SlideShare a Scribd company logo
1 of 42
Download to read offline
Deep Learning 2.0
A research program
20/08/2021 1
Presented at FAIC, 08/2021
A/Prof Truyen Tran
Deakin University
@truyenoz
truyentran.github.io
truyen.tran@deakin.edu.au
letdataspeak.blogspot.com
goo.gl/3jJ1O0
>Understanding
>Accuracy
>Individualisation
>Human-machine teaming
Infer
Discover
Invent
Photo credit: discovermagazine.com
Making positive impact in AI
2012
2016
AusDM 2016
Turing Awards 2018
GPT-3 2020
DL: 8 years snapshot
DL has been fantastic, but …
• It is great at interpolating
•  data hungry to cover all variations and smooth local manifolds
•  little systematic generalization (novel combinations)
• Lack of human-perceived reasoning capability
• Lack natural mechanism to incorporate prior knowledge, e.g., common sense
• No built-in causal mechanisms
•  Have trust issues!
• To be fair, may of these problems are common in statistical learning!
20/08/2021 4
The next AI challenge
2020s-2030s
 Learning + reasoning, general
purpose, human-like
 Has contextual and common-
sense reasoning
 Requires less data
 Adapt to change
 Explainable
Photo credit: DARPA
Deep
Learning
2.0
Memory
Learning
Reasoning
Perception
Data-rich
domains
Health
Software
Drug &
Life
sciences
Materials
science
Solves
Inspires
DL 2.0 architecture
System 1:
Intuitive
System 1:
Intuitive
System 1:
Intuitive
• Fast
• Implicit/automatic
• Pattern recognition
• Multiple
System 2:
Analytical
• Slow
• Deliberate/rational
• Careful analysis
• Single, sequential
Single
Image credit: VectorStock | Wikimedia
Perception
Theory of mind
Recursive reasoning
Facts
Semantics
Events and relations
Working space
Memory
Core AI faculty:
Memory
Image credit: Iconscout
Trainable Turing machines
Turing machines are hypothetical devices with infinite memory that can compute
all possible computable programs
The quest: Learn a Turing
machine from data, then
use it to solve everything
else.
Image credit: arstechnica
Neural Turing machine (NTM)
(simulating a differentiable Turing machine)
• A controller that takes
input/output and talks to an
external memory module.
• Memory has read/write
operations.
• The main issue is where to
write, and how to update the
memory state.
• All operations are
differentiable.
Source: rylanschaeffer.github.io
Failures of item-only memory for reasoning
• Relational representation is NOT stored  Can’t reuse later
in the chain
• A single memory of items and relations  Can’t understand
how relational reasoning occurs
• The memory-memory relationship is coarse since it is
represented as either dot product, or weighted sum.
20/08/2021 11
Self-attentive associative memories (SAM)
Learning relations automatically over time
20/08/2021 12
Hung Le, Truyen Tran, Svetha Venkatesh, “Self-attentive associative
memory”, ICML'20.
NUTM = NTM + NSM
Hung Le, Truyen Tran, Svetha Venkatesh, “Neural
stored-program memory”, ICLR'20.
Computing devices vs neural counterparts
• FSM (1943) ↔ RNNs (1982)
• PDA (1954) ↔ Stack RNN (1993)
• TM (1936) ↔ NTM (2014)
• UTM/VNA (1936/1945) ↔ NUTM (2019)
Core AI faculty:
Reasoning
Why neural reasoning?
Reasoning is not necessarily
achieved by making logical
inferences
There is a continuity between
[algebraically rich inference] and
[connecting together trainable
learning systems]
Central to reasoning is composition
rules to guide the combinations of
modules to address new tasks
20/08/2021 16
“When we observe a visual scene, when we
hear a complex sentence, we are able to
explain in formal terms the relation of the
objects in the scene, or the precise meaning
of the sentence components. However, there
is no evidence that such a formal analysis
necessarily takes place: we see a scene, we
hear a sentence, and we just know what they
mean. This suggests the existence of a
middle layer, already a form of reasoning, but
not yet formal or logical.”
Bottou, Léon. "From machine learning to machine
reasoning." Machine learning 94.2 (2014): 133-149.
Learning to reason
• Learning is to improve itself by experiencing ~
acquiring knowledge & skills
• Reasoning is to deduce knowledge from
previously acquired knowledge in response to a
query (or a cues)
• Learning to reason is to improve the ability to
decide if a knowledge base entails a predicate.
• E.g., given a video f, determines if the person with the hat turns
before singing.
• Hypotheses:
• Reasoning as just-in-time program synthesis.
• It employs conditional computation.
20/08/2021 17
Khardon, Roni, and Dan Roth. "Learning to reason." Journal of the ACM
(JACM) 44.5 (1997): 697-725.
(Dan Roth; ACM Fellow; IJCAI
John McCarthy Award)
Practical setting: (query,database,answer) triplets
• This is very general:
• Classification: Query = what is this? Database = data.
• Regression: Query = how much? Database = data.
• QA: Query = NLP question. Database = context/image/text.
• Multi-task learning: Query = task ID. Database = data.
• Zero-shot learning: Query = task description. Database = data.
• Drug-protein binding: Query = drug. Database = protein.
• Recommender system: Query = User (or item). Database =
inventories (or user base);
20/08/2021 18
Visual reasoning
20/08/2021 19
20
Reasoning
Qualitative spatial
reasoning
Relational, temporal
inference
Commonsense
Object recognition
Scene graphs
Computer Vision
Natural Language
Processing
Machine
learning
Testbed: Visual QA
Parsing
Symbol binding
Systematic generalisation
Learning to classify
entailment
Unsupervised
learning
Reinforcement
learning
Program synthesis
Action graphs
Event detection
Object
discovery
21
Language-binding Object Graph Network for VQA
Thao Minh Le, Vuong Le,
Svetha Venkatesh, and
Truyen Tran, “Dynamic
Language Binding in
Relational Visual
Reasoning”, IJCAI’20.
Searching for reasoning prior: Attention
22
Attention priors
23
Visual question answering in action
Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen Tran, “Dynamic Language Binding in Relational Visual Reasoning”, IJCAI’20.
A general purpose neural reasoning unit for spatio-temporal
objects (OSTR)
OSTR in action – Video QA
Dang, Long Hoang, et al. "Hierarchical Object-oriented Spatio-Temporal Reasoning for Video Question
Answering." IJCAI (2021).
Source: religious studies project
Core AI faculty:
Theory of mind
Contextualized recursive reasoning
• Thus far, QA tasks are straightforward and objective:
• Questioner: I will ask about what I don’t know.
• Answerer: I will answer what I know.
• Real life can be tricky, more subjective:
• Questioner: I will ask only questions I think they can
answer.
• Answerer 1: This is what I think they want from an answer.
• Answerer 2: I will answer only what I think they think I can.
20/08/2021 28
 We need Theory of Mind to function socially.
Social dilemma: Stag Hunt games
• Difficult decision: individual outcomes (selfish)
or group outcomes (cooperative).
• Together hunt Stag (both are cooperative): Both have more
meat.
• Solely hunt Hare (both are selfish): Both have less meat.
• One hunts Stag (cooperative), other hunts Hare (selfish): Only
one hunts hare has meat.
• Human evidence: Self-interested but
considerate of others (cultures vary).
• Idea: Belief-based guilt-aversion
• One experiences loss if it lets other down.
• Necessitates Theory of Mind: reasoning about other’s mind.
Theory of Mind Agent with Guilt Aversion (ToMAGA)
Update Theory of Mind
• Predict whether other’s behaviour are
cooperative or uncooperative
• Updated the zero-order belief (what
other will do)
• Update the first-order belief (what other
think about me)
Guilt Aversion
• Compute the expected material reward
of other based on Theory of Mind
• Compute the psychological rewards, i.e.
“feeling guilty”
• Reward shaping: subtract the expected
loss of the other.
Nguyen, Dung, et al. "Theory of Mind with Guilt Aversion Facilitates
Cooperative Reinforcement Learning." Asian Conference on Machine
Learning. PMLR, 2020.
ToM
architecture
• Observer maintains
memory of previous
episodes of the agent.
• It theorizes the “traits” of
the agent.
• Given the current
episode, the observer
tries to infer goal,
intention, action, etc of
the agent.
20/08/2021 31
Making impact:
Accelerating drug
discovery, life
science, and
materials science
Image credit: Nature
Drug repurposing using
relational reasoning over
drug graphs
33
#REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing approach." Machine
Learning, 2019.
We invented a scalable method to
check if an existing drug binds to
any set of targets of interest.
Our method takes target
relationships into account.
Relational reasoning for drug-
protein binding
We designed a model
for detailed interaction
between drug and
protein residues.
The architecture is a
new graph-in-graph.
This results in more
accurate and precise
prediction of binding
site and strength.
Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). “GEFA: Early Fusion Approach in Drug-Target
Affinity Prediction”. IEEE/ACM Transactions on Computational Biology and Bioinformatics
More flexible drug-
disease response
with Relational
Dynamic Memory
20/08/2021 35
Controller
Memory
Graph
Query Output
Read Write
Predicting in silico molecular interaction using relational
multi-memory system
36
𝑴𝑴1 … 𝑴𝑴𝐶𝐶
𝒓𝒓𝑡𝑡
1
…
𝒓𝒓𝑡𝑡
𝐾𝐾
𝒓𝒓𝑡𝑡
∗
Controller
Write
𝒉𝒉𝑡𝑡
Memor
y
Graph
Query Output
Read
heads
#REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational
dynamic memory networks." arXiv preprint arXiv:1808.04247(2018).
Image credit: khanacademy
Reinforcement learning + relational reasoning for
chemical reaction prediction
37
#REF: Do, K., Tran, T., & Venkatesh, S. (2019, July). Graph transformation policy network for
chemical reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining (pp. 750-760). ACM.
The method takes graph
morphism as the core.
Reinforcement learning is
employed to explore the graph
morphism dynamics.
.
Image credit: britannica
The road ahead
Image source: pobble365
Yet to be solved …
• Common-sense reasoning
• Reasoning as program synthesis with
callable, reusable modules
• Systematicity, aka systematic
generalization
• Knowledge-driven VQA, knowledge as
semantic memory
• Fluent visual dialog
• Higher-order thought (e.g., self-
awareness and consciousness)
• A better prior for reasoning
20/08/2021 39
Towards a dual tri-process theory
• Stanovich, K. E. (2009). Distinguishing the
reflective, algorithmic, and autonomous minds: Is
it time for a tri-process theory. In two minds: Dual
processes and beyond, 55-88.
20/08/2021 40
Photo credit: mumsgrapevine
The reasoning team @
20/08/2021 41
A/Prof Truyen Tran Dr Vuong Le
Dr Thao Le
Dr Hung Le Mr Long Dang Mr Hoang-Anh Pham
Mr Kha Pham
20/08/2021 42
Thank you Truyen Tran
@truyenoz
truyentran.github.io
truyen.tran@deakin.edu.au
letdataspeak.blogspot.com
goo.gl/3jJ1O0
linkedin.com/in/truyen-tran

More Related Content

What's hot

Ensemble Learning and Random Forests
Ensemble Learning and Random ForestsEnsemble Learning and Random Forests
Ensemble Learning and Random ForestsCloudxLab
 
Computer Vision with Deep Learning
Computer Vision with Deep LearningComputer Vision with Deep Learning
Computer Vision with Deep LearningCapgemini
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...MLAI2
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)Yu Huang
 
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知Chihiro Kusunoki
 
Synthetic data generation
Synthetic data generationSynthetic data generation
Synthetic data generationSandeep Joshi
 
Recent Trends in Deep Learning
Recent Trends in Deep LearningRecent Trends in Deep Learning
Recent Trends in Deep LearningSungjoon Choi
 
(SURVEY) Semi Supervised Learning
(SURVEY) Semi Supervised Learning(SURVEY) Semi Supervised Learning
(SURVEY) Semi Supervised LearningYamato OKAMOTO
 
【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?cvpaper. challenge
 
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Simplilearn
 
Support Vector Machine ppt presentation
Support Vector Machine ppt presentationSupport Vector Machine ppt presentation
Support Vector Machine ppt presentationAyanaRukasar
 
Measures and mismeasures of algorithmic fairness
Measures and mismeasures of algorithmic fairnessMeasures and mismeasures of algorithmic fairness
Measures and mismeasures of algorithmic fairnessManojit Nandi
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIYu Huang
 
Passive stereo vision with deep learning
Passive stereo vision with deep learningPassive stereo vision with deep learning
Passive stereo vision with deep learningYu Huang
 
Real Time Object Tracking
Real Time Object TrackingReal Time Object Tracking
Real Time Object TrackingVanya Valindria
 
Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation LearningDongmin Lee
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised LearningまとめDeep Learning JP
 
Support Vector Machine without tears
Support Vector Machine without tearsSupport Vector Machine without tears
Support Vector Machine without tearsAnkit Sharma
 

What's hot (20)

Ensemble Learning and Random Forests
Ensemble Learning and Random ForestsEnsemble Learning and Random Forests
Ensemble Learning and Random Forests
 
Computer Vision with Deep Learning
Computer Vision with Deep LearningComputer Vision with Deep Learning
Computer Vision with Deep Learning
 
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
Federated Semi-Supervised Learning with Inter-Client Consistency & Disjoint L...
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)
 
Anomaly detection survey
Anomaly detection surveyAnomaly detection survey
Anomaly detection survey
 
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知深層自己符号化器+混合ガウスモデルによる教師なし異常検知
深層自己符号化器+混合ガウスモデルによる教師なし異常検知
 
Synthetic data generation
Synthetic data generationSynthetic data generation
Synthetic data generation
 
Recent Trends in Deep Learning
Recent Trends in Deep LearningRecent Trends in Deep Learning
Recent Trends in Deep Learning
 
(SURVEY) Semi Supervised Learning
(SURVEY) Semi Supervised Learning(SURVEY) Semi Supervised Learning
(SURVEY) Semi Supervised Learning
 
【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?【CVPR 2019】Do Better ImageNet Models Transfer Better?
【CVPR 2019】Do Better ImageNet Models Transfer Better?
 
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
Support Vector Machine - How Support Vector Machine works | SVM in Machine Le...
 
Support Vector Machine ppt presentation
Support Vector Machine ppt presentationSupport Vector Machine ppt presentation
Support Vector Machine ppt presentation
 
Measures and mismeasures of algorithmic fairness
Measures and mismeasures of algorithmic fairnessMeasures and mismeasures of algorithmic fairness
Measures and mismeasures of algorithmic fairness
 
Intepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural NetworksIntepretability / Explainable AI for Deep Neural Networks
Intepretability / Explainable AI for Deep Neural Networks
 
fusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving IIfusion of Camera and lidar for autonomous driving II
fusion of Camera and lidar for autonomous driving II
 
Passive stereo vision with deep learning
Passive stereo vision with deep learningPassive stereo vision with deep learning
Passive stereo vision with deep learning
 
Real Time Object Tracking
Real Time Object TrackingReal Time Object Tracking
Real Time Object Tracking
 
Causal Confusion in Imitation Learning
Causal Confusion in Imitation LearningCausal Confusion in Imitation Learning
Causal Confusion in Imitation Learning
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
Support Vector Machine without tears
Support Vector Machine without tearsSupport Vector Machine without tears
Support Vector Machine without tears
 

Similar to Deep Learning 2.0

Deep analytics via learning to reason
Deep analytics via learning to reasonDeep analytics via learning to reason
Deep analytics via learning to reasonDeakin University
 
Machine Reasoning at A2I2, Deakin University
Machine Reasoning at A2I2, Deakin UniversityMachine Reasoning at A2I2, Deakin University
Machine Reasoning at A2I2, Deakin UniversityDeakin University
 
Inverse Modeling for Cognitive Science "in the Wild"
Inverse Modeling for Cognitive Science "in the Wild"Inverse Modeling for Cognitive Science "in the Wild"
Inverse Modeling for Cognitive Science "in the Wild"Aalto University
 
Biological Foundations for Deep Learning: Towards Decision Networks
 Biological Foundations for Deep Learning: Towards Decision Networks Biological Foundations for Deep Learning: Towards Decision Networks
Biological Foundations for Deep Learning: Towards Decision Networksdiannepatricia
 
LearningAG.ppt
LearningAG.pptLearningAG.ppt
LearningAG.pptbutest
 
Deep learning 1.0 and Beyond, Part 2
Deep learning 1.0 and Beyond, Part 2Deep learning 1.0 and Beyond, Part 2
Deep learning 1.0 and Beyond, Part 2Deakin University
 
The current state of prediction in neuroimaging
The current state of prediction in neuroimagingThe current state of prediction in neuroimaging
The current state of prediction in neuroimagingSaigeRutherford
 
machine learning algorithm.pptx
machine learning algorithm.pptxmachine learning algorithm.pptx
machine learning algorithm.pptxSasmitaDash28
 
Learning Relations from Social Tagging Data
Learning Relations from Social Tagging DataLearning Relations from Social Tagging Data
Learning Relations from Social Tagging DataHang Dong
 
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...Matthew Lease
 
Looking for Commonsense in the Semantic Web
Looking for Commonsense in the Semantic WebLooking for Commonsense in the Semantic Web
Looking for Commonsense in the Semantic WebValentina Presutti
 
Tragedy of the (Data) Commons
Tragedy of the (Data) CommonsTragedy of the (Data) Commons
Tragedy of the (Data) CommonsJames Hendler
 
Machine Learning Meets Human Learning
Machine Learning Meets Human LearningMachine Learning Meets Human Learning
Machine Learning Meets Human Learningbutest
 
Revamped CNNs for brains
Revamped CNNs for brainsRevamped CNNs for brains
Revamped CNNs for brainsSaigeRutherford
 
ODSC East 2017: Data Science Models For Good
ODSC East 2017: Data Science Models For GoodODSC East 2017: Data Science Models For Good
ODSC East 2017: Data Science Models For GoodKarry Lu
 
3 D Project Based Learning Basics for the New Generation Science Standards
3 D Project Based  Learning Basics for the New Generation Science Standards3 D Project Based  Learning Basics for the New Generation Science Standards
3 D Project Based Learning Basics for the New Generation Science Standardsrekharajaseran
 

Similar to Deep Learning 2.0 (20)

Deep analytics via learning to reason
Deep analytics via learning to reasonDeep analytics via learning to reason
Deep analytics via learning to reason
 
Machine reasoning
Machine reasoningMachine reasoning
Machine reasoning
 
Machine Reasoning at A2I2, Deakin University
Machine Reasoning at A2I2, Deakin UniversityMachine Reasoning at A2I2, Deakin University
Machine Reasoning at A2I2, Deakin University
 
Visual reasoning
Visual reasoningVisual reasoning
Visual reasoning
 
Inverse Modeling for Cognitive Science "in the Wild"
Inverse Modeling for Cognitive Science "in the Wild"Inverse Modeling for Cognitive Science "in the Wild"
Inverse Modeling for Cognitive Science "in the Wild"
 
Biological Foundations for Deep Learning: Towards Decision Networks
 Biological Foundations for Deep Learning: Towards Decision Networks Biological Foundations for Deep Learning: Towards Decision Networks
Biological Foundations for Deep Learning: Towards Decision Networks
 
LearningAG.ppt
LearningAG.pptLearningAG.ppt
LearningAG.ppt
 
Deep learning 1.0 and Beyond, Part 2
Deep learning 1.0 and Beyond, Part 2Deep learning 1.0 and Beyond, Part 2
Deep learning 1.0 and Beyond, Part 2
 
Discussant EARLI sig 27
Discussant EARLI sig 27Discussant EARLI sig 27
Discussant EARLI sig 27
 
The current state of prediction in neuroimaging
The current state of prediction in neuroimagingThe current state of prediction in neuroimaging
The current state of prediction in neuroimaging
 
XAI (IIT-Patna).pdf
XAI (IIT-Patna).pdfXAI (IIT-Patna).pdf
XAI (IIT-Patna).pdf
 
machine learning algorithm.pptx
machine learning algorithm.pptxmachine learning algorithm.pptx
machine learning algorithm.pptx
 
Learning Relations from Social Tagging Data
Learning Relations from Social Tagging DataLearning Relations from Social Tagging Data
Learning Relations from Social Tagging Data
 
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...
Designing at the Intersection of HCI & AI: Misinformation & Crowdsourced Anno...
 
Looking for Commonsense in the Semantic Web
Looking for Commonsense in the Semantic WebLooking for Commonsense in the Semantic Web
Looking for Commonsense in the Semantic Web
 
Tragedy of the (Data) Commons
Tragedy of the (Data) CommonsTragedy of the (Data) Commons
Tragedy of the (Data) Commons
 
Machine Learning Meets Human Learning
Machine Learning Meets Human LearningMachine Learning Meets Human Learning
Machine Learning Meets Human Learning
 
Revamped CNNs for brains
Revamped CNNs for brainsRevamped CNNs for brains
Revamped CNNs for brains
 
ODSC East 2017: Data Science Models For Good
ODSC East 2017: Data Science Models For GoodODSC East 2017: Data Science Models For Good
ODSC East 2017: Data Science Models For Good
 
3 D Project Based Learning Basics for the New Generation Science Standards
3 D Project Based  Learning Basics for the New Generation Science Standards3 D Project Based  Learning Basics for the New Generation Science Standards
3 D Project Based Learning Basics for the New Generation Science Standards
 

More from Deakin University

Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraDeakin University
 
Deep learning and reasoning: Recent advances
Deep learning and reasoning: Recent advancesDeep learning and reasoning: Recent advances
Deep learning and reasoning: Recent advancesDeakin University
 
AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...Deakin University
 
Generative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsDeakin University
 
Generative AI: Shifting the AI Landscape
Generative AI: Shifting the AI LandscapeGenerative AI: Shifting the AI Landscape
Generative AI: Shifting the AI LandscapeDeakin University
 
Machine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryMachine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryDeakin University
 
Deep learning 1.0 and Beyond, Part 1
Deep learning 1.0 and Beyond, Part 1Deep learning 1.0 and Beyond, Part 1
Deep learning 1.0 and Beyond, Part 1Deakin University
 
AI/ML as an empirical science
AI/ML as an empirical scienceAI/ML as an empirical science
AI/ML as an empirical scienceDeakin University
 
AI for tackling climate change
AI for tackling climate changeAI for tackling climate change
AI for tackling climate changeDeakin University
 
Deep learning and applications in non-cognitive domains I
Deep learning and applications in non-cognitive domains IDeep learning and applications in non-cognitive domains I
Deep learning and applications in non-cognitive domains IDeakin University
 
Deep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains IIDeep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains IIDeakin University
 
Deep learning and applications in non-cognitive domains III
Deep learning and applications in non-cognitive domains IIIDeep learning and applications in non-cognitive domains III
Deep learning and applications in non-cognitive domains IIIDeakin University
 
Deep learning for episodic interventional data
Deep learning for episodic interventional dataDeep learning for episodic interventional data
Deep learning for episodic interventional dataDeakin University
 
Deep learning for detecting anomalies and software vulnerabilities
Deep learning for detecting anomalies and software vulnerabilitiesDeep learning for detecting anomalies and software vulnerabilities
Deep learning for detecting anomalies and software vulnerabilitiesDeakin University
 
Deep learning for biomedical discovery and data mining I
Deep learning for biomedical discovery and data mining IDeep learning for biomedical discovery and data mining I
Deep learning for biomedical discovery and data mining IDeakin University
 
Deep learning for biomedical discovery and data mining II
Deep learning for biomedical discovery and data mining IIDeep learning for biomedical discovery and data mining II
Deep learning for biomedical discovery and data mining IIDeakin University
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphsDeakin University
 

More from Deakin University (20)

Artificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning eraArtificial intelligence in the post-deep learning era
Artificial intelligence in the post-deep learning era
 
Deep learning and reasoning: Recent advances
Deep learning and reasoning: Recent advancesDeep learning and reasoning: Recent advances
Deep learning and reasoning: Recent advances
 
AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...AI for automated materials discovery via learning to represent, predict, gene...
AI for automated materials discovery via learning to represent, predict, gene...
 
Generative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of MaterialsGenerative AI to Accelerate Discovery of Materials
Generative AI to Accelerate Discovery of Materials
 
Generative AI: Shifting the AI Landscape
Generative AI: Shifting the AI LandscapeGenerative AI: Shifting the AI Landscape
Generative AI: Shifting the AI Landscape
 
Machine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug DiscoveryMachine Learning and Reasoning for Drug Discovery
Machine Learning and Reasoning for Drug Discovery
 
Deep learning 1.0 and Beyond, Part 1
Deep learning 1.0 and Beyond, Part 1Deep learning 1.0 and Beyond, Part 1
Deep learning 1.0 and Beyond, Part 1
 
AI/ML as an empirical science
AI/ML as an empirical scienceAI/ML as an empirical science
AI/ML as an empirical science
 
AI in the Covid-19 pandemic
AI in the Covid-19 pandemicAI in the Covid-19 pandemic
AI in the Covid-19 pandemic
 
AI for tackling climate change
AI for tackling climate changeAI for tackling climate change
AI for tackling climate change
 
AI for drug discovery
AI for drug discoveryAI for drug discovery
AI for drug discovery
 
Deep learning and applications in non-cognitive domains I
Deep learning and applications in non-cognitive domains IDeep learning and applications in non-cognitive domains I
Deep learning and applications in non-cognitive domains I
 
Deep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains IIDeep learning and applications in non-cognitive domains II
Deep learning and applications in non-cognitive domains II
 
Deep learning and applications in non-cognitive domains III
Deep learning and applications in non-cognitive domains IIIDeep learning and applications in non-cognitive domains III
Deep learning and applications in non-cognitive domains III
 
Deep learning for episodic interventional data
Deep learning for episodic interventional dataDeep learning for episodic interventional data
Deep learning for episodic interventional data
 
Deep learning for detecting anomalies and software vulnerabilities
Deep learning for detecting anomalies and software vulnerabilitiesDeep learning for detecting anomalies and software vulnerabilities
Deep learning for detecting anomalies and software vulnerabilities
 
Deep learning for biomedical discovery and data mining I
Deep learning for biomedical discovery and data mining IDeep learning for biomedical discovery and data mining I
Deep learning for biomedical discovery and data mining I
 
Deep learning for biomedical discovery and data mining II
Deep learning for biomedical discovery and data mining IIDeep learning for biomedical discovery and data mining II
Deep learning for biomedical discovery and data mining II
 
AI that/for matters
AI that/for mattersAI that/for matters
AI that/for matters
 
Representation learning on graphs
Representation learning on graphsRepresentation learning on graphs
Representation learning on graphs
 

Recently uploaded

What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????blackmambaettijean
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demoHarshalMandlekar2
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 

Recently uploaded (20)

What is Artificial Intelligence?????????
What is Artificial Intelligence?????????What is Artificial Intelligence?????????
What is Artificial Intelligence?????????
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Sample pptx for embedding into website for demo
Sample pptx for embedding into website for demoSample pptx for embedding into website for demo
Sample pptx for embedding into website for demo
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 

Deep Learning 2.0

  • 1. Deep Learning 2.0 A research program 20/08/2021 1 Presented at FAIC, 08/2021 A/Prof Truyen Tran Deakin University @truyenoz truyentran.github.io truyen.tran@deakin.edu.au letdataspeak.blogspot.com goo.gl/3jJ1O0
  • 3. 2012 2016 AusDM 2016 Turing Awards 2018 GPT-3 2020 DL: 8 years snapshot
  • 4. DL has been fantastic, but … • It is great at interpolating •  data hungry to cover all variations and smooth local manifolds •  little systematic generalization (novel combinations) • Lack of human-perceived reasoning capability • Lack natural mechanism to incorporate prior knowledge, e.g., common sense • No built-in causal mechanisms •  Have trust issues! • To be fair, may of these problems are common in statistical learning! 20/08/2021 4
  • 5. The next AI challenge 2020s-2030s  Learning + reasoning, general purpose, human-like  Has contextual and common- sense reasoning  Requires less data  Adapt to change  Explainable Photo credit: DARPA
  • 7. DL 2.0 architecture System 1: Intuitive System 1: Intuitive System 1: Intuitive • Fast • Implicit/automatic • Pattern recognition • Multiple System 2: Analytical • Slow • Deliberate/rational • Careful analysis • Single, sequential Single Image credit: VectorStock | Wikimedia Perception Theory of mind Recursive reasoning Facts Semantics Events and relations Working space Memory
  • 8. Core AI faculty: Memory Image credit: Iconscout
  • 9. Trainable Turing machines Turing machines are hypothetical devices with infinite memory that can compute all possible computable programs The quest: Learn a Turing machine from data, then use it to solve everything else. Image credit: arstechnica
  • 10. Neural Turing machine (NTM) (simulating a differentiable Turing machine) • A controller that takes input/output and talks to an external memory module. • Memory has read/write operations. • The main issue is where to write, and how to update the memory state. • All operations are differentiable. Source: rylanschaeffer.github.io
  • 11. Failures of item-only memory for reasoning • Relational representation is NOT stored  Can’t reuse later in the chain • A single memory of items and relations  Can’t understand how relational reasoning occurs • The memory-memory relationship is coarse since it is represented as either dot product, or weighted sum. 20/08/2021 11
  • 12. Self-attentive associative memories (SAM) Learning relations automatically over time 20/08/2021 12 Hung Le, Truyen Tran, Svetha Venkatesh, “Self-attentive associative memory”, ICML'20.
  • 13. NUTM = NTM + NSM Hung Le, Truyen Tran, Svetha Venkatesh, “Neural stored-program memory”, ICLR'20.
  • 14. Computing devices vs neural counterparts • FSM (1943) ↔ RNNs (1982) • PDA (1954) ↔ Stack RNN (1993) • TM (1936) ↔ NTM (2014) • UTM/VNA (1936/1945) ↔ NUTM (2019)
  • 16. Why neural reasoning? Reasoning is not necessarily achieved by making logical inferences There is a continuity between [algebraically rich inference] and [connecting together trainable learning systems] Central to reasoning is composition rules to guide the combinations of modules to address new tasks 20/08/2021 16 “When we observe a visual scene, when we hear a complex sentence, we are able to explain in formal terms the relation of the objects in the scene, or the precise meaning of the sentence components. However, there is no evidence that such a formal analysis necessarily takes place: we see a scene, we hear a sentence, and we just know what they mean. This suggests the existence of a middle layer, already a form of reasoning, but not yet formal or logical.” Bottou, Léon. "From machine learning to machine reasoning." Machine learning 94.2 (2014): 133-149.
  • 17. Learning to reason • Learning is to improve itself by experiencing ~ acquiring knowledge & skills • Reasoning is to deduce knowledge from previously acquired knowledge in response to a query (or a cues) • Learning to reason is to improve the ability to decide if a knowledge base entails a predicate. • E.g., given a video f, determines if the person with the hat turns before singing. • Hypotheses: • Reasoning as just-in-time program synthesis. • It employs conditional computation. 20/08/2021 17 Khardon, Roni, and Dan Roth. "Learning to reason." Journal of the ACM (JACM) 44.5 (1997): 697-725. (Dan Roth; ACM Fellow; IJCAI John McCarthy Award)
  • 18. Practical setting: (query,database,answer) triplets • This is very general: • Classification: Query = what is this? Database = data. • Regression: Query = how much? Database = data. • QA: Query = NLP question. Database = context/image/text. • Multi-task learning: Query = task ID. Database = data. • Zero-shot learning: Query = task description. Database = data. • Drug-protein binding: Query = drug. Database = protein. • Recommender system: Query = User (or item). Database = inventories (or user base); 20/08/2021 18
  • 20. 20 Reasoning Qualitative spatial reasoning Relational, temporal inference Commonsense Object recognition Scene graphs Computer Vision Natural Language Processing Machine learning Testbed: Visual QA Parsing Symbol binding Systematic generalisation Learning to classify entailment Unsupervised learning Reinforcement learning Program synthesis Action graphs Event detection Object discovery
  • 21. 21 Language-binding Object Graph Network for VQA Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen Tran, “Dynamic Language Binding in Relational Visual Reasoning”, IJCAI’20.
  • 22. Searching for reasoning prior: Attention 22
  • 24. Visual question answering in action Thao Minh Le, Vuong Le, Svetha Venkatesh, and Truyen Tran, “Dynamic Language Binding in Relational Visual Reasoning”, IJCAI’20.
  • 25. A general purpose neural reasoning unit for spatio-temporal objects (OSTR)
  • 26. OSTR in action – Video QA Dang, Long Hoang, et al. "Hierarchical Object-oriented Spatio-Temporal Reasoning for Video Question Answering." IJCAI (2021).
  • 27. Source: religious studies project Core AI faculty: Theory of mind
  • 28. Contextualized recursive reasoning • Thus far, QA tasks are straightforward and objective: • Questioner: I will ask about what I don’t know. • Answerer: I will answer what I know. • Real life can be tricky, more subjective: • Questioner: I will ask only questions I think they can answer. • Answerer 1: This is what I think they want from an answer. • Answerer 2: I will answer only what I think they think I can. 20/08/2021 28  We need Theory of Mind to function socially.
  • 29. Social dilemma: Stag Hunt games • Difficult decision: individual outcomes (selfish) or group outcomes (cooperative). • Together hunt Stag (both are cooperative): Both have more meat. • Solely hunt Hare (both are selfish): Both have less meat. • One hunts Stag (cooperative), other hunts Hare (selfish): Only one hunts hare has meat. • Human evidence: Self-interested but considerate of others (cultures vary). • Idea: Belief-based guilt-aversion • One experiences loss if it lets other down. • Necessitates Theory of Mind: reasoning about other’s mind.
  • 30. Theory of Mind Agent with Guilt Aversion (ToMAGA) Update Theory of Mind • Predict whether other’s behaviour are cooperative or uncooperative • Updated the zero-order belief (what other will do) • Update the first-order belief (what other think about me) Guilt Aversion • Compute the expected material reward of other based on Theory of Mind • Compute the psychological rewards, i.e. “feeling guilty” • Reward shaping: subtract the expected loss of the other. Nguyen, Dung, et al. "Theory of Mind with Guilt Aversion Facilitates Cooperative Reinforcement Learning." Asian Conference on Machine Learning. PMLR, 2020.
  • 31. ToM architecture • Observer maintains memory of previous episodes of the agent. • It theorizes the “traits” of the agent. • Given the current episode, the observer tries to infer goal, intention, action, etc of the agent. 20/08/2021 31
  • 32. Making impact: Accelerating drug discovery, life science, and materials science Image credit: Nature
  • 33. Drug repurposing using relational reasoning over drug graphs 33 #REF: Do, Kien, et al. "Attentional Multilabel Learning over Graphs-A message passing approach." Machine Learning, 2019. We invented a scalable method to check if an existing drug binds to any set of targets of interest. Our method takes target relationships into account.
  • 34. Relational reasoning for drug- protein binding We designed a model for detailed interaction between drug and protein residues. The architecture is a new graph-in-graph. This results in more accurate and precise prediction of binding site and strength. Nguyen, T. M., Nguyen, T., Le, T. M., & Tran, T. (2021). “GEFA: Early Fusion Approach in Drug-Target Affinity Prediction”. IEEE/ACM Transactions on Computational Biology and Bioinformatics
  • 35. More flexible drug- disease response with Relational Dynamic Memory 20/08/2021 35 Controller Memory Graph Query Output Read Write
  • 36. Predicting in silico molecular interaction using relational multi-memory system 36 𝑴𝑴1 … 𝑴𝑴𝐶𝐶 𝒓𝒓𝑡𝑡 1 … 𝒓𝒓𝑡𝑡 𝐾𝐾 𝒓𝒓𝑡𝑡 ∗ Controller Write 𝒉𝒉𝑡𝑡 Memor y Graph Query Output Read heads #REF: Pham, Trang, Truyen Tran, and Svetha Venkatesh. "Relational dynamic memory networks." arXiv preprint arXiv:1808.04247(2018). Image credit: khanacademy
  • 37. Reinforcement learning + relational reasoning for chemical reaction prediction 37 #REF: Do, K., Tran, T., & Venkatesh, S. (2019, July). Graph transformation policy network for chemical reaction prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 750-760). ACM. The method takes graph morphism as the core. Reinforcement learning is employed to explore the graph morphism dynamics. . Image credit: britannica
  • 38. The road ahead Image source: pobble365
  • 39. Yet to be solved … • Common-sense reasoning • Reasoning as program synthesis with callable, reusable modules • Systematicity, aka systematic generalization • Knowledge-driven VQA, knowledge as semantic memory • Fluent visual dialog • Higher-order thought (e.g., self- awareness and consciousness) • A better prior for reasoning 20/08/2021 39
  • 40. Towards a dual tri-process theory • Stanovich, K. E. (2009). Distinguishing the reflective, algorithmic, and autonomous minds: Is it time for a tri-process theory. In two minds: Dual processes and beyond, 55-88. 20/08/2021 40 Photo credit: mumsgrapevine
  • 41. The reasoning team @ 20/08/2021 41 A/Prof Truyen Tran Dr Vuong Le Dr Thao Le Dr Hung Le Mr Long Dang Mr Hoang-Anh Pham Mr Kha Pham
  • 42. 20/08/2021 42 Thank you Truyen Tran @truyenoz truyentran.github.io truyen.tran@deakin.edu.au letdataspeak.blogspot.com goo.gl/3jJ1O0 linkedin.com/in/truyen-tran