SlideShare a Scribd company logo
1 of 64
Analysis and Realization of Multi-Direction Nonlinear
Piezoelectric Vibration Energy Harvester
July 2017
Reporter : Hsuan-Chen Lu
Adviser : Wei-Jiun Su
2018/1/22 1
Outline
• Introduction
• Formula Derivation
• Analysis of System Potential Energy
• Prototype and experiment set-up
• Experimental Verification and System Performance
• Conclusions and Future Work
2018/1/22 2
Introduction
2018/1/22 3
Wireless Sensor NodesIoT Energy Harvester
Introduction
• electromagnetic transducer • electrostatic transducer
2018/1/22 4
• cantilever piezoelectric energy
harvester
S
N
coil
Vibration Energy Harvester
Introduction
• Challenge 1: Narrow resonance
bandwidth
• Challenge 2: Single operating
direction
2018/1/22 5
Introduction
• To solve the problem of narrow resonance bandwidth
2018/1/22 6
Meandering PVEH[19] Passive-Self-Tunable PVEH[24]
Introduction
• To solve the problem of narrow resonance bandwidth
2018/1/22 7
PVEH array[27] Magnetic PVEH[28]
Introduction
• To solve the problem of single operating direction
2018/1/22 8
Dandelion-like multi-directional PVEH[33]Miniature Three-Axis PVEH[34] Spiral-shaped PVEH[36]
Introduction
• Tri-direction Dual-beam PVEH
2018/1/22 9
Auxiliary Beam
Main Beam
PZT
Spring-mass System
Magnet
X(1)
Y(2)
Z(3)
Formula
Derivation
2018/1/22 10
1. Piezoelectric cantilever beam model
2. Magnetic charge model
3. TDPVEH
4. Implement in Matlab
Piezoelectric Cantilever Beam Model
2018/1/22 11
22 2
2 2 2
(t)(x ,t) (x ,t) (x ,t) bI I rI I rI I
a I I
I
d wM w w
c m m
x t t dt
  
   
  
 
22 2
2 2 2
(t)(x ,t) (x ,t) (x ,t)
(x L ) bII II rII II rII II
a II II t II II
II
d wM w w
c m m M
x t t dt

  
     
  
Piezoelectric Cantilever Beam Model
• Part 1 (PZT composite beam) • Part 2 (Substrate beam only)
2018/1/22 12
𝑏 𝑝
𝑏𝑠
ℎ 𝑎
ℎ 𝑐
ℎ 𝑏
ℎ 𝑝
ℎ 𝑠
Y(2)
Z(3)
𝑏𝑠
ℎ 𝑠
Y(2)
Z(3)
1 1(x ,t)
b c
a b
h h
s p
I I s p
h h
M T b zdz T b zdz   
2
1
2
(x ,t)
s
s
h
s
II II s
h
M T b zdz

 
Piezoelectric Cantilever Beam Model
• For Substrate (Hooke’s Law)
• For PZT ceramic (Piezoelectric constitutive relation (d-form))
2018/1/22 13
1 1 31 3
1
S d Ep p
p
T
Y
 
2
1 1 31 3 1 32
(x ,t) (t)
(S d E ) ,Ep p p rk k
p
k p
w v
T Y S z
x h
 
       
2
1 1 1 2
(x ,t)s s s rk k
s
k
w
T Y S S z
x
 
  
 
Piezoelectric Cantilever Beam Model
2018/1/22 14
 
24 2
4 2 2
(t)(x ,t) (x ,t) (x ,t)
(t) (x ) (x ) brI I rI I rI I
I a I v I I I I
I
d ww w w
YI c m Q v H H L m
x t t dt
  
      
  
 
24 2
4 2 2
(t)(x ,t) (x ,t) (x ,t)
(x L ) brII II rII II rII II
II a II II t II II
II
d ww w w
YI c m m M
x t t dt

  
     
  
Piezoelectric Cantilever Beam Model
• Boundary conditions and continuous conditions
2018/1/22 15
(0) 0Ii 
(0)
0Ii
Ix



2
2
2
(L )
(L ) 0IIi II
II i t IIi II
II
d
YI M
dx

  
2
2
2
(L ) (L )
0IIi II IIi II
II i t
II II
d d
YI J
dx dx
 
 
(L ) (0)Ii I IIi 
(L ) (0)Ii I IIi
I II
d d
dx dx
 

2 2
2 2
(L ) (0)Ii I IIi
I II
I II
d d
YI YI
dx dx
 

3 3
3 3
(L ) (0)Ii I IIi
I II
I II
d d
YI YI
dx dx
 

Piezoelectric Cantilever Beam Model
2018/1/22 16
6 2 6 2 6 2
0
0
0
0
0
0
AB EF GH
A
B
E
M M M
F
G
H
  
   
   
   
   
      
   
   
   
   
Piezoelectric Cantilever Beam Model
2018/1/22 17
 
24 2
4 2 2
(t)(x ,t) (x ,t) (x ,t)
(t) (x ) (x ) brI I rI I rI I
I a I v I I I I
I
d ww w w
YI c m Q v H H L m
x t t dt
  
      
  
 
24 2
4 2 2
(t)(x ,t) (x ,t) (x ,t)
(x L ) brII II rII II rII II
II a II II t II II
II
d ww w w
YI c m m M
x t t dt

  
     
  
2
(t) 2 (t) (t) (t) F (t)i i i i i i i iv         && &
1
(x ,t) (x ) (t)rI I Ii I i
i
w 


 
1
(x ,t) (x ) (t)rII II IIi II i
i
w 


 
Piezoelectric Cantilever Beam Model
• Piezoelectric constitutive relation (e-form)
• Gauss’s Law and Ohm’s Law
2018/1/22 18
2
3 31 332
(x ,t) (t)
(x ,t) SIi I
I p pc
I p
w v
D d Y h
x h


  

  (t)
(t)
l
d v
D ndA i
dt R
  
v v 1
(t) (t) (t)p i i
l
C v v
R
   &&
Piezoelectric Cantilever Beam Model
• Electromechanical model
2018/1/22 19
2
(t) 2 (t) (t) (t) F (t)
1
(t) (t) (t)
i i i i i i i i
p i i
l
v
C v v
R
         
   
&& &
&&
Magnetic Charge Model
• Charge model
2018/1/22 20
ˆi iM n  
   
1/22 2 2
d x X y Y         
 
1 2
4 o
u
d
 


1 1 1 1 1 1
1 2
, , , ,
0 0 0 0 0 0
( 1) (p ,q ,s ,r)
4
i j k l m n
x y z x y z ij kl mn
i j k l m no
M M
F 

    
     
 
2 2 2 2
2 22 2
a b A B
a b A B
U udYdXdydx
   
    
F U 
r
Introduction of TD-VEH
2
(t) 2 (t) (t) (t) (t)
1
(t) (t) (t)
i i i i i i i i
p i i
l
v F
C v v
R
         
   
&& &
&&
1 1 1 1 1 1
1 2
, , , ,
0 0 0 0 0 0
( 1) (p ,q ,s ,r)
4
i j k l m n
x y z x y z ij kl mn
i j k l m no
M M
F 

    
     
 
2018/1/22 21
Piezoelectric Cantilevered
Beam Model
Charge Model
Introduction of TD-VEH
2
(t) 2 (t) (t) (t) (t) (t)
1(t) (t) (t)
(t) (t) W (t) (t) (t)
m m m m m m m m sz mb
p m m
l
s s s s s s sx sb
v F F
C v v
R
M W C W K F F
           
   
   
&& &
&&
&& &
2018/1/22 22
• Beam-Spring
Introduction of TD-VEH
2
2
(t) 2 (t) (t) (t) (t) (t)
1(t) (t) (t)
(t) 2 (t) (t) (t) (t)
m m m m m m m m az mb
p m m
l
a a a a a a a ay ab
v F F
C v v
R
F F
  
  
         
   
       
&& &
&&
&& &
2018/1/22 23
• Beam-Beam
Tri-direction Dual-beam VEH
2018/1/22 24
2
2
(t) 2 (t) (t) ( (t) (t)) (t) (t)
(t) 2 (t) (t) (t) (t)
(t) (t) W (t) (t) (t)
1(t) (t) (t)
m m m m m m m az sz m mb
a a a a a a a ay ab
s s s s s s sx sb
p m m
l
F F v F
F F
M W C W K F F
C v v
R
  
  
          
       
   
   
&& &
&& &
&& &
&&
(Main Beam)
(Auxiliary Beam)
(Spring-mass System)
(Circuit)
Implement in Matlab
• Architecture
2018/1/22 25
main.m
Mainbeam.m
Auxiliarybeam.m
Springmass.m
Magforce_cube.m
Response.m
2
2
(t) 2 (t) (t) ( (t) (t)) (t) (t)
(t) 2 (t) (t) (t) (t)
(t) (t) W (t) (t) (t)
1(t) (t) (t)
m m m m m m m az sz m mb
a a a a a a a ay ab
s s s s s s sx sb
p m m
l
F F v F
F F
M W C W K F F
C v v
R
  
  
          
       
   
   
&& &
&& &
&& &
&&
Analysis of
System Potential
Energy
2018/1/22 26
1. Beam-spring
• Straight configuration
• Dislocated configuration
2. Beam-beam
• Straight configuration
• Dislocated configuration
Analysis of System Potential Energy
• Beam-Spring
𝑊𝑡𝑜𝑡𝑎𝑙=
2018/1/22 27
𝑊𝑠𝑚 𝑊 𝑚𝑏 𝑊𝑚𝑎𝑔+ +
Analysis of System Potential Energy
• Beam-Spring
𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑠𝑚 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔
2018/1/22 28
X(1)
Y(2)
Z(3)
Analysis of System Potential Energy
• Beam-Beam
𝑊𝑡𝑜𝑡𝑎𝑙=
2018/1/22 29
𝑊𝑎𝑏 𝑊 𝑚𝑏 𝑊𝑚𝑎𝑔+ +
Analysis of System Potential Energy
• Beam-Beam
𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑏 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔
2018/1/22 30
X(1)
Y(2)
Z(3)
8mm7mm6mm
Analysis of System Potential Energy
• Beam-Beam
𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑏 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔
2018/1/22 31
X(1)
Y(2)
Z(3)
6mm
1.5mm
1.5mm
Prototype and
Experiment Set-
up
2018/1/22 32
1. Prototype design
2. Experiment set-up
Prototype Design
• Main beam • Auxiliary beam
2018/1/22 33
• Spring mass
Prototype Design
• Z(3) excitation • Y(2) excitation
2018/1/22 34
• X(1) excitation
Experiment Set-up
2018/1/22 35
Experimental
Verification and
Result
2018/1/22 36
1. Linear PVEH
2. Beam-spring
• Z(3) excitation
• X(1) excitation
3. Beam-beam
• Z(3) excitation
• Y(2) excitation
4. Tri-direction Dual-beam PVEH
• Experimental verification
• Performance comparison
Linear PVEH
• Linear PVEH
2018/1/22 37
0.0145 
33 / 2710T
o  20pC nF
Linear PVEH
• Linear PVEH(0.2g)
2018/1/22 38
1 1
31 230 ( )d pm V pC N 
   
Linear PVEH
• Linear PVEH(0.2g)
2018/1/22 39
Beam-spring (Z(3) excitation)
• Straight configuration • Dislocated configuration(Y bias)
2018/1/22 40
• Dislocated configuration(Z bias)
Beam-spring Straight configuration
(Z(3) excitation)
• 𝑑 𝑠1 = 5𝑚𝑚 • 𝑑 𝑠1 = 6𝑚𝑚
2018/1/22 41
• 𝑑 𝑠1 = 7𝑚𝑚
Beam-spring Dislocated configuration (𝑑 𝑠3= 1.5𝑚𝑚)
(Z(3) excitation)
• 𝑑 𝑠1 = 5𝑚𝑚 • 𝑑 𝑠1 = 6𝑚𝑚
2018/1/22 42
• 𝑑 𝑠1 = 7𝑚𝑚
Beam-spring (X(1) excitation)
• Straight configuration • Dislocated configuration(Z bias)
2018/1/22 43
Beam-spring Straight configuration
(X(1) excitation)
• 𝑑 𝑠1 = 7𝑚𝑚 • 𝑑 𝑠1 = 8𝑚𝑚
2018/1/22 44
• 𝑑 𝑠1 = 9𝑚𝑚
Beam-spring Dislocated configuration (𝑑 𝑠3= 1.5𝑚𝑚)
(X(1) excitation)
• 𝑑 𝑠1 = 7𝑚𝑚 • 𝑑 𝑠1 = 8𝑚𝑚
2018/1/22 45
• 𝑑 𝑠1 = 9𝑚𝑚
Beam-beam (Z(3) excitation)
• Straight configuration • Dislocated configuration(Y bias)
2018/1/22 46
Beam-beam (Z(3) excitation)
• Dislocated configuration(Z bias) • Dislocated configuration(Z bias)
2018/1/22 47
Beam-beam Simulation of Tip Displacement
(Z(3) excitation)
• Straight • Dislocated (𝑑 𝑎3= 1.5𝑚𝑚)
2018/1/22 48
• Dislocated (𝑑 𝑎3= 3𝑚𝑚)
Beam-beam Straight configuration
(Z(3) excitation)
• 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚
2018/1/22 49
• 𝑑 𝑎1 = 7𝑚𝑚
Beam-beam Dislocated configuration (𝑑 𝑎3= 1.5𝑚𝑚)
(Z(3) excitation)
• 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚
2018/1/22 50
• 𝑑 𝑎1 = 7𝑚𝑚
Beam-beam Dislocated configuration (𝑑 𝑎3= 3𝑚𝑚)
(Z(3) excitation)
• 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚
2018/1/22 51
• 𝑑 𝑎1 = 7𝑚𝑚
Beam-beam (Y(2) excitation)
• Straight configuration • Dislocated configuration(Z bias)
2018/1/22 52
Beam-beam Straight configuration
(Y(2) excitation)
• 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚
2018/1/22 53
• 𝑑 𝑎1 = 7𝑚𝑚
Beam-beam Dislocated configuration (𝑑 𝑎3= 1.5𝑚𝑚)
(Y(2) excitation)
• 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚
2018/1/22 54
• 𝑑 𝑎1 = 7𝑚𝑚
Tri-direction Dual-beam PVEH
• Straight configuration • Dislocated configuration
2018/1/22 55
TDPVEH Straight configuration
• Z(3) excitation • Y(2) excitation
2018/1/22 56
• X(1) excitation
TDPVEH Dislocated configuration
• Z(3) excitation • Y(2) excitation
2018/1/22 57
• X(1) excitation
Performance comparison (Z(3) excitation)
• Conventional • Straight
2018/1/22 58
• Dislocated
Performance comparison (Y(2) excitation)
• Straight configuration • Dislocated configuration
2018/1/22 59
Performance comparison (X(1) excitation)
• Straight configuration • Dislocated configuration
2018/1/22 60
Performance comparison
• Peak power and bandwidth graph
2018/1/22 61
Conclusion and Future Work
Conclusion:
• Experiments supported theory model
• Frequency response changed with different configurations
• Both two configurations improved their adaptability
2018/1/22 62
Conclusion and Future Work
Future Work :
• Optimization of the system
• Applications for real world
• Design of Interface circuit
• Energy harvesting from auxiliary beam
2018/1/22 63
2018/1/22 64
QAQ?
(Question And Questions?)

More Related Content

Similar to Multi-direction Nonlinear PZT Energy Harvesters

Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...IRJET Journal
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositeYILE HU
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfkeansheng
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletScientific Review SR
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...BRNSS Publication Hub
 
Analysis & Design of CMOS MEMS Gyroscope
Analysis & Design of CMOS MEMS GyroscopeAnalysis & Design of CMOS MEMS Gyroscope
Analysis & Design of CMOS MEMS GyroscopeJames D.B. Wang, PhD
 
The response of a rectangular micro-plate to me-chanical shocks considering m...
The response of a rectangular micro-plate to me-chanical shocks considering m...The response of a rectangular micro-plate to me-chanical shocks considering m...
The response of a rectangular micro-plate to me-chanical shocks considering m...Kaveh Rashvand
 
Photophysics of dendrimers
Photophysics of dendrimersPhotophysics of dendrimers
Photophysics of dendrimersGiorgio Colombi
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Simen Li
 
To develop algorithm to create node at desired location on beam using absorber
To develop algorithm to create node at desired location on beam using absorberTo develop algorithm to create node at desired location on beam using absorber
To develop algorithm to create node at desired location on beam using absorberIRJET Journal
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntuaIEEE NTUA SB
 

Similar to Multi-direction Nonlinear PZT Energy Harvesters (20)

Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
Peridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced compositePeridynamic simulation of delamination propagation in fiber-reinforced composite
Peridynamic simulation of delamination propagation in fiber-reinforced composite
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
Smoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdfSmoothed Particle Galerkin Method Formulation.pdf
Smoothed Particle Galerkin Method Formulation.pdf
 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
 
The Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar WaveletThe Study of the Wiener Processes Base on Haar Wavelet
The Study of the Wiener Processes Base on Haar Wavelet
 
K044046872
K044046872K044046872
K044046872
 
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
On Analytical Approach to Prognosis of Manufacturing of Voltage Divider Biasi...
 
Analysis & Design of CMOS MEMS Gyroscope
Analysis & Design of CMOS MEMS GyroscopeAnalysis & Design of CMOS MEMS Gyroscope
Analysis & Design of CMOS MEMS Gyroscope
 
The response of a rectangular micro-plate to me-chanical shocks considering m...
The response of a rectangular micro-plate to me-chanical shocks considering m...The response of a rectangular micro-plate to me-chanical shocks considering m...
The response of a rectangular micro-plate to me-chanical shocks considering m...
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
 
Seminar iitkgp
Seminar iitkgpSeminar iitkgp
Seminar iitkgp
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf04_AJMS_177_19_RA.pdf
04_AJMS_177_19_RA.pdf
 
Quantum gravity
Quantum gravityQuantum gravity
Quantum gravity
 
Photophysics of dendrimers
Photophysics of dendrimersPhotophysics of dendrimers
Photophysics of dendrimers
 
Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1] Multiband Transceivers - [Chapter 1]
Multiband Transceivers - [Chapter 1]
 
To develop algorithm to create node at desired location on beam using absorber
To develop algorithm to create node at desired location on beam using absorberTo develop algorithm to create node at desired location on beam using absorber
To develop algorithm to create node at desired location on beam using absorber
 
Passive network-redesign-ntua
Passive network-redesign-ntuaPassive network-redesign-ntua
Passive network-redesign-ntua
 

Recently uploaded

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxk795866
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 

Recently uploaded (20)

Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Introduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptxIntroduction-To-Agricultural-Surveillance-Rover.pptx
Introduction-To-Agricultural-Surveillance-Rover.pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
POWER SYSTEMS-1 Complete notes examples
POWER SYSTEMS-1 Complete notes  examplesPOWER SYSTEMS-1 Complete notes  examples
POWER SYSTEMS-1 Complete notes examples
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 

Multi-direction Nonlinear PZT Energy Harvesters

  • 1. Analysis and Realization of Multi-Direction Nonlinear Piezoelectric Vibration Energy Harvester July 2017 Reporter : Hsuan-Chen Lu Adviser : Wei-Jiun Su 2018/1/22 1
  • 2. Outline • Introduction • Formula Derivation • Analysis of System Potential Energy • Prototype and experiment set-up • Experimental Verification and System Performance • Conclusions and Future Work 2018/1/22 2
  • 3. Introduction 2018/1/22 3 Wireless Sensor NodesIoT Energy Harvester
  • 4. Introduction • electromagnetic transducer • electrostatic transducer 2018/1/22 4 • cantilever piezoelectric energy harvester S N coil Vibration Energy Harvester
  • 5. Introduction • Challenge 1: Narrow resonance bandwidth • Challenge 2: Single operating direction 2018/1/22 5
  • 6. Introduction • To solve the problem of narrow resonance bandwidth 2018/1/22 6 Meandering PVEH[19] Passive-Self-Tunable PVEH[24]
  • 7. Introduction • To solve the problem of narrow resonance bandwidth 2018/1/22 7 PVEH array[27] Magnetic PVEH[28]
  • 8. Introduction • To solve the problem of single operating direction 2018/1/22 8 Dandelion-like multi-directional PVEH[33]Miniature Three-Axis PVEH[34] Spiral-shaped PVEH[36]
  • 9. Introduction • Tri-direction Dual-beam PVEH 2018/1/22 9 Auxiliary Beam Main Beam PZT Spring-mass System Magnet X(1) Y(2) Z(3)
  • 10. Formula Derivation 2018/1/22 10 1. Piezoelectric cantilever beam model 2. Magnetic charge model 3. TDPVEH 4. Implement in Matlab
  • 11. Piezoelectric Cantilever Beam Model 2018/1/22 11 22 2 2 2 2 (t)(x ,t) (x ,t) (x ,t) bI I rI I rI I a I I I d wM w w c m m x t t dt             22 2 2 2 2 (t)(x ,t) (x ,t) (x ,t) (x L ) bII II rII II rII II a II II t II II II d wM w w c m m M x t t dt             
  • 12. Piezoelectric Cantilever Beam Model • Part 1 (PZT composite beam) • Part 2 (Substrate beam only) 2018/1/22 12 𝑏 𝑝 𝑏𝑠 ℎ 𝑎 ℎ 𝑐 ℎ 𝑏 ℎ 𝑝 ℎ 𝑠 Y(2) Z(3) 𝑏𝑠 ℎ 𝑠 Y(2) Z(3) 1 1(x ,t) b c a b h h s p I I s p h h M T b zdz T b zdz    2 1 2 (x ,t) s s h s II II s h M T b zdz   
  • 13. Piezoelectric Cantilever Beam Model • For Substrate (Hooke’s Law) • For PZT ceramic (Piezoelectric constitutive relation (d-form)) 2018/1/22 13 1 1 31 3 1 S d Ep p p T Y   2 1 1 31 3 1 32 (x ,t) (t) (S d E ) ,Ep p p rk k p k p w v T Y S z x h           2 1 1 1 2 (x ,t)s s s rk k s k w T Y S S z x       
  • 14. Piezoelectric Cantilever Beam Model 2018/1/22 14   24 2 4 2 2 (t)(x ,t) (x ,t) (x ,t) (t) (x ) (x ) brI I rI I rI I I a I v I I I I I d ww w w YI c m Q v H H L m x t t dt                24 2 4 2 2 (t)(x ,t) (x ,t) (x ,t) (x L ) brII II rII II rII II II a II II t II II II d ww w w YI c m m M x t t dt             
  • 15. Piezoelectric Cantilever Beam Model • Boundary conditions and continuous conditions 2018/1/22 15 (0) 0Ii  (0) 0Ii Ix    2 2 2 (L ) (L ) 0IIi II II i t IIi II II d YI M dx     2 2 2 (L ) (L ) 0IIi II IIi II II i t II II d d YI J dx dx     (L ) (0)Ii I IIi  (L ) (0)Ii I IIi I II d d dx dx    2 2 2 2 (L ) (0)Ii I IIi I II I II d d YI YI dx dx    3 3 3 3 (L ) (0)Ii I IIi I II I II d d YI YI dx dx   
  • 16. Piezoelectric Cantilever Beam Model 2018/1/22 16 6 2 6 2 6 2 0 0 0 0 0 0 AB EF GH A B E M M M F G H                                          
  • 17. Piezoelectric Cantilever Beam Model 2018/1/22 17   24 2 4 2 2 (t)(x ,t) (x ,t) (x ,t) (t) (x ) (x ) brI I rI I rI I I a I v I I I I I d ww w w YI c m Q v H H L m x t t dt                24 2 4 2 2 (t)(x ,t) (x ,t) (x ,t) (x L ) brII II rII II rII II II a II II t II II II d ww w w YI c m m M x t t dt              2 (t) 2 (t) (t) (t) F (t)i i i i i i i iv         && & 1 (x ,t) (x ) (t)rI I Ii I i i w      1 (x ,t) (x ) (t)rII II IIi II i i w     
  • 18. Piezoelectric Cantilever Beam Model • Piezoelectric constitutive relation (e-form) • Gauss’s Law and Ohm’s Law 2018/1/22 18 2 3 31 332 (x ,t) (t) (x ,t) SIi I I p pc I p w v D d Y h x h         (t) (t) l d v D ndA i dt R    v v 1 (t) (t) (t)p i i l C v v R    &&
  • 19. Piezoelectric Cantilever Beam Model • Electromechanical model 2018/1/22 19 2 (t) 2 (t) (t) (t) F (t) 1 (t) (t) (t) i i i i i i i i p i i l v C v v R               && & &&
  • 20. Magnetic Charge Model • Charge model 2018/1/22 20 ˆi iM n       1/22 2 2 d x X y Y            1 2 4 o u d     1 1 1 1 1 1 1 2 , , , , 0 0 0 0 0 0 ( 1) (p ,q ,s ,r) 4 i j k l m n x y z x y z ij kl mn i j k l m no M M F                2 2 2 2 2 22 2 a b A B a b A B U udYdXdydx          F U  r
  • 21. Introduction of TD-VEH 2 (t) 2 (t) (t) (t) (t) 1 (t) (t) (t) i i i i i i i i p i i l v F C v v R               && & && 1 1 1 1 1 1 1 2 , , , , 0 0 0 0 0 0 ( 1) (p ,q ,s ,r) 4 i j k l m n x y z x y z ij kl mn i j k l m no M M F                2018/1/22 21 Piezoelectric Cantilevered Beam Model Charge Model
  • 22. Introduction of TD-VEH 2 (t) 2 (t) (t) (t) (t) (t) 1(t) (t) (t) (t) (t) W (t) (t) (t) m m m m m m m m sz mb p m m l s s s s s s sx sb v F F C v v R M W C W K F F                     && & && && & 2018/1/22 22 • Beam-Spring
  • 23. Introduction of TD-VEH 2 2 (t) 2 (t) (t) (t) (t) (t) 1(t) (t) (t) (t) 2 (t) (t) (t) (t) m m m m m m m m az mb p m m l a a a a a a a ay ab v F F C v v R F F                             && & && && & 2018/1/22 23 • Beam-Beam
  • 24. Tri-direction Dual-beam VEH 2018/1/22 24 2 2 (t) 2 (t) (t) ( (t) (t)) (t) (t) (t) 2 (t) (t) (t) (t) (t) (t) W (t) (t) (t) 1(t) (t) (t) m m m m m m m az sz m mb a a a a a a a ay ab s s s s s s sx sb p m m l F F v F F F M W C W K F F C v v R                                  && & && & && & && (Main Beam) (Auxiliary Beam) (Spring-mass System) (Circuit)
  • 25. Implement in Matlab • Architecture 2018/1/22 25 main.m Mainbeam.m Auxiliarybeam.m Springmass.m Magforce_cube.m Response.m 2 2 (t) 2 (t) (t) ( (t) (t)) (t) (t) (t) 2 (t) (t) (t) (t) (t) (t) W (t) (t) (t) 1(t) (t) (t) m m m m m m m az sz m mb a a a a a a a ay ab s s s s s s sx sb p m m l F F v F F F M W C W K F F C v v R                                  && & && & && & &&
  • 26. Analysis of System Potential Energy 2018/1/22 26 1. Beam-spring • Straight configuration • Dislocated configuration 2. Beam-beam • Straight configuration • Dislocated configuration
  • 27. Analysis of System Potential Energy • Beam-Spring 𝑊𝑡𝑜𝑡𝑎𝑙= 2018/1/22 27 𝑊𝑠𝑚 𝑊 𝑚𝑏 𝑊𝑚𝑎𝑔+ +
  • 28. Analysis of System Potential Energy • Beam-Spring 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑠𝑚 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔 2018/1/22 28 X(1) Y(2) Z(3)
  • 29. Analysis of System Potential Energy • Beam-Beam 𝑊𝑡𝑜𝑡𝑎𝑙= 2018/1/22 29 𝑊𝑎𝑏 𝑊 𝑚𝑏 𝑊𝑚𝑎𝑔+ +
  • 30. Analysis of System Potential Energy • Beam-Beam 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑏 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔 2018/1/22 30 X(1) Y(2) Z(3) 8mm7mm6mm
  • 31. Analysis of System Potential Energy • Beam-Beam 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑎𝑏 + 𝑊 𝑚𝑏 + 𝑊𝑚𝑎𝑔 2018/1/22 31 X(1) Y(2) Z(3) 6mm 1.5mm 1.5mm
  • 32. Prototype and Experiment Set- up 2018/1/22 32 1. Prototype design 2. Experiment set-up
  • 33. Prototype Design • Main beam • Auxiliary beam 2018/1/22 33 • Spring mass
  • 34. Prototype Design • Z(3) excitation • Y(2) excitation 2018/1/22 34 • X(1) excitation
  • 36. Experimental Verification and Result 2018/1/22 36 1. Linear PVEH 2. Beam-spring • Z(3) excitation • X(1) excitation 3. Beam-beam • Z(3) excitation • Y(2) excitation 4. Tri-direction Dual-beam PVEH • Experimental verification • Performance comparison
  • 37. Linear PVEH • Linear PVEH 2018/1/22 37 0.0145  33 / 2710T o  20pC nF
  • 38. Linear PVEH • Linear PVEH(0.2g) 2018/1/22 38 1 1 31 230 ( )d pm V pC N     
  • 39. Linear PVEH • Linear PVEH(0.2g) 2018/1/22 39
  • 40. Beam-spring (Z(3) excitation) • Straight configuration • Dislocated configuration(Y bias) 2018/1/22 40 • Dislocated configuration(Z bias)
  • 41. Beam-spring Straight configuration (Z(3) excitation) • 𝑑 𝑠1 = 5𝑚𝑚 • 𝑑 𝑠1 = 6𝑚𝑚 2018/1/22 41 • 𝑑 𝑠1 = 7𝑚𝑚
  • 42. Beam-spring Dislocated configuration (𝑑 𝑠3= 1.5𝑚𝑚) (Z(3) excitation) • 𝑑 𝑠1 = 5𝑚𝑚 • 𝑑 𝑠1 = 6𝑚𝑚 2018/1/22 42 • 𝑑 𝑠1 = 7𝑚𝑚
  • 43. Beam-spring (X(1) excitation) • Straight configuration • Dislocated configuration(Z bias) 2018/1/22 43
  • 44. Beam-spring Straight configuration (X(1) excitation) • 𝑑 𝑠1 = 7𝑚𝑚 • 𝑑 𝑠1 = 8𝑚𝑚 2018/1/22 44 • 𝑑 𝑠1 = 9𝑚𝑚
  • 45. Beam-spring Dislocated configuration (𝑑 𝑠3= 1.5𝑚𝑚) (X(1) excitation) • 𝑑 𝑠1 = 7𝑚𝑚 • 𝑑 𝑠1 = 8𝑚𝑚 2018/1/22 45 • 𝑑 𝑠1 = 9𝑚𝑚
  • 46. Beam-beam (Z(3) excitation) • Straight configuration • Dislocated configuration(Y bias) 2018/1/22 46
  • 47. Beam-beam (Z(3) excitation) • Dislocated configuration(Z bias) • Dislocated configuration(Z bias) 2018/1/22 47
  • 48. Beam-beam Simulation of Tip Displacement (Z(3) excitation) • Straight • Dislocated (𝑑 𝑎3= 1.5𝑚𝑚) 2018/1/22 48 • Dislocated (𝑑 𝑎3= 3𝑚𝑚)
  • 49. Beam-beam Straight configuration (Z(3) excitation) • 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚 2018/1/22 49 • 𝑑 𝑎1 = 7𝑚𝑚
  • 50. Beam-beam Dislocated configuration (𝑑 𝑎3= 1.5𝑚𝑚) (Z(3) excitation) • 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚 2018/1/22 50 • 𝑑 𝑎1 = 7𝑚𝑚
  • 51. Beam-beam Dislocated configuration (𝑑 𝑎3= 3𝑚𝑚) (Z(3) excitation) • 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚 2018/1/22 51 • 𝑑 𝑎1 = 7𝑚𝑚
  • 52. Beam-beam (Y(2) excitation) • Straight configuration • Dislocated configuration(Z bias) 2018/1/22 52
  • 53. Beam-beam Straight configuration (Y(2) excitation) • 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚 2018/1/22 53 • 𝑑 𝑎1 = 7𝑚𝑚
  • 54. Beam-beam Dislocated configuration (𝑑 𝑎3= 1.5𝑚𝑚) (Y(2) excitation) • 𝑑 𝑎1 = 5𝑚𝑚 • 𝑑 𝑎1 = 6𝑚𝑚 2018/1/22 54 • 𝑑 𝑎1 = 7𝑚𝑚
  • 55. Tri-direction Dual-beam PVEH • Straight configuration • Dislocated configuration 2018/1/22 55
  • 56. TDPVEH Straight configuration • Z(3) excitation • Y(2) excitation 2018/1/22 56 • X(1) excitation
  • 57. TDPVEH Dislocated configuration • Z(3) excitation • Y(2) excitation 2018/1/22 57 • X(1) excitation
  • 58. Performance comparison (Z(3) excitation) • Conventional • Straight 2018/1/22 58 • Dislocated
  • 59. Performance comparison (Y(2) excitation) • Straight configuration • Dislocated configuration 2018/1/22 59
  • 60. Performance comparison (X(1) excitation) • Straight configuration • Dislocated configuration 2018/1/22 60
  • 61. Performance comparison • Peak power and bandwidth graph 2018/1/22 61
  • 62. Conclusion and Future Work Conclusion: • Experiments supported theory model • Frequency response changed with different configurations • Both two configurations improved their adaptability 2018/1/22 62
  • 63. Conclusion and Future Work Future Work : • Optimization of the system • Applications for real world • Design of Interface circuit • Energy harvesting from auxiliary beam 2018/1/22 63

Editor's Notes

  1. 各位口委老師大家好,我是台大機械所動態系統設計實驗室研究生盧玄真,指導教授是蘇偉儁教授,我的論文題目是多方向非線性壓電能量採集器的分析與實現。
  2. 接下來這一頁是我的outline,首先一開始我先對本次研究做個簡短的介紹 ,然後再進行公視模型推導, 接著,為了瞭解系統的非線性勁度,在下個部分我會分析討論系統的位能。 在以上理論基礎的支持下,我做了一系列的理論驗證和實驗。 所以接下來我會介紹我的採集器原型設計和實驗系統配置。 然後緊接著展是驗證結果和系統公率頻寬表現。最後就是我的結論以及未來展望
  3. 這個研究題目主要來自學術界或商業界都想實現物聯網,而構成物聯網的基本單元是無線感測器節點, 但目前最大的問題是獨立電源,過去提供獨立電源的方案都是使用電池, 但電池容易有續航力和更換維護成本高的問題,所已有許多人轉向提出對周圍環境採集能量的想法, 也就是能量採集的概念。目前主要能夠採集的環境能量主要有,太陽能、熱能、RF以及振動能。 其中振動能因為廣泛存在環境中所以受到許多研究人員的青睞。
  4. 振動能量採集目前較為主流的有以下幾種,有電磁式,靜電式以及壓電式, 其中壓電式又因為容易為機電化以及有高力電耦合的特性廣受研究。 雖然壓電能量採集有眾多的優點,但他在實現的路上仍然存在一些挑戰需要我們去克服。
  5. 首先傳統的壓電懸臂梁會有共振頻寬狹窄的問題,這個問題會造成外加激振的頻率偏離系統自然頻率的時候,系統輸出功率大幅下降,如圖。 第二個是傳統壓電懸臂梁受限於幾何形狀,因此只有一個激振方向能採集振動能。 所以當系統受到如跑步、划船或者單車運動這些動態行為比較複雜的激振 就會錯失其他方向採集振動能的機會。為了解決這些問題過去已經有許多學者投入這種多適性的研究。 所以接下來會簡單回顧一下這些文獻。
  6. 首先為了解決共振頻寬狹窄的問題,過去已經有很多的人提出一些解決方法, 而這些方法主要可以分成多模態法、頻率協調、陣列式以及非線性法等等四種方法。 多模態法主要是利用多個自由度的梁讓系統前幾個共振頻率拉近,以達到寬頻的目的,有人提出一種彎曲型的能量採集器,從結果可以看出第一模態和第二模態共振頻率的拉近確實可以讓系統頻寬增加。 在頻率協調則是讓系統由主動或被動的方式改變運作頻段,進而讓系統工作頻寬增加,例如幾個韓國學者提出的一種,自我被動調頻的能量採集器,藉由兩邊不同長短的懸臂梁在振動過程造成的不相等平行分力,因而產生靜合力讓卡榫移動改變兩邊懸臂樑長度
  7. 在陣列式方面,主要就是利用好幾個自然頻率不同的獨立壓電振子,借由適當的電路讓系統頻率響應達到擴增頻寬甚至增幅的效果, 最後一種就是利用非線性振子來增加頻寬,為了讓系統變成非線性過去有許多的做法,而其中一種最常被使用的就是利用磁力來改變系統的勁度。
  8. 為了解決採集器工作方向單一的問題,過去也有許多學者提出一些解決的方案, 例如主要利用一個倒單擺型的質量塊接合在十字狀的壓電樑上藉由質量塊受不同方向加速度使連接處產生彎矩進而讓壓電懸臂梁變形產生電壓,達到多方向採集的功用。 利用多方向排列壓電懸臂梁的一種蒲公英型採集器。 此外,重慶大學的學者也提出一種螺旋形的採集器,藉由螺旋形樑的設計讓系統受任一方向的激振都容易發生形變的特性以達到多方向採集的目的。 雖然過去已經有許多學者分別針對擴增頻寬以及擴增採集方向進行深入的研究,但同時擴增頻寬以及擴增採集方向的研究較少有人提出。
  9. 因此本研究提出一種多方向非線性壓電採集器,利用能採集Z(3)方向的傳統壓電懸臂梁內部外加一組彈簧質量塊系統來採集X(1)方向激振,並在另一側加上輔助樑用以採集Y(2)方向激振。最終用方型磁鐵磁斥力將每個振子耦合。致使主樑壓電陶瓷產生電壓。這個系統除了能達到多方向的採集外,磁鐵間的磁斥力同時會讓系統勁度由線性變成非線性以達到擴增頻寬的結果。
  10. 接下來,就要開始來做公式推導,一開始我會先推導一下壓電懸臂梁模型。接著再敘述我所使用的方形磁鐵磁力模型。最後利用這兩種模型耦合出三向雙梁採集器,並稍微解釋一下我是如何在Matlab中實現。
  11. 首先因為我研究中所使用的模型是只有在根部部份貼合壓電陶瓷的懸臂梁。 所以我們可以看到這個側視圖,在分析上面,要當成分段問題, 第一段是壓電陶瓷和基樑的複合樑,而第二段就只有單純的基樑。 然後用強迫振動方程式可以把這兩部份分別表示如下。 下一個步驟,為了把斷面彎矩這一項也表示成撓度。我們必須觀察懸臂樑這兩段的斷面剖視圖。
  12. 從這兩張圖可以看到,對於複合樑來講中性軸由於材料的關係,並不在整個幾合形狀的中心。 但是基樑因為材料均值就會在幾合形狀的中心。 因此可以利用不同材料所受的應力跟據跟據中性軸位置去表示斷面彎矩。 接下來要把公式裡的應力轉換成應變
  13. 對於一般材料而言,應力應變得關係用虎克定律就可以描述, 但壓電陶瓷因為有力電耦合的關係,所以這邊要引入壓電組成律d-form, 然後把他移向就可以得到應力跟應變還有電場的耦合關係, 把這些方程式一一代回前面的斷面彎矩跟強迫振動方程式就可以把強迫振動方程式用撓度表示
  14. 除此之外,因為整個樑看來是非均質材料, 所以除了邊界條件以外,還要加上連續條件才夠解出所有模態函數的未知數, 首先固定邊界有撓度和撓度的微分一次等於零, 而在自由端,則是淨剪力和靜扭矩等於零 連續條件則是,這這個點上面的撓度,撓度微分一次,剪力,彎矩都要連續 將這些條件帶入模態函數就可以列出方程式矩陣。
  15. 為了讓方程式有非零解, 由行列式是等於零可以求出特徵值,進而得到共振頻 同時也能解出模態函數的係數
  16. 有了上面這些東西之後,只要把分離變數的假設帶回 兩條強迫振動方程式, 並將兩條強迫振動方程式合併並且整理就可以得到壓電的力學方程式。
  17. 推導完力學的部分,接下來是壓電懸臂梁電學的部份, 電路的部份只有簡單的外加一個負載組抗, 然後把等校電路圖和第一段複合樑的剖面圖表示出來就會像這兩張圖。 從等校電路圖,就可以看出來,要計算電流就要利用壓電組成律的另一條把電位移表示出來, 在利用高絲定律就可以算出壓電陶瓷總電流,搭配歐姆定律就可以列出壓電懸臂樑的電學方程式。 最後把壓電懸臂樑的電學和力學方程式合併起來就是壓電耦合的方程式
  18. 有了壓電懸臂梁模型以後,接下來我要簡單的介紹一下我用的磁力模型, 為了要計算這兩個磁鐵在某個相對位置下的相互作用力, 首先跟據Charge model要假設磁鐵正對的面上有等效表面磁荷密度, 把兩個磁力面上的微小面積距離表示成這樣, 然後就可以利用這些資訊把單位面積的磁力位能寫出來, 在分別對兩個面做基分就可以得到這兩個磁鐵間的總位能。 有了總位能之後只要將這個總位能對三個方向取梯度就可以把磁力表示出來, 經過計算,磁力可以表示成一個256項得多項式解析解。
  19. 所以,推導完壓電懸臂梁和模型和磁力模型以後,我們下一步就是要利用這些公式將每個振子藕荷起來。
  20. 首先,先來看彈質樑的部分,這一條是之前推導的壓電耦合模型。 為了推導出彈質樑系統,一開始要引入彈簧質量塊的強迫振動方程式, 再用磁力把兩個系統偶合起來就變成彈質樑系統了
  21. 雙樑系統的步驟也一樣,先列出壓電懸臂梁模型 再引入輔助樑強迫振動方程式。 最後用磁力將兩個系統偶合起來便完成雙樑系統的推倒
  22. 最後,把彈質樑和雙樑系統加在一起就會變成然後把理論公式推導出來之後, 就可以在任何一種數值軟體下將模擬結果計算出來, 而我這次研究主要是利用matlab做為模擬軟體,所以接下來我會稍為簡介一下程式架構
  23. 首先要在main檔中輸入系統的所有機械參數,壓店參數以及初始頻率等等, 然後下面這三個function就會產生聯立ODE的係數, 最後把聯立ODE用狀態空間寫成function用ODE45求解, 而他每一個iteration的求解都會產生每個振子下個時間的模態座標、電壓, 把這個模態座標乘以模態函數就可以得到下個時間的橈度,所以就知道下個時間磁鐵的相對位置, 把這些相對位置的參數丟進計算磁力的function中就可以得到下個時間的磁力,一直循環就可以解出整個系統的頻率響應
  24. 從前面的推導可以知道,系統中三個振子都被加上了一個磁力, 而兩個磁力參數固定下的永久磁鐵間磁力只受他們相對位置所影響, 這個相對位置在系統中其實就是每個振子末端的撓度。所以可以把外加的磁力看成是系統的勁度, 此外,這些力都來自於系統位能的梯度, 所以接下來我會以改變主樑、彈簧質量以及輔助樑初始位置的方法來分析以及討論系統的位能。 並會把系統分成質列配置以及錯位配置來討論。
  25. 首先我們先看到彈質樑系統,他的總位能可以分成彈簧彈力位能跟主樑應變能還有兩磁鐵的磁力位能, 下面兩個座標軸分別代表主樑末端的位移設不變形為原點, 還有彈簧質量塊磁鐵端的位移設兩個磁鐵距離為零為原點。 磁力位能的部分可以看到,彈簧質量塊磁鐵越接近主樑磁鐵 主樑中間的位能障礙就越大。
  26. 把所有位能疊加起來, 一開始不加磁力,位能圖由兩個二次曲面加起來的橢圓 加上磁力之後,被位能障礙分成雙穩態,磁鐵距離遠視單穩態, 所以當x(1)方向激振,主樑穩態位置會改變很大 沿著y(2)方向錯位,磁力弱化, 主樑穩態位置改變變小 沿著z(3)方向錯位,主樑穩態偏一邊, 主樑問態位置改變小
  27. 接下來式雙樑系統,他的系統總未能同樣可以分成 輔助樑應變能,主樑應變能,磁力位能, 磁力位能正中間有較大的位能,周圍會有四個位能低的位能井
  28. 同樣疊加起來,不加磁力同樣是線性的橢圓形位能圖 加上磁力,磁鐵距離8MM之後,變成趨近於單穩態非線性 縮短磁鐵距離到7MM,因為輔助樑鋼性較小,最先被磁力周圍位能井影響出現雙穩態 最後把磁鐵距離縮短到6MM,主樑方向變形也出現雙穩態,所以整個系統會變成四穩態非線性。
  29. 向y(2)錯位,主樑的穩態位置一樣在不變形的位置,會隨著輔助樑末端變形而改變穩態位置。 沿z(3)錯位,則完全相反,輔助樑的穩態會再不變形的位置,會隨著主樑末端變形而改變穩態位置。 所以者些位能的改變都可能會影響之後頻率響應的結果。
  30. 有了以上理論基礎之後,這邊就要開始理論驗證和實驗。所以我會先介紹一下採集器的原型設計,然後在講解實驗的系統配置
  31. 這張圖是實驗夾具 兩個軌道分別是來調整彈簧質量塊跟輔助樑跟主樑磁鐵間的距離 主樑夾在基座上可以調整Y(2)方向錯位 Z(3)方向錯位用3D列印一個墊高的板子達成
  32. 三個方向的激振裝置如這三張圖
  33. 實驗系統配置,輸入訊號跟輸出訊號, 電腦介面傳送指令給震動控制器,震動控制器經由功率放大器送出控制訊號給振動台,振動台上的加速規再把加速度訊號回授給震動控制器做訊號控制。 採集器的輸出電壓訊號接到示波器channel 1 雷射位移計的類比訊號接到channel 2
  34. 最後就是實驗驗證和結果,先講解線性採集器,再依序講解彈質樑和雙樑系統的驗證和實驗結果,最後就合在一起驗證三向雙樑採集器而且比較不同配置的系統功率頻寬表現
  35. 這個部分使用的訊號是固定0.2g加速度的掃頻訊號, 首先在壓電懸臂梁模型中,阻尼比是一個難以量測的參數, 加上廠商官網所給的壓電常數以及介電常數並不適非常的精準,所以在實驗上我利用壓電懸臂梁的一些特性建立一套流程來得到這些參數,方便之後做模擬。 一開始先將壓電懸臂梁的兩極短路,電壓等於零之後系統就相當於純機械振動系統, 這時候的未知參數只有阻尼比,利用雷射位移計量測末端位移再跟模型擬合就可以得到機械阻尼比。 然後因為壓電陶瓷的相對電容率會影響靜態電容的值,所以用數位電表量出壓電陶瓷的靜態電容就可以反推相對電容率。 最後未知常數只剩下壓電常數,所以只要任意挑一個外接負載去擬合輸出電壓就可以得到壓電常數d31
  36. 最後得到d31是-230… 然後下面這兩張圖是線性採集器RMS電壓模擬和實驗結果比對
  37. 線性採集器RMS功率模擬跟實驗比對,最大功率265.1uW,最佳阻抗在200 kohm 接下來就開始非線性系統的理論驗證和實驗
  38. 首先是彈質樑系統Z(3)方向基鎮 這邊是固定磁鐵距離,改變錯位距離的驗證 驗證大致上符合 彈簧受磁力後退,非線性不明顯, 值列配置跟沿Y(2)方向配置是硬化非線性, 沿Z(3)方向錯位是軟化非線性 Y(2)方向配置響應搭配這個方向的位能圖可以發現其實只是磁力弱化的效果 因此之後不加以討論
  39. 先看到質列配置,距離愈近非線性會越明顯,頻率越低
  40. 沿Z方向錯位配置,距離愈近非線性會越明顯,頻率越高
  41. 接下來是彈質量X(1)方向基鎮 如同上述所說Y方向錯位不討論 誤差比剛剛大, 因為線性軸承跟導桿之間有間隙,會造成不規則運動,讓輸出電壓誤差變大,索幸從頻率上看來還算有預測效果。
  42. 太近磁力太大 彈簧質量塊動不了,太遠磁力太小推不動主樑
  43. 太近磁力太大 彈簧質量塊動不了,太遠磁力太小推不動主樑
  44. 以上就是彈質量的理論驗證跟實驗, 接下來輪到雙樑系統Z(3)方向的理論驗證 首先是質列配置和沿著Y(2)方向的錯位配置 這兩種配置都是硬化非線性, Y(2)錯位對於這個方向激振而言只是磁力弱化的結果,因此同樣之後也不加以討論
  45. 比較值得注意的是沿著z(3)方向錯位, 這兩個代表不同的錯位距離 錯位1.5 硬化跟軟化非線性同時出現, 到錯位3的時候就會變成只有軟化非線性 結果大致上吻合 主要的誤差來源是磁鐵的假設,
  46. 從末端位移來看剛剛的結果, 質列配置,位能障礙太大,輔助樑偏一邊沒辦法跨越,主要是主樑應化非線性 錯位1.5MM,輔助樑的穩態變到中間,主樑和輔助樑又不會離太遠可以互相推動,出現大振福 錯位3MM,錯位距離太遠輔助樑振動沒辦法推動主樑,只有主樑能推動輔助樑
  47. 先看到質列配置,距離愈近非線性會越明顯,頻率越低
  48. 先看到質列配置,距離愈近非線性會越明顯,尤其是5MM硬化非線性跟軟化非線性同時出現的效果很明顯
  49. 先看到質列配置,距離愈近非線性會越明顯,頻率越高
  50. 然後是雙樑系統Y(2)方向的理論驗證 結果大致上吻合 主要的誤差來源是磁鐵的假設,
  51. 磁鐵距離太近可能會無法跨越位能障礙,給予適當的距離才能推動主樑。
  52. 因為有1.5mm的錯位,輔助樑可以容易跨越位能障礙,但是磁力較小,不是那麼容易能推動主樑。
  53. 整合以上結論,提出全直列配置跟半錯位配置。
  54. 大致上吻合,X(1)方向同樣是因為間隙的關係誤差比較大。
  55. 大致上吻合,X(1)方向同樣是因為間隙的關係誤差比較大。
  56. 1.線性系統 最高功率548uW 最佳阻抗200 kohm 頻寬2.27 hz 2.直列配置 向上掃頻最高功率365uW 最佳阻抗300 kohm 頻寬4.12 hz 向下掃頻最高功率238uW 最佳阻抗300 kohm 頻寬3.1 hz 3.錯位配置 向上掃頻最高功率428uW 最佳阻抗200 kohm 頻寬3.17 hz 向下掃頻最高功率238uW 最佳阻抗200 kohm 頻寬2.83 hz 不論上下掃都有增加頻寬
  57. 1.直列配置 向上掃頻最高功率253uW 最佳阻抗200 kohm 頻寬1.67 hz 向下掃頻最高功率16uW 最佳阻抗200 kohm 頻寬0 hz 2.錯位配置 向上掃頻最高功率265uW 最佳阻抗200 kohm 頻寬0.58 hz 向下掃頻最高功率41uW 最佳阻抗200 kohm 頻寬0 hz 錯位配置功率較高,質列配置頻寬較寬
  58. 1.直列配置 向上掃頻最高功率35uW 最佳阻抗200 kohm 頻寬0 hz 向下掃頻最高功率28uW 最佳阻抗150 kohm 頻寬0 hz 2.錯位配置 向上掃頻最高功率104uW 最佳阻抗200 kohm 頻寬1.59 hz 向下掃頻最高功率80uW 最佳阻抗200 kohm 頻寬1.48 hz 質列配置位能障礙太大,振動小,可以加大激振。 錯位配置讓位能障礙變小,
  59. Z(3)方向激振是主樑直接接受振動所以功率本身就比較高 其他兩個方向的功率會比較低, 增加頻寬的同時會犧牲一點功率 兩種配置各有優劣,
  60. 以上就是我這次研究的主要內容,這裡我將這次研究大致上的結論條列一下, 第一個結論就是實驗結果大致上驗證了理論模型的正確性,如果要讓模型更精確可以考慮磁鐵角度變化 第二是系統的頻率響應會隨著不同的配置變化,例如前面彈質量系統跟雙樑系統沿著z(3)方向都會從硬化非線性轉為軟化非線性。 第三是兩種系統都提升了系統的對複雜激振的適應性
  61. 最後是我的未來展望, 有了良好的實驗和理論驗證之後,可以用工程最佳化的方法,讓系統三個方向的頻寬跟功率達到最好的位置, 以上都是用線性掃頻當作訊號,未來可以把真實的人體跑步訊號,貨船體擺動等等三為振動訊號做採集之後,經過訊號處理分析,再鎮對訊號設計系統,並測試效果。 設計介面電路,這次都是用AC標準電路,為了解決非線性系統,最佳阻抗會改變的問題,可以試試看SECE電路等等的其他介面電路來解決。 最後從模擬結果可以看出,輔助樑在雙樑系統錯位配置下有很大振福,因此加上輔助樑的採集之後,系統的功率及頻寬都有機會提升。
  62. 到這邊就是我今天的報告,謝謝各位口委的聆聽, 不知道各位口委隊今天的報告有沒有甚麼疑問