SlideShare a Scribd company logo
1 of 43
Download to read offline
4th International Summer School
Achievements and Applications of Contemporary
Informatics, Mathematics and Physics
National University of Technology of the Ukraine
Kiev, Ukraine, August 5-16, 2009


                    Prediction of Financial Processes
                             Parameter Estimation in
                         Stochastic Differential Equations
                           by Continuous Optimization

                                    Gerhard-
                                    Gerhard-Wilhelm Weber           *

              Vefa Gafarova, Nüket Erbil, Cem Ali Gökçen, Azer Kerimov

                               Institute of Applied Mathematics
                        Middle East Technical University, Ankara, Turkey
            * Faculty of Economics, Management and Law, University of Siegen, Germany
              Center for Research on Optimization and Control, University of Aveiro, Portugal

                 Pakize Taylan       Dept. Mathematics, Dicle University, Diyarbakır, Turkey
Outline

•   Stochastic Differential Equations

•   Parameter Estimation

•   Various Statistical Models

•   C-MARS

•   Accuracy vs. Stability

•   Tikhonov Regularization

•   Conic Quadratic Programming

•   Nonlinear Regression

•   Portfolio Optimization

•   Outlook and Conclusion
Stock Markets
Stochastic Differential Equations



       dX t = a ( X t , t )dt + b( X t , t )dWt
                  drift   and    diffusion    term




                           Wt    N (0, t )   (t ∈ [0, T ])
                            Wiener process
Stochastic Differential Equations



       dX t = a ( X t , t )dt + b( X t , t )dWt
                   drift    and      diffusion    term



       Ex.:   price,       wealth,       interest rate,     volatility

                                  processes



                             Wt      N (0, t )   (t ∈ [0, T ])
                              Wiener process
Regression

               X = ( X1 , X 2 ,..., X m ) and output variable Y ;
                                      T
Input vector

linear regression :

                                                             m
                  Y = E (Y X 1 ,..., X m ) + ε = β0 + ∑ X j β j + ε ,
                                                             j =1




 β = ( β 0 , β1 ,..., β m ) which minimizes
                       T



                                                                        2

                                                        (           )
                                                  N
                                  RSS ( β ) := ∑ yi − x β    T
                                                             i
                                                 i =1


                                                                            ˆ = ( X T X )−1 X T y ,
                                                                            β

                                                                                     (        )
                                                                                                  −1
                                                                            Cov( β) = X T X
                                                                                 ˆ                     σ2
Generalized Additive Models


       (                          )                  ( )
                                             m
     E Yi xi1 , xi 2 ,..., xi m = β0 + ∑ f j x i j
                                            j =1




           f j are estimated by a smoothing on a single coordinate.



             Standard convention :               (       )
                                            E f j ( xij ) = 0 .


 •    Backfitting algorithm (Gauss-Seidel)


                                      ri j = yi − β 0 − ∑ f k ( xik ) ,
                                                          ˆ
                                                        k≠ j

      it “cycles” and iterates.
Generalized Additive Models


 •   Given data ( yi , xi ) (i = 1,2,...,N ),



 •   penalized residual sum of squares
                                                                    2
                                      N            m                m    b
     PRSS (β 0 , f1 ,..., f m ) : = ∑  yi − β 0 − ∑ f j ( xij )  + ∑ µ j ∫ 
                                                                                              2
                                                                              f j'' (t j )  dt j
                                                                                            
                                    i =1          j =1             j =1  a



                                                                           µ j ≥ 0.

 •   New estimation methods for additive model with CQP :
Generalized Additive Models

          min             t
          t , β0 , f
                                                                    2
                                   N              m            
          subject to              ∑
                                  i=1 
                                        yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0,
                                                  j =1          
                                                  2
                                  ∫  f j (t j )  dt j ≤ M j     (j = 1, 2,..., m),
                                         ''
                                                

                                                                                                             dj

                                                                                       splines:   f j ( x) = ∑ θl j hl j ( x).
                                                                                                            l =1

 By discretizing, we get


             min              t
             t , β0 , f

                                       W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0,
                                                      2
             subject to
                                                      2
                                       V j ( β0 ,θ ) ≤ M j      (j = 1,..., m).
                                                      2
Generalized Additive Models

          min             t
          t , β0 , f
                                                                    2
                                   N              m            
          subject to              ∑
                                  i=1 
                                        yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0,
                                                  j =1          
                                                  2
                                  ∫  f j (t j )  dt j ≤ M j     (j = 1, 2,..., m),
                                         ''
                                                

                                                                                                             dj

                                                                                       splines:   f j ( x) = ∑ θl j hl j ( x).
                                                                                                            l =1

 By discretizing, we get


             min              t
             t , β0 , f

                                       W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0,
                                                      2
             subject to
                                                      2
                                       V j ( β0 ,θ ) ≤ M j      (j = 1,..., m).
                                                      2
Generalized Additive Models

          min             t
          t , β0 , f
                                                                    2
                                   N              m            
          subject to              ∑
                                  i=1 
                                        yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0,
                                                  j =1          
                                                  2
                                  ∫  f j (t j )  dt j ≤ M j     (j = 1, 2,..., m),
                                         ''
                                                

                                                                                                             dj

                                                                                       splines:   f j ( x) = ∑ θl j hl j ( x).
                                                                                                            l =1

 By discretizing, we get


             min              t
             t , β0 , f

                                       W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0,
                                                      2
             subject to
                                                      2
                                       V j ( β0 ,θ ) ≤ M j      (j = 1,..., m).
                                                      2
Generalized Additive Models




                              Ind j : = d j ( D j ) ⋅ v j (V j )
MARS




y                                                    y

    • •                   •                              • •                   •
        •                  •                                 •                  •
    • •                • •                               • •                • •
      •     •           •                                  •     •           •
          • •       • •                                        • •
              • • ••                                                     • •
                                                                   • • ••
     c-(x,τ)=[−(x−τ)]+       c+(x,τ)=[+(x−τ)]+            c-(x,τ)=[−(x−τ)]+       c+(x,egressionx−τ)]+
                                                                                      rτ)=[+( w ith
                         τ                       x
                                                                              τ                          x
C-MARS



                    N                            M max           2

                  ∑( y − f (x ) ) + ∑ µ                        ∑               ∑
                                                                                                                      2
                                                                                             θ  Drα, sψ m (t m )  d t m
                                                                                            ∫ 
                                             2
 PRSS :=                     i           i               m
                                                                                               2
                                                                                               m                  
                    i =1                         m =1          α   =1           r <s
                                                             α = (α1 ,α 2 ) r , s∈V ( m )




Tradeoff between both accuracy and complexity.




             {
  V (m) := κ m | j = 1, 2,..., K m
             j                       }                                                                   (                       )
                                                                                       Drα, sψ m (t m ) := ∂αψ m ∂α1 trm ∂α 2 tsm (t m )
  t m := (tm1 , tm2 ,..., tm K )T
                            m


  α = (α1 , α 2 )
   α := α1 + α 2 , where α1 , α 2 ∈{0,1}
C-MARS

Tikhonov regularization:

                                         2
              PRSS = y −ψ (d ) θ             + µ Lθ
                                                       2
                                         2             2
                                                           Lθ   2




Conic quadratic programming:
                                                                    y − ψ (d ) θ   2


                min     t,
                 t ,θ

                subject to   ψ (d ) θ − y 2 ≤ t ,
                                       Lθ    2
                                                 ≤ M
C-MARS

Tikhonov regularization:

                                         2
              PRSS = y −ψ (d ) θ             + µ Lθ
                                                       2
                                         2             2
                                                           Lθ   2




Conic quadratic programming:
                                                                    y − ψ (d ) θ   2


                min     t,
                 t ,θ

                subject to   ψ (d ) θ − y 2 ≤ t ,
                                       Lθ    2
                                                 ≤ M
C-MARS



         cluster




         cluster




                   robust optimization
Stochastic Differential Equations Revisited



       dX t = a ( X t , t )dt + b( X t , t )dWt
                   drift    and      diffusion    term



       Ex.:   price,       wealth,       interest rate,     volatility,

                                  processes



                             Wt      N (0, t )   (t ∈ [0, T ])
                              Wiener process
Stochastic Differential Equations



       dX t = a ( X t , t )dt + b( X t , t )dWt
                  drift    and    diffusion    term



       Ex.:         bioinformatics, biotechnology
                    (fermentation, population dynamics)
                           Universiti Teknologi Malaysia



                            Wt    N (0, t )   (t ∈ [0, T ])
                             Wiener process
Stochastic Differential Equations Revisited



       dX t = a ( X t , t )dt + b( X t , t )dWt
                   drift    and      diffusion    term



       Ex.:   price,       wealth,       interest rate,     volatility,

                                  processes



                             Wt      N (0, t )   (t ∈ [0, T ])
                              Wiener process
Stochastic Differential Equations


 Milstein Scheme :




         ˆ         ˆ                               ˆ                           1
                                                                               2
                                                                                       ˆ           (
X j +1 = X j + a ( X j , t j )(t j +1 − t j ) + b( X j , t j )(W j +1 − W j ) + (b′b)( X j , t j ) (W j +1 − W j ) 2 − (t j +1 − t j )
ˆ                                                                                                                                        )



 and, based on our finitely many data:




                   &                                        ∆W j                              ( ∆W j ) 2    
                   X j = a ( X j , t j ) + b( X j , t j )          + 1 2 (b ′b)( X j , t j )             − 1 .
                                                             hj                               hj            
                                                                                                            
Stochastic Differential Equations


 •   step length   h j = t j +1 − t j := ∆ t j
                                                         X j +1 − X j
                                                                      , if j = 1, 2,..., N − 1
                                                 &            hj
                                                 X j := 
                                                         X N − X N −1 , if j = N
                                                               hN
                                                        

 •   Wt   N (0, t ),        ∆W j (independent),                       Var( ∆W j ) = ∆ t j


 •   ∆W j = Z j ∆ t j ,        Zj    N (0,1)




                                                                                    (        )
                       &                                      Zj 1
                       X j = a ( X j , t j ) + b( X j , t j )    + (b′b)( X j , t j ) Z j2 − 1
                                                               hj 2
Stochastic Differential Equations


 •   More simple form:

                                X j = G j + H j c j + ( H j ′ H j )d j ,
                                &

     where
                                 G j := a( X j , t j ) , H j := b( X j , t j ),
                                  c j := Z j     hj ,                (
                                                         d j :=1 2 Z j2 − 1 .     )
 •   Our problem:

                                    ∑(                                                 )
                                     N                                                     2
                          min               X j − (G j + H j c j + ( H j′ H j )d j )
                                            &
                            y                                                              2
                                     j =1


     y   is a vector which comprises a subset of all the parameters.
Stochastic Differential Equations

                                                                          g
                                  2                                  2   dp

      G j = a( X j , t j ) = α 0 + ∑ f p (U j , p ) = α 0 + ∑∑ α lp B p (U j , p )
                                                                      l

                                 p =1                               p =1 l =1

                                          2                               2       d rh
      H j c j = b( X j , t j )c j = β 0 + ∑ g r (U j ,r ) = β 0 + ∑∑ β rm Crm (U j ,r )
                                         r =1                            r =1 m =1
                                                2                             2     d sf
      Fj d j = b′b( X j , t j )d j = ϕ0 + ∑ hs (U j , s ) = ϕ0 + ∑∑ ϕ sn Dsn (U j , s )
                                              s =1                        s =1 n =1


                                                                                                              where
                                                                                                              U j = (U j ,1 , U j ,2 ) := ( X j , t j ) ;


 •   k th order base spline           Bη ,k : a polynomial of degree k − 1, with knots, say x η ,
                                                                  1, xη ≤ x < xη +1
                                                     Bη ,1 ( x) = 
                                                                  0, otherwise

                                                                         x − xη                               xη + k − x
                                                     Bη ,k ( x) =                          Bη ,k −1 ( x) +                    Bη +1,k −1 ( x)
                                                                    xη + k −1 − xη                           xη + k − xη +1
Stochastic Differential Equations

 • penalized sum of squares PRRS

                                         ∑{          Xj ( j         j j)         }
                                          N                                             2
                                                     & − G + H c + F d 2 + λ  f ′′(U )  2 dU
             PRSS (θ , f , g , h) : =
                                          j =1
                                                              j j         ∑ p∫ p p  pp =1
                                                                2                             2
                                                             + ∑ µr ∫ [ gr (U r )] dU r +∑ϕs ∫ [ hs′′(U s )] dU s
                                                                         ′′
                                                                                 2                              2

                                                               r =1                         s =1

                                                                                                           bκ

 •    λ p , µ r , ϕ s ≥ 0 (smoothing parameters),                                                  ∫   =   ∫        (κ = p, r , s )
                                                                                                           aκ


 •    large values of λ p , µ r , ϕ s yield smoother curves,
      smaller ones allow more fluctuation


     ∑{       X j − ( G j + H j c j + Fj d j )   }
      N                                              2
              &                                          =
      j =1
                                                                                                                                      2
     N    
          &           2 dp
                               h
                                                     2 dr
                                                          g
                                                                                2 ds
                                                                                      f
                                                                                                 
     ∑  X j −  α 0 + ∑∑ α p Bp (U j , p ) + β0 + ∑∑1 βr Cr (U j ,r ) + ϕ0 + ∑∑ ϕs Ds (U j ,s ) 
     j =1 
                                l l                        m m                         n n
                                                                                                 
                     p =1 l =1                   r =1 m =                   s =1 n =1
                                                                                                 
Stochastic Differential Equations


             θ = (α , β , ϕ              )          (                       )                           (                    )
                                         T                                  T                                            g   T
                                             , α = α0 ,α ,α                                      α p = α , α ,..., α                 ( p = 1, 2),
                      T    T         T                          T       T                                   1   2      dp
                                                                1       2            ,                      p   p      p


             β = ( β0 , β , β            )              (                                   )
                                                                                             T
                                     T T
                          T
                          1          2       , β r = β , β ,..., β
                                                            1
                                                            r
                                                                    2
                                                                    r
                                                                                     d rh
                                                                                     r                                               (r = 1, 2),

                                                    (
             ϕ = (ϕ0 , ϕ1T , ϕ 2 ) , ϕ s = ϕ s , ϕ s2 ,..., ϕ sd                      )
                                         T                                               T
                                                                                                                                     ( s = 1, 2).
                                                                                 f
                               T             1                                  s




                          ∑{                        }                                                                                        (                 )
                          N                                                                                                                                      T
 •   Then,                           &
                                     X j − Ajθ
                                                        2
                                                              & − Aθ 2 .
                                                            = X                                                                        A = A1T , A2 ,..., AN
                                                                                                                                                  T        T




                                                                                                                                             (                   )
                          j =1                                                                  2                                                                  T
                                                                                                                                       &   & &             &
                                                                                                                                       X = X 1 , X 2 ,..., X N

 •   Furthermore,
                                 b                      2                       N −1                            2

                                 ∫  f p′′ (U p ) dU p ≅
                                 a
                                                                              ∑  f p′′ (U jp )  (U j +1, p − U jp )
                                                                                j =1
                                                                                                 
                                                                                                                                 2
                                                                                dp l l              
                                                                                                    g
                                                                                     N −1
                                                                        = ∑  ∑ α p B p′′ (U jP )u j  .
                                                                          j =1  l =1                
                                                                                                    
Appendix Stochastic Differential Equations

  b             2         N −1             2

  ∫  f p′′ (U p )  dU p ≅ ∑  B j ′′u jα p  = AP α p
                                                          2
                                   p              B
                                                                      ( p = 1, 2)
  a
                          j =1
                                                        2



                                                                                            (                                             )
                                                                                                                                              T
                                                                                    Ap := B1p′′T u1 , B2p′′T u2 ,..., BN −1′′T u N −1
                                                                                     B                                 p



                                                                                    u j := U j +1, p − U j , p        ( j = 1, 2,..., N − 1).

  b                       N −1                 2
    [ gr′′(U r )] dU r ≅ ∑ C rj ′′v j β r  = ArC β r
                                                              2
  ∫                                                                     (r = 1, 2)
               2

  a                      j =1
                                                            2


                                                                                                (                                         )
                                                                                                                                          T
                                                                                      ArC := C1r′′T v1 , C2 ′′T v2 ,..., CN −1′′T vN −1
                                                                                                          r               r



                                                                                     v j := U j +1,r − U j ,r      ( j = 1, 2,..., N − 1).

  b                2       N −1                    2
     h ′′ (U )  dU ≅  D s′′ w ϕ  = A Dϕ
  ∫ s s  s ∑ j j s
                                                                  2
                                        s   s                            ( s = 1, 2)
                                                                  2
  a                   j =1


                                                                                            (                                                     )
                                                                                                                                                  T
                                                                                    A := D ′′ w1 , D2 ′′T w2 ,..., DN −1′′T wN −1
                                                                                      s
                                                                                       D            s
                                                                                                    1
                                                                                                     s T            s



                                                                                    w j := U j +1, s − U j , s       ( j = 1, 2,..., N − 1).
Stochastic Differential Equations

                                                  2                                2               2
                        & − Aθ 2 + λ A Bα 2 + µ AC β
                                  ∑ p p p ∑ r r r                                                + ∑ ϕ s AsDϕ s
                                                                                             2                        2
 PRSS (θ , f , g , h) = X
                                        2                             2                      2                        2
                                              p =1                            r =1                s =1




     Let us assume that λ p = µr = ϕ s =: µ = δ :
                                               2
 •

                                                                      2
                                               &
                        PRSS (θ , f , g , h) ≈ X − Aθ                     + δ 2 Lθ 2 ,
                                                                                       2

                                                                      2



     where   L   is a 6( N − 1) × m matrix:

                       0   A1B   0     0   0         0     0   0         0   
                                                                             
                       0   0     A2B   0   0         0     0   0         0   
                       0                                                     
                                                                                           θ = (α T , β T , ϕ T ) .
                                                                                                                T
                            0     0     0   A1C       0     0   0         0
                  L :=                                                       ,
                       0   0     0     0   0         A2C   0   0         0 
                       0   0     0     0   0         0     0   A1D       0 
                                                                             
                       0   0     0     0   0         0     0   0         A2D 
Stochastic Differential Equations


                             2
       min          &
                    X − Aθ       + µ Lθ
                                             2

         θ                   2
                                             2



                                                 Tikhonov regularization




       min     t,
        t ,θ


       subject to           &
                       Aθ − X         ≤ t,
                                  2

                             Lθ   2
                                      ≤      M
                                                 Conic quadratic programming
Stochastic Differential Equations

min     t
 t ,θ

                    0N      A  t   −X 
                                         &
subject to    χ :=          T   
                                     +     ,
                            0m       
                                   θ  0 
                    1                                                          primal problem
                   06( N −1)   L  t   06( N −1) 
             η :=                   +           ,
                   0          0T   θ   M 
                                 m           
                                                     

                    χ ∈ LN +1 , η ∈ L6( N −1)+1


                                                 {
                                   LN + 1 := x = ( x1 , x2 ,..., xN )T ∈ R N +1 | xN+1 ≥ x12 + x2 + ... + xN
                                                                                                2          2
                                                                                                               }
      &
                     (
max ( X T , 0) κ 1 + 0T N −1) , − M κ 2
                      6(                  )
              0T      1        0T N −1)        0       1
                          κ1 +  T                   κ2 =  ,
                N                  6(
subject to    T                                                               dual problem
             A       0m        L              0m        0m 
              κ 1 ∈ LN +1 , κ 2 ∈ L6 ( N −1)+1
Stochastic Differential Equations


 (t , θ , χ ,η , κ1 , κ 2 ) is a primal dual optimal solution if and only if



                              0N       A  t   −X &
                        χ :=           T   
                                                 +      ,
                                       0m   θ   0   
                              1
                              06( N −1) L  t   06( N −1) 
                        η :=                    +        
                                 0       0T   θ   M 
                                            m         
                                                              

                         0T     1        0T N −1)       0      1
                                    κ1 +  T                κ2 =  
                           N                 6(
                         T
                        A      0m        L             0m       0m 
                        κ 1T χ = 0, κ 2 η = 0
                                       T



                        κ 1 ∈ LN +1 , κ 2 ∈ L6( N −1)+1
                        χ ∈ LN +1 , η ∈ L6( N −1)+1.
Stochastic Differential Equations

Ex.:


              dVt = (θtT ( µ − rt ) + rt )Vt  dt − ct dt + θtT σVt dWt ,
                                             

              drt = α ⋅ ( R − rt ) dt + σ t ⋅ rt τ ⋅ dWt ,

              dX t = µ ( t , X t , Zt ) dt + σ ( t , X t , Zt ) dWt .




       nonlinear regression
Nonlinear Regression


                                                   2

                           ∑ j ( j )
                            N
         min f ( β ) =           d − g x ,β 
                                             
                           j =1 
                            N
                      =:   ∑       f j2 ( β )
                            j =1




                                                F ( β ) := ( f1 ( β ),..., f N ( β ) )
                                                                                     T




        min f ( β ) = F T ( β ) F ( β )
Nonlinear Regression

                                                                        β k +1 := β k + qk
 • Gauss-Newton method :


                      ∇F ( β )∇T F ( β )q = −∇F ( β ) F ( β )




 • Levenberg-Marquardt method :
                                                                                   λ ≥0

                  (                            )
                      ∇F ( β )∇T F (β ) + λ I p q = −∇F ( β ) F ( β )
Nonlinear Regression


alternative solution



 min    t,
  t,q


 subject to     ( ∇F (β )∇   T
                                               )
                                 F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) )
                                                                             2
                                                                                 ≤ t , t ≥ 0,

                  || Lq || 2 ≤ M




conic quadratic programming
Nonlinear Regression


alternative solution



 min    t,
  t,q


 subject to     ( ∇F (β )∇   T
                                               )
                                 F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) )
                                                                             2
                                                                                 ≤ t , t ≥ 0,

                  || Lq || 2 ≤ M




conic quadratic programming

interior point methods
Nonlinear Regression


 alternative solution



  min      t,
   t,q


  subject to           ( ∇F (β )∇   T
                                                      )
                                        F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) )
                                                                                    2
                                                                                        ≤ t , t ≥ 0,

                         || Lq || 2 ≤ M


                                            1
 min Q(q) := f ( β ) + qT ∇F ( β ) F ( β ) + qT ∇F ( β )∇T F ( β )q
 q                                          2
 subject to  q 2 ≤∆



                                                trust region
Portfolio Optimization

     max utility !   or

     min costs !


              martingale method:




                                Optimization Problem


                                       Representation Problem




             or   stochastic control
Portfolio Optimization

     max utility !   or

     min costs !


              martingale method:

                          Parameter Estimation


                                Optimization Problem


                                       Representation Problem




             or   stochastic control
Portfolio Optimization

     max utility !   or

     min costs !


              martingale method:




                                Optimization Problem


                                       Representation Problem


                                         Parameter Estimation

             or   stochastic control
Portfolio Optimization

     max utility !   or

     min costs !


              martingale method:




                                Optimization Problem


                                       Representation Problem


                                         Parameter Estimation

             or   stochastic control
References
Aster, A., Borchers, B., and Thurber, C., Parameter Estimation and Inverse Problems, Academic Press, 2004.
Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004.
Buja, A., Hastie, T., and Tibshirani, R., Linear smoothers and additive models, The Ann. Stat. 17, 2 (1989)
453-510.
Fox, J., Nonparametric regression, Appendix to an R and S-Plus Companion to Applied Regression,
Sage Publications, 2002.

Friedman, J.H., Multivariate adaptive regression splines, Annals of Statistics 19, 1 (1991) 1-141.

Friedman, J.H., and Stuetzle, W., Projection pursuit regression, J. Amer. Statist Assoc. 76 (1981) 817-823.

Hastie, T., and Tibshirani, R., Generalized additive models, Statist. Science 1, 3 (1986) 297-310.

Hastie, T., and Tibshirani, R., Generalized additive models: some applications, J. Amer. Statist. Assoc.
82, 398 (1987) 371-386.

Hastie, T., Tibshirani, R., and Friedman, J.H., The Element of Statistical Learning, Springer, 2001.

Hastie, T.J., and Tibshirani, R.J., Generalized Additive Models, New York, Chapman and Hall, 1990.

Kloeden, P.E, Platen, E., and Schurz, H., Numerical Solution of SDE Through Computer Experiments,
Springer Verlag, New York, 1994.
Korn, R., and Korn, E., Options Pricing and Portfolio Optimization: Modern Methods of Financial Mathematics,
Oxford University Press, 2001.
Nash, G., and Sofer, A., Linear and Nonlinear Programming, McGraw-Hill, New York, 1996.
Nemirovski, A., Lectures on modern convex optimization, Israel Institute of Technology (2002).
References
Nemirovski, A., Modern Convex Optimization, lecture notes, Israel Institute of Technology (2005).
Nesterov, Y.E , and Nemirovskii, A.S., Interior Point Methods in Convex Programming, SIAM, 1993.
Önalan, Ö., Martingale measures for NIG Lévy processes with applications to mathematical finance,
presentation in: Advanced Mathematical Methods for Finance, Side, Antalya, Turkey, April 26-29, 2006.
Taylan, P., Weber G.-W., and Kropat, E., Approximation of stochastic differential equations by additive
models using splines and conic programming, International Journal of Computing Anticipatory Systems 21
(2008) 341-352.
Taylan, P., Weber, G.-W., and A. Beck, New approaches to regression by generalized additive models
and continuous optimization for modern applications in finance, science and techology, in the special issue
in honour of Prof. Dr. Alexander Rubinov, of Optimization 56, 5-6 (2007) 1-24.

Taylan, P., Weber, G.-W., and Yerlikaya, F., A new approach to multivariate adaptive regression spline
by using Tikhonov regularization and continuous optimization, to appear in TOP, Selected Papers at the
Occasion of 20th EURO Mini Conference (Neringa, Lithuania, May 20-23, 2008) 317- 322.
Seydel, R., Tools for Computational Finance, Springer, Universitext, 2004.
Stone, C.J., Additive regression and other nonparametric models, Annals of Statistics 13, 2 (1985) 689-705.
Weber, G.-W., Taylan, P., Akteke-Öztürk, B., and Uğur, Ö., Mathematical and data mining contributions
dynamics and optimization of gene-environment networks, in the special issue Organization in Matter
from Quarks to Proteins of Electronic Journal of Theoretical Physics.
Weber, G.-W., Taylan, P., Yıldırak, K., and Görgülü, Z.K., Financial regression and organization, to appear
in the Special Issue on Optimization in Finance, of DCDIS-B (Dynamics of Continuous, Discrete and
Impulsive Systems (Series B)).

More Related Content

What's hot

Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011antigonon
 
Portfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long RunPortfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long Runguasoni
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Modelspinchung
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Alex (Oleksiy) Varfolomiyev
 
11.application of matrix algebra to multivariate data using standardize scores
11.application of matrix algebra to multivariate data using standardize scores11.application of matrix algebra to multivariate data using standardize scores
11.application of matrix algebra to multivariate data using standardize scoresAlexander Decker
 
Application of matrix algebra to multivariate data using standardize scores
Application of matrix algebra to multivariate data using standardize scoresApplication of matrix algebra to multivariate data using standardize scores
Application of matrix algebra to multivariate data using standardize scoresAlexander Decker
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1Cdiscount
 
Machine learning of structured outputs
Machine learning of structured outputsMachine learning of structured outputs
Machine learning of structured outputszukun
 
Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...B G S Institute of Technolgy
 
Analysis of monitoring of connection between
Analysis of monitoring of connection betweenAnalysis of monitoring of connection between
Analysis of monitoring of connection betweenprjpublications
 

What's hot (16)

Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011
 
Test
TestTest
Test
 
Portfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long RunPortfolios and Risk Premia for the Long Run
Portfolios and Risk Premia for the Long Run
 
Intraguild mutualism
Intraguild mutualismIntraguild mutualism
Intraguild mutualism
 
Symmetrical2
Symmetrical2Symmetrical2
Symmetrical2
 
Mo u quantified
Mo u   quantifiedMo u   quantified
Mo u quantified
 
2003 Ames.Models
2003 Ames.Models2003 Ames.Models
2003 Ames.Models
 
Bernoulli eulerriemannzeta
Bernoulli eulerriemannzetaBernoulli eulerriemannzeta
Bernoulli eulerriemannzeta
 
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
Optimal Finite Difference Grids for Elliptic and Parabolic PDEs with Applicat...
 
YSC 2013
YSC 2013YSC 2013
YSC 2013
 
11.application of matrix algebra to multivariate data using standardize scores
11.application of matrix algebra to multivariate data using standardize scores11.application of matrix algebra to multivariate data using standardize scores
11.application of matrix algebra to multivariate data using standardize scores
 
Application of matrix algebra to multivariate data using standardize scores
Application of matrix algebra to multivariate data using standardize scoresApplication of matrix algebra to multivariate data using standardize scores
Application of matrix algebra to multivariate data using standardize scores
 
Paris2012 session1
Paris2012 session1Paris2012 session1
Paris2012 session1
 
Machine learning of structured outputs
Machine learning of structured outputsMachine learning of structured outputs
Machine learning of structured outputs
 
Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...Computer Science and Information Science 3rd semester (2012-December) Questio...
Computer Science and Information Science 3rd semester (2012-December) Questio...
 
Analysis of monitoring of connection between
Analysis of monitoring of connection betweenAnalysis of monitoring of connection between
Analysis of monitoring of connection between
 

Similar to Prediction of Financial Processes

Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 FoilsAntonini
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrixRumah Belajar
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...yigalbt
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methodsphysics Imposible
 
Basic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic SolidsBasic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic Solidserikgherbert
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605ketanaka
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011antigonon
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math ColloquiumChristian Robert
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Markettomoyukiichiba
 
Engr 371 midterm february 1997
Engr 371 midterm february 1997Engr 371 midterm february 1997
Engr 371 midterm february 1997amnesiann
 
Semi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSemi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSSA KPI
 

Similar to Prediction of Financial Processes (20)

Iceaa07 Foils
Iceaa07 FoilsIceaa07 Foils
Iceaa07 Foils
 
iTute Notes MM
iTute Notes MMiTute Notes MM
iTute Notes MM
 
rinko2011-agh
rinko2011-aghrinko2011-agh
rinko2011-agh
 
02 2d systems matrix
02 2d systems matrix02 2d systems matrix
02 2d systems matrix
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
The convenience yield implied by quadratic volatility smiles presentation [...
The convenience yield implied by quadratic volatility smiles   presentation [...The convenience yield implied by quadratic volatility smiles   presentation [...
The convenience yield implied by quadratic volatility smiles presentation [...
 
Fdtd
FdtdFdtd
Fdtd
 
Unconditionally stable fdtd methods
Unconditionally stable fdtd methodsUnconditionally stable fdtd methods
Unconditionally stable fdtd methods
 
Basic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic SolidsBasic Nanoindentation Of Viscoelastic Solids
Basic Nanoindentation Of Viscoelastic Solids
 
Jyokyo-kai-20120605
Jyokyo-kai-20120605Jyokyo-kai-20120605
Jyokyo-kai-20120605
 
Matlab
MatlabMatlab
Matlab
 
Presentation cm2011
Presentation cm2011Presentation cm2011
Presentation cm2011
 
Montpellier Math Colloquium
Montpellier Math ColloquiumMontpellier Math Colloquium
Montpellier Math Colloquium
 
Rousseau
RousseauRousseau
Rousseau
 
Hybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity MarketHybrid Atlas Models of Financial Equity Market
Hybrid Atlas Models of Financial Equity Market
 
17.04.2012 m.petrov
17.04.2012 m.petrov17.04.2012 m.petrov
17.04.2012 m.petrov
 
Engr 371 midterm february 1997
Engr 371 midterm february 1997Engr 371 midterm february 1997
Engr 371 midterm february 1997
 
Rpra1
Rpra1Rpra1
Rpra1
 
Semi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSemi-Infinite and Robust Optimization
Semi-Infinite and Robust Optimization
 
Lei
LeiLei
Lei
 

More from SSA KPI

Germany presentation
Germany presentationGermany presentation
Germany presentationSSA KPI
 
Grand challenges in energy
Grand challenges in energyGrand challenges in energy
Grand challenges in energySSA KPI
 
Engineering role in sustainability
Engineering role in sustainabilityEngineering role in sustainability
Engineering role in sustainabilitySSA KPI
 
Consensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentConsensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentSSA KPI
 
Competences in sustainability in engineering education
Competences in sustainability in engineering educationCompetences in sustainability in engineering education
Competences in sustainability in engineering educationSSA KPI
 
Introducatio SD for enginers
Introducatio SD for enginersIntroducatio SD for enginers
Introducatio SD for enginersSSA KPI
 
DAAD-10.11.2011
DAAD-10.11.2011DAAD-10.11.2011
DAAD-10.11.2011SSA KPI
 
Talking with money
Talking with moneyTalking with money
Talking with moneySSA KPI
 
'Green' startup investment
'Green' startup investment'Green' startup investment
'Green' startup investmentSSA KPI
 
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesFrom Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesSSA KPI
 
Dynamics of dice games
Dynamics of dice gamesDynamics of dice games
Dynamics of dice gamesSSA KPI
 
Energy Security Costs
Energy Security CostsEnergy Security Costs
Energy Security CostsSSA KPI
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsSSA KPI
 
Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5SSA KPI
 
Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4SSA KPI
 
Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3SSA KPI
 
Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2SSA KPI
 
Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1SSA KPI
 
Fluorescent proteins in current biology
Fluorescent proteins in current biologyFluorescent proteins in current biology
Fluorescent proteins in current biologySSA KPI
 
Neurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsNeurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsSSA KPI
 

More from SSA KPI (20)

Germany presentation
Germany presentationGermany presentation
Germany presentation
 
Grand challenges in energy
Grand challenges in energyGrand challenges in energy
Grand challenges in energy
 
Engineering role in sustainability
Engineering role in sustainabilityEngineering role in sustainability
Engineering role in sustainability
 
Consensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable developmentConsensus and interaction on a long term strategy for sustainable development
Consensus and interaction on a long term strategy for sustainable development
 
Competences in sustainability in engineering education
Competences in sustainability in engineering educationCompetences in sustainability in engineering education
Competences in sustainability in engineering education
 
Introducatio SD for enginers
Introducatio SD for enginersIntroducatio SD for enginers
Introducatio SD for enginers
 
DAAD-10.11.2011
DAAD-10.11.2011DAAD-10.11.2011
DAAD-10.11.2011
 
Talking with money
Talking with moneyTalking with money
Talking with money
 
'Green' startup investment
'Green' startup investment'Green' startup investment
'Green' startup investment
 
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea wavesFrom Huygens odd sympathy to the energy Huygens' extraction from the sea waves
From Huygens odd sympathy to the energy Huygens' extraction from the sea waves
 
Dynamics of dice games
Dynamics of dice gamesDynamics of dice games
Dynamics of dice games
 
Energy Security Costs
Energy Security CostsEnergy Security Costs
Energy Security Costs
 
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environmentsNaturally Occurring Radioactivity (NOR) in natural and anthropic environments
Naturally Occurring Radioactivity (NOR) in natural and anthropic environments
 
Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5Advanced energy technology for sustainable development. Part 5
Advanced energy technology for sustainable development. Part 5
 
Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4Advanced energy technology for sustainable development. Part 4
Advanced energy technology for sustainable development. Part 4
 
Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3Advanced energy technology for sustainable development. Part 3
Advanced energy technology for sustainable development. Part 3
 
Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2Advanced energy technology for sustainable development. Part 2
Advanced energy technology for sustainable development. Part 2
 
Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1Advanced energy technology for sustainable development. Part 1
Advanced energy technology for sustainable development. Part 1
 
Fluorescent proteins in current biology
Fluorescent proteins in current biologyFluorescent proteins in current biology
Fluorescent proteins in current biology
 
Neurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functionsNeurotransmitter systems of the brain and their functions
Neurotransmitter systems of the brain and their functions
 

Recently uploaded

IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...PsychoTech Services
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...Sapna Thakur
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Recently uploaded (20)

IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
IGNOU MSCCFT and PGDCFT Exam Question Pattern: MCFT003 Counselling and Family...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
BAG TECHNIQUE Bag technique-a tool making use of public health bag through wh...
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

Prediction of Financial Processes

  • 1. 4th International Summer School Achievements and Applications of Contemporary Informatics, Mathematics and Physics National University of Technology of the Ukraine Kiev, Ukraine, August 5-16, 2009 Prediction of Financial Processes Parameter Estimation in Stochastic Differential Equations by Continuous Optimization Gerhard- Gerhard-Wilhelm Weber * Vefa Gafarova, Nüket Erbil, Cem Ali Gökçen, Azer Kerimov Institute of Applied Mathematics Middle East Technical University, Ankara, Turkey * Faculty of Economics, Management and Law, University of Siegen, Germany Center for Research on Optimization and Control, University of Aveiro, Portugal Pakize Taylan Dept. Mathematics, Dicle University, Diyarbakır, Turkey
  • 2. Outline • Stochastic Differential Equations • Parameter Estimation • Various Statistical Models • C-MARS • Accuracy vs. Stability • Tikhonov Regularization • Conic Quadratic Programming • Nonlinear Regression • Portfolio Optimization • Outlook and Conclusion
  • 4. Stochastic Differential Equations dX t = a ( X t , t )dt + b( X t , t )dWt drift and diffusion term Wt N (0, t ) (t ∈ [0, T ]) Wiener process
  • 5. Stochastic Differential Equations dX t = a ( X t , t )dt + b( X t , t )dWt drift and diffusion term Ex.: price, wealth, interest rate, volatility processes Wt N (0, t ) (t ∈ [0, T ]) Wiener process
  • 6. Regression X = ( X1 , X 2 ,..., X m ) and output variable Y ; T Input vector linear regression : m Y = E (Y X 1 ,..., X m ) + ε = β0 + ∑ X j β j + ε , j =1 β = ( β 0 , β1 ,..., β m ) which minimizes T 2 ( ) N RSS ( β ) := ∑ yi − x β T i i =1 ˆ = ( X T X )−1 X T y , β ( ) −1 Cov( β) = X T X ˆ σ2
  • 7. Generalized Additive Models ( ) ( ) m E Yi xi1 , xi 2 ,..., xi m = β0 + ∑ f j x i j j =1 f j are estimated by a smoothing on a single coordinate. Standard convention : ( ) E f j ( xij ) = 0 . • Backfitting algorithm (Gauss-Seidel) ri j = yi − β 0 − ∑ f k ( xik ) , ˆ k≠ j it “cycles” and iterates.
  • 8. Generalized Additive Models • Given data ( yi , xi ) (i = 1,2,...,N ), • penalized residual sum of squares 2 N  m  m b PRSS (β 0 , f1 ,..., f m ) : = ∑  yi − β 0 − ∑ f j ( xij )  + ∑ µ j ∫  2  f j'' (t j )  dt j  i =1  j =1  j =1 a µ j ≥ 0. • New estimation methods for additive model with CQP :
  • 9. Generalized Additive Models min t t , β0 , f 2 N  m  subject to ∑ i=1  yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0, j =1  2 ∫  f j (t j )  dt j ≤ M j (j = 1, 2,..., m), ''   dj splines: f j ( x) = ∑ θl j hl j ( x). l =1 By discretizing, we get min t t , β0 , f W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0, 2 subject to 2 V j ( β0 ,θ ) ≤ M j (j = 1,..., m). 2
  • 10. Generalized Additive Models min t t , β0 , f 2 N  m  subject to ∑ i=1  yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0, j =1  2 ∫  f j (t j )  dt j ≤ M j (j = 1, 2,..., m), ''   dj splines: f j ( x) = ∑ θl j hl j ( x). l =1 By discretizing, we get min t t , β0 , f W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0, 2 subject to 2 V j ( β0 ,θ ) ≤ M j (j = 1,..., m). 2
  • 11. Generalized Additive Models min t t , β0 , f 2 N  m  subject to ∑ i=1  yi − β0 − ∑ f j ( xij )  ≤ t 2 , t ≥ 0, j =1  2 ∫  f j (t j )  dt j ≤ M j (j = 1, 2,..., m), ''   dj splines: f j ( x) = ∑ θl j hl j ( x). l =1 By discretizing, we get min t t , β0 , f W ( β 0 , θ ) 2 ≤ t 2 , t ≥ 0, 2 subject to 2 V j ( β0 ,θ ) ≤ M j (j = 1,..., m). 2
  • 12. Generalized Additive Models Ind j : = d j ( D j ) ⋅ v j (V j )
  • 13. MARS y y • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •• • • • • •• c-(x,τ)=[−(x−τ)]+ c+(x,τ)=[+(x−τ)]+ c-(x,τ)=[−(x−τ)]+ c+(x,egressionx−τ)]+ rτ)=[+( w ith τ x τ x
  • 14. C-MARS N M max 2 ∑( y − f (x ) ) + ∑ µ ∑ ∑ 2 θ  Drα, sψ m (t m )  d t m ∫  2 PRSS := i i m 2 m  i =1 m =1 α =1 r <s α = (α1 ,α 2 ) r , s∈V ( m ) Tradeoff between both accuracy and complexity. { V (m) := κ m | j = 1, 2,..., K m j } ( ) Drα, sψ m (t m ) := ∂αψ m ∂α1 trm ∂α 2 tsm (t m ) t m := (tm1 , tm2 ,..., tm K )T m α = (α1 , α 2 ) α := α1 + α 2 , where α1 , α 2 ∈{0,1}
  • 15. C-MARS Tikhonov regularization: 2 PRSS = y −ψ (d ) θ + µ Lθ 2 2 2 Lθ 2 Conic quadratic programming: y − ψ (d ) θ 2 min t, t ,θ subject to ψ (d ) θ − y 2 ≤ t , Lθ 2 ≤ M
  • 16. C-MARS Tikhonov regularization: 2 PRSS = y −ψ (d ) θ + µ Lθ 2 2 2 Lθ 2 Conic quadratic programming: y − ψ (d ) θ 2 min t, t ,θ subject to ψ (d ) θ − y 2 ≤ t , Lθ 2 ≤ M
  • 17. C-MARS cluster cluster robust optimization
  • 18. Stochastic Differential Equations Revisited dX t = a ( X t , t )dt + b( X t , t )dWt drift and diffusion term Ex.: price, wealth, interest rate, volatility, processes Wt N (0, t ) (t ∈ [0, T ]) Wiener process
  • 19. Stochastic Differential Equations dX t = a ( X t , t )dt + b( X t , t )dWt drift and diffusion term Ex.: bioinformatics, biotechnology (fermentation, population dynamics) Universiti Teknologi Malaysia Wt N (0, t ) (t ∈ [0, T ]) Wiener process
  • 20. Stochastic Differential Equations Revisited dX t = a ( X t , t )dt + b( X t , t )dWt drift and diffusion term Ex.: price, wealth, interest rate, volatility, processes Wt N (0, t ) (t ∈ [0, T ]) Wiener process
  • 21. Stochastic Differential Equations Milstein Scheme : ˆ ˆ ˆ 1 2 ˆ ( X j +1 = X j + a ( X j , t j )(t j +1 − t j ) + b( X j , t j )(W j +1 − W j ) + (b′b)( X j , t j ) (W j +1 − W j ) 2 − (t j +1 − t j ) ˆ ) and, based on our finitely many data: & ∆W j  ( ∆W j ) 2  X j = a ( X j , t j ) + b( X j , t j ) + 1 2 (b ′b)( X j , t j )  − 1 . hj  hj   
  • 22. Stochastic Differential Equations • step length h j = t j +1 − t j := ∆ t j  X j +1 − X j  , if j = 1, 2,..., N − 1 &  hj X j :=   X N − X N −1 , if j = N  hN  • Wt N (0, t ), ∆W j (independent), Var( ∆W j ) = ∆ t j • ∆W j = Z j ∆ t j , Zj N (0,1) ( ) & Zj 1 X j = a ( X j , t j ) + b( X j , t j ) + (b′b)( X j , t j ) Z j2 − 1 hj 2
  • 23. Stochastic Differential Equations • More simple form: X j = G j + H j c j + ( H j ′ H j )d j , & where G j := a( X j , t j ) , H j := b( X j , t j ), c j := Z j hj , ( d j :=1 2 Z j2 − 1 . ) • Our problem: ∑( ) N 2 min X j − (G j + H j c j + ( H j′ H j )d j ) & y 2 j =1 y is a vector which comprises a subset of all the parameters.
  • 24. Stochastic Differential Equations g 2 2 dp G j = a( X j , t j ) = α 0 + ∑ f p (U j , p ) = α 0 + ∑∑ α lp B p (U j , p ) l p =1 p =1 l =1 2 2 d rh H j c j = b( X j , t j )c j = β 0 + ∑ g r (U j ,r ) = β 0 + ∑∑ β rm Crm (U j ,r ) r =1 r =1 m =1 2 2 d sf Fj d j = b′b( X j , t j )d j = ϕ0 + ∑ hs (U j , s ) = ϕ0 + ∑∑ ϕ sn Dsn (U j , s ) s =1 s =1 n =1 where U j = (U j ,1 , U j ,2 ) := ( X j , t j ) ; • k th order base spline Bη ,k : a polynomial of degree k − 1, with knots, say x η , 1, xη ≤ x < xη +1 Bη ,1 ( x) =  0, otherwise x − xη xη + k − x Bη ,k ( x) = Bη ,k −1 ( x) + Bη +1,k −1 ( x) xη + k −1 − xη xη + k − xη +1
  • 25. Stochastic Differential Equations • penalized sum of squares PRRS ∑{ Xj ( j j j) } N 2 & − G + H c + F d 2 + λ  f ′′(U )  2 dU PRSS (θ , f , g , h) : = j =1 j j ∑ p∫ p p  pp =1 2 2 + ∑ µr ∫ [ gr (U r )] dU r +∑ϕs ∫ [ hs′′(U s )] dU s ′′ 2 2 r =1 s =1 bκ • λ p , µ r , ϕ s ≥ 0 (smoothing parameters), ∫ = ∫ (κ = p, r , s ) aκ • large values of λ p , µ r , ϕ s yield smoother curves, smaller ones allow more fluctuation ∑{ X j − ( G j + H j c j + Fj d j ) } N 2 & = j =1 2 N  &  2 dp h 2 dr g 2 ds f  ∑  X j −  α 0 + ∑∑ α p Bp (U j , p ) + β0 + ∑∑1 βr Cr (U j ,r ) + ϕ0 + ∑∑ ϕs Ds (U j ,s )  j =1   l l m m n n    p =1 l =1 r =1 m = s =1 n =1 
  • 26. Stochastic Differential Equations θ = (α , β , ϕ ) ( ) ( ) T T g T , α = α0 ,α ,α α p = α , α ,..., α ( p = 1, 2), T T T T T 1 2 dp 1 2 , p p p β = ( β0 , β , β ) ( ) T T T T 1 2 , β r = β , β ,..., β 1 r 2 r d rh r (r = 1, 2), ( ϕ = (ϕ0 , ϕ1T , ϕ 2 ) , ϕ s = ϕ s , ϕ s2 ,..., ϕ sd ) T T ( s = 1, 2). f T 1 s ∑{ } ( ) N T • Then, & X j − Ajθ 2 & − Aθ 2 . = X A = A1T , A2 ,..., AN T T ( ) j =1 2 T & & & & X = X 1 , X 2 ,..., X N • Furthermore, b 2 N −1 2 ∫  f p′′ (U p ) dU p ≅ a   ∑  f p′′ (U jp )  (U j +1, p − U jp ) j =1   2  dp l l  g N −1 = ∑  ∑ α p B p′′ (U jP )u j  . j =1  l =1   
  • 27. Appendix Stochastic Differential Equations b 2 N −1 2 ∫  f p′′ (U p )  dU p ≅ ∑  B j ′′u jα p  = AP α p 2 p B ( p = 1, 2) a   j =1   2 ( ) T Ap := B1p′′T u1 , B2p′′T u2 ,..., BN −1′′T u N −1 B p u j := U j +1, p − U j , p ( j = 1, 2,..., N − 1). b N −1 2 [ gr′′(U r )] dU r ≅ ∑ C rj ′′v j β r  = ArC β r 2 ∫ (r = 1, 2) 2 a j =1   2 ( ) T ArC := C1r′′T v1 , C2 ′′T v2 ,..., CN −1′′T vN −1 r r v j := U j +1,r − U j ,r ( j = 1, 2,..., N − 1). b 2 N −1 2  h ′′ (U )  dU ≅  D s′′ w ϕ  = A Dϕ ∫ s s  s ∑ j j s 2 s s ( s = 1, 2) 2 a j =1 ( ) T A := D ′′ w1 , D2 ′′T w2 ,..., DN −1′′T wN −1 s D s 1 s T s w j := U j +1, s − U j , s ( j = 1, 2,..., N − 1).
  • 28. Stochastic Differential Equations 2 2 2 & − Aθ 2 + λ A Bα 2 + µ AC β ∑ p p p ∑ r r r + ∑ ϕ s AsDϕ s 2 2 PRSS (θ , f , g , h) = X 2 2 2 2 p =1 r =1 s =1 Let us assume that λ p = µr = ϕ s =: µ = δ : 2 • 2 & PRSS (θ , f , g , h) ≈ X − Aθ + δ 2 Lθ 2 , 2 2 where L is a 6( N − 1) × m matrix: 0 A1B 0 0 0 0 0 0 0    0 0 A2B 0 0 0 0 0 0  0  θ = (α T , β T , ϕ T ) . T 0 0 0 A1C 0 0 0 0 L :=  , 0 0 0 0 0 A2C 0 0 0  0 0 0 0 0 0 0 A1D 0    0 0 0 0 0 0 0 0 A2D 
  • 29. Stochastic Differential Equations 2 min & X − Aθ + µ Lθ 2 θ 2 2 Tikhonov regularization min t, t ,θ subject to & Aθ − X ≤ t, 2 Lθ 2 ≤ M Conic quadratic programming
  • 30. Stochastic Differential Equations min t t ,θ  0N A  t   −X  & subject to χ :=  T    + , 0m    θ  0   1 primal problem  06( N −1) L  t   06( N −1)  η :=    +  ,  0 0T   θ   M  m   χ ∈ LN +1 , η ∈ L6( N −1)+1 { LN + 1 := x = ( x1 , x2 ,..., xN )T ∈ R N +1 | xN+1 ≥ x12 + x2 + ... + xN 2 2 } & ( max ( X T , 0) κ 1 + 0T N −1) , − M κ 2 6( )  0T 1  0T N −1) 0 1  κ1 +  T κ2 =  , N 6( subject to  T  dual problem A 0m   L 0m   0m  κ 1 ∈ LN +1 , κ 2 ∈ L6 ( N −1)+1
  • 31. Stochastic Differential Equations (t , θ , χ ,η , κ1 , κ 2 ) is a primal dual optimal solution if and only if  0N A  t   −X & χ :=  T    + , 0m   θ   0    1  06( N −1) L  t   06( N −1)  η :=    +    0 0T   θ   M  m    0T 1  0T N −1) 0 1  κ1 +  T κ2 =   N 6(  T A 0m   L 0m   0m  κ 1T χ = 0, κ 2 η = 0 T κ 1 ∈ LN +1 , κ 2 ∈ L6( N −1)+1 χ ∈ LN +1 , η ∈ L6( N −1)+1.
  • 32. Stochastic Differential Equations Ex.: dVt = (θtT ( µ − rt ) + rt )Vt  dt − ct dt + θtT σVt dWt ,   drt = α ⋅ ( R − rt ) dt + σ t ⋅ rt τ ⋅ dWt , dX t = µ ( t , X t , Zt ) dt + σ ( t , X t , Zt ) dWt . nonlinear regression
  • 33. Nonlinear Regression 2 ∑ j ( j ) N min f ( β ) =  d − g x ,β   j =1  N =: ∑ f j2 ( β ) j =1 F ( β ) := ( f1 ( β ),..., f N ( β ) ) T min f ( β ) = F T ( β ) F ( β )
  • 34. Nonlinear Regression β k +1 := β k + qk • Gauss-Newton method : ∇F ( β )∇T F ( β )q = −∇F ( β ) F ( β ) • Levenberg-Marquardt method : λ ≥0 ( ) ∇F ( β )∇T F (β ) + λ I p q = −∇F ( β ) F ( β )
  • 35. Nonlinear Regression alternative solution min t, t,q subject to ( ∇F (β )∇ T ) F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) ) 2 ≤ t , t ≥ 0, || Lq || 2 ≤ M conic quadratic programming
  • 36. Nonlinear Regression alternative solution min t, t,q subject to ( ∇F (β )∇ T ) F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) ) 2 ≤ t , t ≥ 0, || Lq || 2 ≤ M conic quadratic programming interior point methods
  • 37. Nonlinear Regression alternative solution min t, t,q subject to ( ∇F (β )∇ T ) F ( β ) + λ I p q − ( −∇F ( β ) F ( β ) ) 2 ≤ t , t ≥ 0, || Lq || 2 ≤ M  1  min Q(q) := f ( β ) + qT ∇F ( β ) F ( β ) + qT ∇F ( β )∇T F ( β )q  q 2  subject to q 2 ≤∆  trust region
  • 38. Portfolio Optimization max utility ! or min costs ! martingale method: Optimization Problem Representation Problem or stochastic control
  • 39. Portfolio Optimization max utility ! or min costs ! martingale method: Parameter Estimation Optimization Problem Representation Problem or stochastic control
  • 40. Portfolio Optimization max utility ! or min costs ! martingale method: Optimization Problem Representation Problem Parameter Estimation or stochastic control
  • 41. Portfolio Optimization max utility ! or min costs ! martingale method: Optimization Problem Representation Problem Parameter Estimation or stochastic control
  • 42. References Aster, A., Borchers, B., and Thurber, C., Parameter Estimation and Inverse Problems, Academic Press, 2004. Boyd, S., and Vandenberghe, L., Convex Optimization, Cambridge University Press, 2004. Buja, A., Hastie, T., and Tibshirani, R., Linear smoothers and additive models, The Ann. Stat. 17, 2 (1989) 453-510. Fox, J., Nonparametric regression, Appendix to an R and S-Plus Companion to Applied Regression, Sage Publications, 2002. Friedman, J.H., Multivariate adaptive regression splines, Annals of Statistics 19, 1 (1991) 1-141. Friedman, J.H., and Stuetzle, W., Projection pursuit regression, J. Amer. Statist Assoc. 76 (1981) 817-823. Hastie, T., and Tibshirani, R., Generalized additive models, Statist. Science 1, 3 (1986) 297-310. Hastie, T., and Tibshirani, R., Generalized additive models: some applications, J. Amer. Statist. Assoc. 82, 398 (1987) 371-386. Hastie, T., Tibshirani, R., and Friedman, J.H., The Element of Statistical Learning, Springer, 2001. Hastie, T.J., and Tibshirani, R.J., Generalized Additive Models, New York, Chapman and Hall, 1990. Kloeden, P.E, Platen, E., and Schurz, H., Numerical Solution of SDE Through Computer Experiments, Springer Verlag, New York, 1994. Korn, R., and Korn, E., Options Pricing and Portfolio Optimization: Modern Methods of Financial Mathematics, Oxford University Press, 2001. Nash, G., and Sofer, A., Linear and Nonlinear Programming, McGraw-Hill, New York, 1996. Nemirovski, A., Lectures on modern convex optimization, Israel Institute of Technology (2002).
  • 43. References Nemirovski, A., Modern Convex Optimization, lecture notes, Israel Institute of Technology (2005). Nesterov, Y.E , and Nemirovskii, A.S., Interior Point Methods in Convex Programming, SIAM, 1993. Önalan, Ö., Martingale measures for NIG Lévy processes with applications to mathematical finance, presentation in: Advanced Mathematical Methods for Finance, Side, Antalya, Turkey, April 26-29, 2006. Taylan, P., Weber G.-W., and Kropat, E., Approximation of stochastic differential equations by additive models using splines and conic programming, International Journal of Computing Anticipatory Systems 21 (2008) 341-352. Taylan, P., Weber, G.-W., and A. Beck, New approaches to regression by generalized additive models and continuous optimization for modern applications in finance, science and techology, in the special issue in honour of Prof. Dr. Alexander Rubinov, of Optimization 56, 5-6 (2007) 1-24. Taylan, P., Weber, G.-W., and Yerlikaya, F., A new approach to multivariate adaptive regression spline by using Tikhonov regularization and continuous optimization, to appear in TOP, Selected Papers at the Occasion of 20th EURO Mini Conference (Neringa, Lithuania, May 20-23, 2008) 317- 322. Seydel, R., Tools for Computational Finance, Springer, Universitext, 2004. Stone, C.J., Additive regression and other nonparametric models, Annals of Statistics 13, 2 (1985) 689-705. Weber, G.-W., Taylan, P., Akteke-Öztürk, B., and Uğur, Ö., Mathematical and data mining contributions dynamics and optimization of gene-environment networks, in the special issue Organization in Matter from Quarks to Proteins of Electronic Journal of Theoretical Physics. Weber, G.-W., Taylan, P., Yıldırak, K., and Görgülü, Z.K., Financial regression and organization, to appear in the Special Issue on Optimization in Finance, of DCDIS-B (Dynamics of Continuous, Discrete and Impulsive Systems (Series B)).