOH
Digital → Noise immunity Analog → High Gain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25
Noise Margins
VO
Vi
ViHViL
VOL
VOH
Digital → Noise immunity
NML = VIL – VOL
NMH = VOH – VIH
VOH
ViH
1 {
VOL
ViL
0 {
Undefined
Region
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26
Vi VO
VO
Vi
VDD
VDD
VDS
ID
VDD
Tuning the Characteristics
• Make the n-MOS wider
• It conducts more current
ID = ½ µCox[VGS – Vt]2
(W/L)
•Best Noise Margin
•When Vi = Voat VDD/2
•Wp = 3.Wn
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27
When the Signal Changes!
The CMOS Inverter
Logic ‘1’
Output
VDD
Vo
t Logic ‘0’
Output
Vo
t
VDD
Energy dissipated in
Pull Up Network
Energy dissipated in
Pull Down Network
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30
A Second Look at Changing Signals!
The CMOS Inverter
Logic ‘1’
Output
VDD
Vo
t Logic ‘0’
Output
Vo
t
VDD
Takes Time to change → Propagation Delay
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31
Attention to Speed
• p-MOS slower than n-MOS
– Hole mobility < Electron mobility
– Pull-UP → Higher Resistance
– Rise time longer
• Make p-MOS wider
– Resistance α W/L Ratio
– Wp = n. Wn → n = √µn /µp ≅ 2
• Widen transistors connected in Series
– Increases Input Capacitance
• Avoid Series connection of p-MOS
– Prefer NAND over NOR
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32
∀µn / µp → 2.7
• p-MOS wider than n-MOS
– Wp/Wn = 3 → symmetric characteristics
• Best Noise Margin
• Increased Capacitive Load
– Reduced speed
• Wp/Wn = 2 → Best speed
• Design is a trade-off
– Speed & Robustness
CMOS Logic Design
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33
LH
SO
E
k
HH
LH
SO
2 fold degenerate valence band
E
kHH
• Light hole (LH) band moves upward
→ higher probability of occupancy
• Low effective mass → higher mobility
• Tunable mobility
Promise of Strained Si
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34
aSi=5.43A
aGe= 5.64 Å
Si
Substrate
Ge epitaxial layer
Tensile strain
%2.4
0
0
=
−
=
a
aa
ε
Si – Ge hetero-structures
aSi= 5.43 Å
Compressive strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35
• Si1-xGex has a bulk relaxed lattice
constant smaller than Ge.
• Strain decreases
Strain Engineering: Si1-xGex alloy
SiGe epitaxial layer
Si Substrate Tensile strain
Compressive strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36
Virtual substrate for strained-Si
• Strained layers grow up to a critical thickness
• Beyond Critical thickness → misfit dislocations appear
• As more layers grow → strain relaxes and defects reduce
Strain relaxed Si-Ge
Virtual Substrate
Tensile Strained Si epitaxial layer
HRTEM image of Strained Si
on Virtual Substrate
Strained-Si
SiGe (X % Ge) buffer cap,
0.9 µm
X % Ge
0.0%Ge
Step graded SiGe
buffer, 2.1 µm
Si buffer, 0.5 µm
n-Si (100) substrate
HRTEM
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38
Ref: S. Takagi et al., ISSCC (2003) p. 376
Mobility enhancement with strain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39
Strained Si Layer Structure
• Strained-Si PMOS layer
structure
• Type-II Band Alignment
– before charge sharing
– after charge sharing at
Zero bias
– Biased to inversion
Si1-xGex
Relaxed
Strained-Si
SiO2
(a)
EC
EV
(b)
EC
EV(d)
EC
EV
(c)
Poly-Si
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40
The Device Capacitance Model
EC
EV
EC
EV
Si1-xGex
Relaxed
SiO2
(a)
Poly-Si
Strained-Si
C1
C2
C3
STI
Channel
Strained-Si
Si1-xGex
C4Source /
Drain
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41
Design Optimization
• NMOS → Min. size : WN = 3λ
• PMOS → WP varied from 3λ to 9λ
• Calculate
–Propagation delay
–Shift from symmetry |(VDD/2 – Logic threshold)|
• Repeat for different strains (%Ge in VS)
• Converge (for same WP)
–Min. propagation delay &
–Min. shift from symmetry
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42
Parameter Values
(250 nm technology)
Parameter Value
Dielectric Constant (Si1 x‑
Gex
) 11.9 + 4x
Grading Coefficient (m)
Bottom → 0.48
Side Wall → 0.32
µ Cox
(Bulk)
Electron → 150 X 10-6
AV-2
Hole → 30 X 10-6
AV-2
VDD
2.5 V
|VT
|
n-MOS → 0.43 V
p-MOS → 0.40 V
Channel Length Modulation
Parameter
n-MOS → 0.06 V-1
p-MOS → 0.10 V-1
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44
30% Ge
13.0
13.5
14.0
14.5
15.0
15.5
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
350
400
Shiftfromsymmetry
(mV)
30% Ge composition
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45
35% Ge
12.0
12.2
12.4
12.6
12.8
13.0
13.2
13.4
13.6
13.8
14.0
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
350
Shiftfromsymmetry
(mV)
35% Ge composition
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46
40% Ge
10.8
11.0
11.2
11.4
11.6
11.8
12.0
12.2
12.4
3 5 7 9
P-transistor width (lamda)
Propagationdelay
(nS)
0
50
100
150
200
250
300
Shiftfromsymmetry
(mV)
40% Ge composition
Min. shift from symmetry
Min. Propagation delay
Summary
40% Ge in VS is most optimum
Conclusion
4
5
6
7
8
0.25 0.35 0.45
Ge composition (x)
P-TransistorWidth
(lambda)
S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48

More Related Content

What's hot

Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistorssrknec
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsvidhya DS
 
Introduction to vlsi design
Introduction to vlsi designIntroduction to vlsi design
Introduction to vlsi designJamia Hamdard
 
Mos transistor
Mos transistorMos transistor
Mos transistorMurali Rai
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)MielWitwicky
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarAkhil Masurkar
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101bheemsain
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSIPRABHAHARAN429
 
Cmos design
Cmos designCmos design
Cmos designMahi
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic designswagatkarve
 

What's hot (20)

Fundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos TransistorsFundamentals of CMOS VLSI Design and Mos Transistors
Fundamentals of CMOS VLSI Design and Mos Transistors
 
Lecture11 combinational logic dynamics
Lecture11 combinational logic dynamicsLecture11 combinational logic dynamics
Lecture11 combinational logic dynamics
 
Cmos logic
Cmos logicCmos logic
Cmos logic
 
Lecture20
Lecture20Lecture20
Lecture20
 
Introduction to vlsi design
Introduction to vlsi designIntroduction to vlsi design
Introduction to vlsi design
 
Dynamic&p t-logic
Dynamic&p t-logicDynamic&p t-logic
Dynamic&p t-logic
 
Mos transistor
Mos transistorMos transistor
Mos transistor
 
Cmos
CmosCmos
Cmos
 
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
Dee 6113 CMOS IC DESIGN (Chapter 3 ~ CMOS inverter)
 
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil MasurkarDelay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
Delay Calculation in CMOS Chips Using Logical Effort by Prof. Akhil Masurkar
 
Lec17 mosfet iv
Lec17 mosfet ivLec17 mosfet iv
Lec17 mosfet iv
 
Combinational Logic
Combinational LogicCombinational Logic
Combinational Logic
 
Rc delay modelling in vlsi
Rc delay modelling in vlsiRc delay modelling in vlsi
Rc delay modelling in vlsi
 
Cmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatreCmos VLSI Design By umakant bhaskar gohatre
Cmos VLSI Design By umakant bhaskar gohatre
 
Ee560 mos theory_p101
Ee560 mos theory_p101Ee560 mos theory_p101
Ee560 mos theory_p101
 
Very Large Scale Integration -VLSI
Very Large Scale Integration -VLSIVery Large Scale Integration -VLSI
Very Large Scale Integration -VLSI
 
Cmos design
Cmos designCmos design
Cmos design
 
Dynamic logic circuits
Dynamic logic circuitsDynamic logic circuits
Dynamic logic circuits
 
Unit no. 5 cmos logic design
Unit no. 5 cmos logic designUnit no. 5 cmos logic design
Unit no. 5 cmos logic design
 
Vlsi
VlsiVlsi
Vlsi
 

Viewers also liked

Viewers also liked (12)

Stick Diagram
Stick Diagram Stick Diagram
Stick Diagram
 
Guardian mark vi
Guardian mark viGuardian mark vi
Guardian mark vi
 
Ismail Ramadan
Ismail RamadanIsmail Ramadan
Ismail Ramadan
 
Oscar Alvarez. Presentation
Oscar Alvarez. PresentationOscar Alvarez. Presentation
Oscar Alvarez. Presentation
 
Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127Mark VI ST Control Product Overview GEH 6127
Mark VI ST Control Product Overview GEH 6127
 
Memristor
MemristorMemristor
Memristor
 
CMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodologyCMOS Topic 7 -_design_methodology
CMOS Topic 7 -_design_methodology
 
Vlsi design
Vlsi designVlsi design
Vlsi design
 
Gas Turbine Theory - Principle of Operation and Construction
Gas Turbine Theory  - Principle of Operation and ConstructionGas Turbine Theory  - Principle of Operation and Construction
Gas Turbine Theory - Principle of Operation and Construction
 
Gas turbines working ppt
Gas turbines working pptGas turbines working ppt
Gas turbines working ppt
 
Gas Turbine PPT
Gas Turbine PPTGas Turbine PPT
Gas Turbine PPT
 
Gas turbine course
Gas turbine courseGas turbine course
Gas turbine course
 

Similar to Trends in cmos digital design

EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberAlan Courtay
 
Logic gates using quantum dots
Logic gates using quantum dotsLogic gates using quantum dots
Logic gates using quantum dotsRohit Kumar Mandal
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)aicdesign
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)aicdesign
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitorGur Kan
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 
lpd_1_intro.ppt
lpd_1_intro.pptlpd_1_intro.ppt
lpd_1_intro.pptVishuRao6
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorDr Naim R Kidwai
 
Nowka low-power-07
Nowka low-power-07Nowka low-power-07
Nowka low-power-07Vijay Prime
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)aicdesign
 
lecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristicslecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and CharecteristicsBEVARAVASUDEVAAP1813
 

Similar to Trends in cmos digital design (20)

EV Powertrain Simulations in Saber
EV Powertrain Simulations in SaberEV Powertrain Simulations in Saber
EV Powertrain Simulations in Saber
 
Logic gates using quantum dots
Logic gates using quantum dotsLogic gates using quantum dots
Logic gates using quantum dots
 
mos transistor
mos transistormos transistor
mos transistor
 
VLSI- Unit II
VLSI- Unit IIVLSI- Unit II
VLSI- Unit II
 
Lect2 up080 (100324)
Lect2 up080 (100324)Lect2 up080 (100324)
Lect2 up080 (100324)
 
EMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdfEMT529-VLSI-Design-wk1.pdf
EMT529-VLSI-Design-wk1.pdf
 
vlsippt.pdf
vlsippt.pdfvlsippt.pdf
vlsippt.pdf
 
Flyback Converters v4
Flyback Converters v4Flyback Converters v4
Flyback Converters v4
 
lec23Concl.ppt
lec23Concl.pptlec23Concl.ppt
lec23Concl.ppt
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Lect2 up370 (100329)
Lect2 up370 (100329)Lect2 up370 (100329)
Lect2 up370 (100329)
 
Switched capacitor
Switched capacitorSwitched capacitor
Switched capacitor
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 
lpd_1_intro.ppt
lpd_1_intro.pptlpd_1_intro.ppt
lpd_1_intro.ppt
 
Rec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistorRec101 unit ii (part 3) field effect transistor
Rec101 unit ii (part 3) field effect transistor
 
Cuk dc dc+converter
Cuk dc dc+converterCuk dc dc+converter
Cuk dc dc+converter
 
Nowka low-power-07
Nowka low-power-07Nowka low-power-07
Nowka low-power-07
 
Lect2 up380 (100329)
Lect2 up380 (100329)Lect2 up380 (100329)
Lect2 up380 (100329)
 
VLSI PPT _0.pdf
VLSI PPT _0.pdfVLSI PPT _0.pdf
VLSI PPT _0.pdf
 
lecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristicslecture_MR in Mosfet Operation and Charecteristics
lecture_MR in Mosfet Operation and Charecteristics
 

Recently uploaded

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 

Recently uploaded (20)

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 

Trends in cmos digital design

  • 1. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1 CMOS Digital Circuit Design How to Make Both Ends Meet? Susanta Sen Institute of Radio Physics and Electronics University of Calcutta
  • 2. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2 Review of MOS Transistor
  • 3. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3 The MOS Transistor
  • 4. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4 MOS Transistor Zero Bias
  • 5. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5 MOS Transistor (contd.) VDS ID Channel Pinches off → Current Saturates VG Saturation Current increases with VG Vt Threshold Voltage Vt → Device Turns ON MOS can be used as SWITCH
  • 6. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6 MOS as SWITCH Designing Logic Circuits Logic ‘0’ = 0V : Logic ‘1’ = VDD n-MOS : VG ≤ Vt → OFF : VG = VDD → ON p-MOS: Negative VGS required Connect Source to VDD Gate Voltage → Negative w.r.t. Channel VG ≥ VDD– |Vt| → OFF : VG = 0 → ON S VDD VG0 to VDD D G
  • 7. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7 n-MOS SWITCH Transferring Logic ‘1’ (VDD): VDD Vin = VDD Vt VDD Vo t Transistor OFF Source Impedance High Weak ‘1’ Transistor ON Source Impedance Low Strong ‘0’VDD Vin = 0 V Vo t VDD Transferring Logic ‘0’ (0 V):
  • 8. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8 p – MOS Switch Transferring Logic ‘1’ (VDD): VDD Vo t 0V VDD Strong ‘1’ Transferring Logic ‘0’ (0 V): 0V 0 V t Vo VDD Vt Weak ‘0’
  • 9. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9 CMOS Logic • Use n-MOS to produce Logic ‘0’ → Pull DOWN • Use p-MOS to produce Logic ‘1’ → Pull UP The CMOS Inverter Equivalent Circuit Logic ‘1’ Output Logic ‘0’ Output
  • 10. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10 Switching Theory Revisited MOS Circuit Design Digital Logic
  • 11. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11 Review of Switching Theory C A B F = C iff (A and B) Switches in Series A B C F = C iff (A or B) Switches in Parallel
  • 12. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12 Using n-MOS Switch Constraint : C = ‘0’ A B Series Connection C = ‘0’ F = ‘0’ when (A . B) is TRUE ⇒ A nand B A B C = ‘0’ F = ‘0’ when (A or B) is TRUE ⇒ A nor B Parallel Connection
  • 13. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13 Using p-MOS Switch Constraint : C = ‘1’ A B C = ‘1’ F = ‘1’ when ( A . B) is TRUE ⇒ A + B Series Connection C = ‘1’ A B F = ‘1’ when ( A + B) is TRUE ⇒ A . B Parallel Connection
  • 14. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14 CMOS Logic Design • Pull UP Network – Build using p-MOS – Turns ON when Function is TRUE • Pull DOWN Network – Build using n-MOS – Turns ON when Function is FALSE • Operationally Complement • Topologically Dual
  • 15. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15 CMOS Logic (contd.) A A B BA A B B F F NAND GateNOR Gate
  • 16. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16 CMOS Design Example Consider the Function f = A . (B + C) Design the Pull Down Network first A B C PullUp F B A C f = [A . (B + C)] is true The Pull Down Network connects ‘f ’ to ground when Connect Ground
  • 17. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17 Assignments 1. F = A.B + C 2. F = (A + B).(C + D) 3. F = A + B.C 4. F = A + B.C 5. F = A.C + B.C 6. F = A ⊕ B
  • 19. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19 V DD VO Vi (=VG) MOS Amplifier VDS ID V DD VG Vi VO Load Line RL ID VO = VDD – ID.RL VDD
  • 20. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20 Non Linear Load VDSVDD ID VDD VO Vi LOAD LINEVO= VDD – Vdiode VO Vi VDD
  • 21. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21 Non Linear Load (contd.) Vi VO VB VDD VDD VDS ID VDD VO Vi
  • 22. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22 The CMOS InverterAmplifier or Inverter ? Vi VO VO Vi Gate Bias of PMOS changes with Input Voltage VDD VDD VDS ID VDD
  • 23. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24 A Closer Look In presence of Noise VOn = f (Vi + vn) = f (Vi) + vn(∂VO/∂Vi) + vn 2 (∂2 VO/∂Vi 2 )+…VO Vi noisy_output = noiseless_output + noise x gain + higher order terms VO= f (Vi) → Gain = ∂VO/∂Vi ViHViL VOL VOH Digital → Noise immunity Analog → High Gain
  • 24. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25 Noise Margins VO Vi ViHViL VOL VOH Digital → Noise immunity NML = VIL – VOL NMH = VOH – VIH VOH ViH 1 { VOL ViL 0 { Undefined Region
  • 25. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26 Vi VO VO Vi VDD VDD VDS ID VDD Tuning the Characteristics • Make the n-MOS wider • It conducts more current ID = ½ µCox[VGS – Vt]2 (W/L) •Best Noise Margin •When Vi = Voat VDD/2 •Wp = 3.Wn
  • 26. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27 When the Signal Changes! The CMOS Inverter Logic ‘1’ Output VDD Vo t Logic ‘0’ Output Vo t VDD Energy dissipated in Pull Up Network Energy dissipated in Pull Down Network
  • 27. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30 A Second Look at Changing Signals! The CMOS Inverter Logic ‘1’ Output VDD Vo t Logic ‘0’ Output Vo t VDD Takes Time to change → Propagation Delay
  • 28. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31 Attention to Speed • p-MOS slower than n-MOS – Hole mobility < Electron mobility – Pull-UP → Higher Resistance – Rise time longer • Make p-MOS wider – Resistance α W/L Ratio – Wp = n. Wn → n = √µn /µp ≅ 2 • Widen transistors connected in Series – Increases Input Capacitance • Avoid Series connection of p-MOS – Prefer NAND over NOR
  • 29. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32 ∀µn / µp → 2.7 • p-MOS wider than n-MOS – Wp/Wn = 3 → symmetric characteristics • Best Noise Margin • Increased Capacitive Load – Reduced speed • Wp/Wn = 2 → Best speed • Design is a trade-off – Speed & Robustness CMOS Logic Design
  • 30. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33 LH SO E k HH LH SO 2 fold degenerate valence band E kHH • Light hole (LH) band moves upward → higher probability of occupancy • Low effective mass → higher mobility • Tunable mobility Promise of Strained Si
  • 31. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34 aSi=5.43A aGe= 5.64 Å Si Substrate Ge epitaxial layer Tensile strain %2.4 0 0 = − = a aa ε Si – Ge hetero-structures aSi= 5.43 Å Compressive strain
  • 32. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35 • Si1-xGex has a bulk relaxed lattice constant smaller than Ge. • Strain decreases Strain Engineering: Si1-xGex alloy SiGe epitaxial layer Si Substrate Tensile strain Compressive strain
  • 33. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36 Virtual substrate for strained-Si • Strained layers grow up to a critical thickness • Beyond Critical thickness → misfit dislocations appear • As more layers grow → strain relaxes and defects reduce Strain relaxed Si-Ge Virtual Substrate Tensile Strained Si epitaxial layer
  • 34. HRTEM image of Strained Si on Virtual Substrate Strained-Si SiGe (X % Ge) buffer cap, 0.9 µm X % Ge 0.0%Ge Step graded SiGe buffer, 2.1 µm Si buffer, 0.5 µm n-Si (100) substrate HRTEM
  • 35. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38 Ref: S. Takagi et al., ISSCC (2003) p. 376 Mobility enhancement with strain
  • 36. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39 Strained Si Layer Structure • Strained-Si PMOS layer structure • Type-II Band Alignment – before charge sharing – after charge sharing at Zero bias – Biased to inversion Si1-xGex Relaxed Strained-Si SiO2 (a) EC EV (b) EC EV(d) EC EV (c) Poly-Si
  • 37. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40 The Device Capacitance Model EC EV EC EV Si1-xGex Relaxed SiO2 (a) Poly-Si Strained-Si C1 C2 C3 STI Channel Strained-Si Si1-xGex C4Source / Drain
  • 38. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41 Design Optimization • NMOS → Min. size : WN = 3λ • PMOS → WP varied from 3λ to 9λ • Calculate –Propagation delay –Shift from symmetry |(VDD/2 – Logic threshold)| • Repeat for different strains (%Ge in VS) • Converge (for same WP) –Min. propagation delay & –Min. shift from symmetry
  • 39. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42 Parameter Values (250 nm technology) Parameter Value Dielectric Constant (Si1 x‑ Gex ) 11.9 + 4x Grading Coefficient (m) Bottom → 0.48 Side Wall → 0.32 µ Cox (Bulk) Electron → 150 X 10-6 AV-2 Hole → 30 X 10-6 AV-2 VDD 2.5 V |VT | n-MOS → 0.43 V p-MOS → 0.40 V Channel Length Modulation Parameter n-MOS → 0.06 V-1 p-MOS → 0.10 V-1
  • 40. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44 30% Ge 13.0 13.5 14.0 14.5 15.0 15.5 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 350 400 Shiftfromsymmetry (mV) 30% Ge composition
  • 41. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45 35% Ge 12.0 12.2 12.4 12.6 12.8 13.0 13.2 13.4 13.6 13.8 14.0 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 350 Shiftfromsymmetry (mV) 35% Ge composition
  • 42. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46 40% Ge 10.8 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 3 5 7 9 P-transistor width (lamda) Propagationdelay (nS) 0 50 100 150 200 250 300 Shiftfromsymmetry (mV) 40% Ge composition
  • 43. Min. shift from symmetry Min. Propagation delay Summary 40% Ge in VS is most optimum Conclusion 4 5 6 7 8 0.25 0.35 0.45 Ge composition (x) P-TransistorWidth (lambda) S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012
  • 44. Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48