SlideShare a Scribd company logo
1 of 34
Download to read offline
Measuring the constitutive behavior of viscoelastic
solids in the time and frequency domain using flat 
               punch nanoindentation
               punch nanoindentation


       E. G. Herbert, W. C. Oliver, A. L. Lumsdaine
           Agilent Technologies, Oak Ridge, TN

                      G. M. Pharr
           University of Tennessee, Knoxville;
       Materials Science and Technology Division,
      Oak Ridge National Laboratory, Oak Ridge, TN
NANOINDENTATION:  A CLASSIC APPLICATION
MOTIVATION
What we’re after:
– Constitutive behavior of small volumes of viscoelastic solids 
  subjected time varying excitation over as wide a range of time 
  or frequency as possible.
Extend the applicability of nanoindentation to
time‐dependent behavior
         p
 – Flat punch indentation, complex test geometry
 – DMA, triple clamp fixture, complex test geometry
 – Uniaxial compression simple test geometry
             compression, simple test geometry 
 • Material’s response in the frequency domain ‐ short time
 • Material’s response in the time domain ‐ long time
 • Bringing them together
 • Do it all with flat punch indentation
 • Material selection: Highly plasticized PVC
NANOINDENTATION & DMA COMPARISON



                          PDMS, Tg ~ 120oC

                          C. C. White et al., Mater. 
                          Res. Soc. Symp. Proc. 841
                          RSS              P     841
                          (2005) 
MODELING THE INSTRUMENTATION



• Measure time‐dependent material properties
           i   d    d         il         i
• Then we need to understand the time‐dependent 
  properties of the measurement tool
MODELING THE INSTRUMENTATION
Nano Indenter® XP:
                                           FREE SPACE




           Raw displacement, ± 1 mm
                                                     &&   &
                                         Fo e iωt = mh + Ch + Kh

                                                h(t ) = ho e i (ωt −φ )
      F
 K S = o cos φ + mω 2
      ho
                                                                            )
                                           ((
                                                                                     −1
                                                            )
                                      ho ⎡                                       ⎤
                                                                            12
                                                             2
                                        = ⎢ K − mω 2             + ω 2C 2        ⎥
       F sinφ                         Fo ⎣                                       ⎦
     C= o
       ho ω                                                 Cω
                                            tan φ =
                                                          K − mω 2
MODELING THE INSTRUMENTATION
Nano Indenter® XP:
                                           FREE SPACE
1 degree of
freedom, Z
fd       Z




           Raw displacement, ± 1 mm
                                                     &&   &
                                         Fo e iωt = mh + Ch + Kh

                                                h(t ) = ho e i (ωt −φ )
      F
 K S = o cos φ + mω 2
      ho
                                                                            )
                                           ((
                                                                                     −1
                                                            )
                                      ho ⎡                                       ⎤
                                                                            12
                                                             2
                                        = ⎢ K − mω 2             + ω 2C 2        ⎥
       F sinφ                         Fo ⎣                                       ⎦
     C= o
       ho ω                                                 Cω
                                            tan φ =
                                                          K − mω 2
MODELING THE INSTRUMENTATION
Nano Indenter® XP:
                                             FREE SPACE
1 degree of
freedom, Z
fd       Z




           Raw displacement, ± 1 mm
                                                       &&   &
                                           Fo e iωt = mh + Ch + Kh

                                                  h(t ) = ho e i (ωt −φ )
      F
 K S = o cos φ + mω 2
      ho                  FUNCTION OF
                                                                              )
                                             ((
                                                                                       −1
                                                              )
                                        ho ⎡                                       ⎤
                                                                              12
                                                               2
                                          = ⎢ K − mω 2             + ω 2C 2
                           POSITION                                                ⎥
       F sinφ                           Fo ⎣                                       ⎦
     C= o
       ho ω                                                   Cω
                                              tan φ =
                                                            K − mω 2
Measured stiffness and damping
                                         in free space position = 18 8 μm
                                                 space,           18.8
                                                                             1000
                                  200
   ffness, Fo / ho cos φ (N/m)




                                                                                   Dam
                                                                                     mping, Fo / ho si φ (N/
                                    0
                                                                             800
                                                  Measured stiffness
                                                  Model
                                  -200
                                                             Fo
                                              K s − mω 2 =      cos φ        600                                 FREE SPACE




                                                                                            F
                   c




                                                             ho
                                  -400
                                   400
                                                     Fo
                                              Cω =      sinφ
                                                     ho
                                                                             400
                                  -600
                                                  Measured damping




                                                                                                     in
                                                  Model
                                  -800
                                                                             200
                                 -1000
Stif




                                                                                                           /m)
                                                                             0
                                 -1200
                                          1                             10
                                                       Frequency (Hz)
Measured stiffness and damping
                                         in free space position = 18 8 μm
                                                 space,           18.8
                                                                             1000
                                  200
   ffness, Fo / ho cos φ (N/m)




                                                                                   Dam
                                                                                     mping, Fo / ho si φ (N/
                                    0
                                                                             800
                                                  Measured stiffness
                                                  Model
                                  -200
                                                             Fo
                                              K s − mω 2 =      cos φ        600                                   FREE SPACE




                                                                                            F
                   c




                                                             ho
                                  -400
                                   400
                                                     Fo
                                              Cω =      sinφ
                                                     ho
                                                                             400
                                  -600
                                                  Measured damping




                                                                                                     in
                                                  Model
                                  -800
                                                                             200
                                 -1000
Stif




                                                                                                           /m)
                                                                                                                 m = 12.15 g
                                                                             0
                                 -1200
                                                                                                                 Ks = 95.4 N/m
                                          1                             10
                                                                                                                 C = 2.81 Ns/m
                                                                                                                            /
                                                       Frequency (Hz)
ADD THE CONTACT

              COUPLED
                                                       Fo
                                                          cos φ + mω 2
                                                  S=
                                                       ho
                                                            Fo sinφ
                                                       C=
                                                            ho ω




            COUPLED RESPONSE = SAMPLE + INSTRUMENT



              ⎡F                         ⎤ ⎡F                                      ⎤
            = ⎢ o cos φ + mω 2           ⎥ − ⎢ o cos φ + mω 2                      ⎥
K contact
              ⎢ ho               coupled ⎥
                                         ⎦ ⎢o                   inst. (free space) ⎥
                                               h
              ⎣                              ⎣                                     ⎦
PHASOR DIAGRAM: PHYSICAL INSIGHT
                                     Damped, forced oscillator
 magina axis (damping, Cω, N/m)


                                                                            FREE SPACE
                         ,




                                                            Fo
                                                     Cω =      sinφ
                                                            ho
                                       Fo
                                       ho                        Fo
      ary




                                                  K s − mω 2 =      cos φ
                                                                 ho
                                       φ
Im




                                  Real axis (stiffness, Ks-mω2, N/m)
                                            (stiffness     mω
PHASOR DIAGRAM: PHYSICAL INSIGHT
                                     Damped, forced oscillator
 magina axis (damping, Cω, N/m)


                                                                            FREE SPACE
                         ,




                                                            Fo
                                                     Cω =      sinφ           COUPLED
                                                            ho
                                       Fo
                                       ho                        Fo
      ary




                                                  K s − mω 2 =      cos φ
                                                                 ho
                                       φ
Im




                                  Real axis (stiffness, Ks-mω2, N/m)
                                            (stiffness     mω
PHASOR DIAGRAM: PHYSICAL INSIGHT
 maginar axis (dampin Ceqω, N/m)

                                       Damped, forced oscillator
                                                                             FREE SPACE
                         ω
                    ng,




                                             Fo
                                             ho
                                                                Fo
                                                      Ceq ω =      sinφ        COUPLED
              (




                                                                ho

                                                                  Fo
                                                  K eq − mω 2 =      cos φ
       ry




                                                                  ho
                                         φ

                                   Real axis (stiffness Keq-mω2, N/m)
Im




                                             (stiffness,    mω
PHASOR DIAGRAM: PHYSICAL INSIGHT
 maginar axis (dampin Ceqω, N/m)

                                       Damped, forced oscillator
                                                                                  FREE SPACE
                                     Depends on sample properties and the
                                       p             ppp
                         ω




                                     geometry of the 
                                     contact
                    ng,




                                               Fo
                                               ho
                                                                     Fo
                                                           Ceq ω =      sinφ       COUPLED
                                                                                    COUPLED
              (




                                                                     ho

                                                                       Fo
                                                       K eq − mω 2 =      cos φ
       ry




                                                                       ho
                                          φ

                                   Real axis (stiffness Keq-mω2, N/m)
Im




                                             (stiffness,    mω
FROM S AND Cω → E’ AND E”
                                       Phasor diagram of                                                     Phasor diagram of a linear




                                                                        Imaginary axis (viscous stres Pa)
                  mping, Cω N/m)



                                   experimental measurements                                                     viscoelastic solid




                                                                                                    ss,
                                                                                                                                      E * = E ′ 2 + E ′′ 2
                          ω,




                                   SAMPLE RESPONSE
                                   SAMPLE RESPONSE
                                                                                                                                      E * = E ′ + iE ′′
                                          Fo
                                                                                                                    σo
Imaginary axis (dam




                                          ho
                                                                                                             E* =
                                                              F
                                                          Cω = o sinφ                                               εo
                                                              ho                                                                                  σo
                                                                                                                                                     sinφ
                                                                                                                                         E ′′ =
                                                                                                                                                  εo
        y




                                                                                y
                                                                                                                           σo
                                               Fo
                                                  cos φ
                                         S=                                                                         E′ =      cos φ
                                                                                                                           εo
                                               ho
                                    φ                                                                        φ


                                   Real i ( tiff
                                   R l axis (stiffness, S N/ )
                                                        S, N/m)                                             Real i ( l ti t
                                                                                                            R l axis (elastic stress, Pa)
                                                                                                                                      P)

                                         The fundamental equation of nanoindentation:
                                                   π1S                                                      π 1 Cω
                                         E′ =           (1 − ν 2 )                E ′′ =                           (1 − ν 2 )
                                                   2β A                                                     2β A
DMA VS. NANOINDENTATION
                                                  Highly plasticized polyvinylchloride,
                                                     the complex modulus at 22 oC
                 MPa)




                                                                                                DMA
                                 DMA
                                                                                        1       Nanoindentation
                                 Nanoindentation
                        10                                                            0.9
         odulus (M




                                 punch diameter = 100 μm




                                                                    Loss Factor (-)
                         9                                                            0.8
                                                                                      0.7
                         8
                                                                                      0.6
                         7
                                                                                      0.5
 torage Mo




                                                                         F
                        6
                                                                                      0.4
                        5
                                                                                      0.3
                        4
St




                                                                                      0.2
                        3
                                                                                            1                     10
                             1                    10
                                                                                                   Frequency ( )
                                                                                                      q    y (Hz)
                                    Frequency (Hz)
                                       q    y( )
NEXT STEPS

• Do a better job comparing flat punch experiments to tests 
  with simpler geometry.
  with simpler geometry

• Study creep compliance with a flat punch.

• Combine frequency specific results with creep 
  compliance.
COMPRESSION SAMPLES
COMPRESSION & INDENTATION
       Fo
E′ =      cos φ (geometry factor )
       ho
                                                10
      F
E ′′ = o sinφ (geometry f t )                               uniaxial compression
                                                              i il           i
          i         t factor                     9
      ho                                                    1 mm dia. flat punch
                                                 8
                                                            100 μm dia. flat punch
                                                 7

                                           a)
                                     E' (MPa
                                                6
                                                5
Geometry factors:
                                     E

                                                4
                   L
Compression:
                   A
                                                                              FREQUENCY DOMAIN
                                                3
                 π1 1
                      (1 − υ 2 )
Indentation:
                 2β A
                                                     0.01       0.1            1      10         100
                                                                Frequency (Hz)
Fo
E′ =      cos φ (geometry factor )
       ho
                                                        1
      F
E ′′ = o sinφ (geometry f t )                                       uniaxial compression
          i         t factor
      ho                                                            1 mm dia. flat punch
                                                                    100 μm dia. flat punch




                                     Loss Factor (-)
                                               r
Geometry factors:
                                                       0.1
                                                       01
                   L
Compression:
                   A
                                                                                       FREQUENCY DOMAIN
                 π1 1
                      (1 − υ 2 )
Indentation:
                 2β A
                                                             0.01        0.1            1      10         100
                                                                          Frequency (Hz)
Displace
                                                                                                          Compression:                       Indentation:
                                                             80
                      205

                                                                                                                              ΔL
                mN)


                                                                                                               P                                   P                  h
                                                             79.6
                                                                                                                       ε=
                                                                                                          σ=                          σα H =                  εα
Load On Sample (m




                                                                           ement Into Surface (μm)
                                        transient response

                                                                                                                              L
                                                                                                               A                                   A                  D
                                                             79.2
                      200

                                                                                                                       A ΔL                             2Rh(t )
                                                                                                                                          J c (t ) =
                                                                                                            D( t ) =
                                                             78.8
                                                                                                                                                       P (1 − ν 2 )
                                       6 mN step load
                                                                                                                       LP
     O




                                                             78.4
                                                             78 4
                      195

                                                                                                     10-6
                                                             78

                                                             77.6
                      190
                            2300 2400 2500 2600 2700 2800 2900
                                 Time On Sample (s)




                                                                    D(t) (m2/N)                                                      J (t), flat punch indentation
                                                                                                                                       ( ),      p
                                                                                                                                      c
                                                                                                       -7
                                                                                                                                     (diameter = 983 μm)
                                                                                                     10
                                                ε (t )
                                    D( t ) =                                                                                         D(t), uniaxial compression
                                                σo


                                                                                                                                          TIME DOMAIN
                                                                                                     10-8
                                                                                                        8

                                                                                                        10-3       10-2       10-1   100         101         102          103
                                                                                                                            Creep Time (s)
TRANSFORMING FROM FREQUENCY TO TIME


            4 term Prony series:

            FREQUENCY DOMAIN:

                             E′
                 J′ =
                        E ′2 + E ′′2
                           4
                                     Ji
             J ′ = J0 + ∑
                                 1+ τ i ω 2
                                       2
                          i =1


                 TIME DOMAIN:
                                           −t
                           4
           D(t ) = j 0 + ∑ J i (1 − e τ i )
                          i =1
6
                                                                                      Fo
                  0.05 Hz Oscillation
                                                                             E′ =        cos φ (geometry factor )
             4   1 mm Dia. Flat Punch
                                                                                      ho
Load (mN)



             2
                                                                                      Fo
                                                                             E ′′ =      sinφ (geometry factor )
             0
                                                                                      ho
            -2
L




                                                                 -7
                                                            5x10
            -4

                                                                                            FREQUENCY DOMAIN
            -6
                                                                 -7
                                              1200 18003x10
            -1800 -1200 -600
             1800 1200 600        0     600
                      Displacement (nm)
                                                            2x10‐7
                    E′
                                                J' (m2/N)
            J′ = 2
                E ′ + E ′′ 2
                                                                 -7
                                                            1x10               uniaxial compression
      Geometry factors:
                                                            8x10-8             1 mm dia. mm flat punch
                                                                 -8
                                                                  8
                                L                           6x10
            Compression:
                                A
                                                                 -8
                                                            4x10
                               π1 1
                                    (1 − υ 2 )
            Indentation:                                              0.01            0.1        1          10      100
                               2β A
                                                                                      Frequency (Hz)
J’ (FREQ. DOMAIN) FIT TO PRONY SERIES
                             FLAT PUNCH INDENTATION
                                                                                           FREQ. DOMAIN:
                  -7
            3.2x10                                              fit parameters:
                                                                                                          E′
                                                               τ = 7.5198E-03
                                                                                              J′ =
                                                                     7 5198E 03
                                                                1
                                                                                                     E ′2 + E ′′2
            2.8x10-7                                           τ2 = 3.8620E+00
                                                               τ3 = 4.1034E-02
                             fit parameters:
                  -7
            2.4x10                                                                                      4
                            J = 3.6960E-08
                                                                                                                  Ji
                                                                                          J ′ = J0 + ∑
                                                               τ4 = 2.9883E-01
                             0
       N)
J' (m2/N




                            J = 8 2830E 08
                                8.2830E-08
                                                                                                              1+ τ i ω 2
                                                                                                                    2
                  -7         1
                                                                                                       i =1
             2x10           J = 4.6922E-08
                             2
                            J = 8.8235E-08
            1.6x10-7         3
                            J = 7.5425E-08
J




                             4
                                                                                             TIME DOMAIN:
                  -7
            1.2x10
                                                                                                                        −t
                                                                                                        4
                                                                                        D(t ) = j 0 + ∑ J i (1 − e τ i )
                  -8                 nanoindentation data
             8x10                    4 term parametric model
                                                                                                       i =1
                                     curve
                                     c r e fit
                  -8
             4x10

                     10-2        10-1          100      101         102           103
                                               ω (rad/s)
MAXIMIZING THE TIME AND FREQUENCY RANGE

              5x10-7
                                  D(t), uniaxial compression,
                                                                                          Combining indentation 
                  -7              measured in the time
              3x10                domain                                                  data acquired in the 
                                                                                          frequency and time 
D(t) (m2/N)




                                                                      0.1
                             0 .1                                                         domain allows the PVC 
                                                                            = 10 s
                                  = 0.002 s
                                                                    0.01 H
                                                                         Hz
                            50 Hz
                                                                                          reference material to be 
                  -7                                                                      characterized over nearly 
              1x10
              8x10-8                                                                      6 decades in time (2x10‐3
D




                                                      Predicted from flat punch
                                                                                          to 6x102).
                  -8                                  nanoindentation data
              6x10
                                                      acquired in the frequency
                                                      domain, 0.01 < f < 50 Hz
              4x10-8

                       -5       -4      -3     -2      -1       0        1      2     3
                     10      10      10       10    10      10        10     10      10
                                          Creep Time (s)
                                              p      ()
CONCLUSIONS

* Dynamic nanoindentation of viscoelastic solids requires robust 
  dynamic characterization of the measurement tool itself, a known 
  contact geometry, steady‐state harmonic motion, and linear 
  viscoelasticity.
* In the frequency domain Sneddon’s stiffness equation works
  In the frequency domain, Sneddon s stiffness equation works 
  remarkably well.
* The Prony series model provides a valid path to transition between the 
          y              p                p
  frequency and time domains.  
* It is possible to combine frequency and time domain data from a flat 
  punch indentation experiment and therefore characterize the sample’s 
                                            f                           ’
  behavior over the widest possible range of time and frequency.
GEOMETRY OF THE CONTACT

Circular flat punch:             Advantages:
                                    – Known contact area
                                       Known contact area
                                    – Area not affected by creep or 
                                       thermal drift 
                                 Disadvantages:
                                     – Full contact
                                     – Stress concentration
                                 Any tip geometry, consider:
                                     – Steady‐state harmonic motion
                                     – Linear viscoelasticity
                                        Linear viscoelasticity
                                          • Compression distance
                                          • Oscillation amplitude
Pre-Compression Dependence
                                                                               3
                                    3 μm
                 MPa)

                                                 punch dia. = 103 µm
                                    5 μm
                                    10 μm
           ulus (M



                                    1 μm
                                    15




                                                                                     Loss F
                                                  Storage
                                    20 μm
                        10
                                                                               1
                              ho = 50 nm
Storage Modu




                                                                                          Factor (-)
                                                                               0.8
                                                                               0.6
      e




                                                                               0.4
                                                                  AVG LF (-)
                                                                  AVG LF (-)
                                   Loss factor                    AVG LF (-)
S




                                                                  AVG LF (-)
                                                                         ()

                                                                               0.2
                        1
                              1                       10
                                           Frequency (Hz)
                                           F         (H )
Amplitude Independence
                                                                                    3
                 MPa)

                                                      punch dia. = 103 µm
                                       50 nm
                                       100 nm
           ulus (M


                                       500 nm




                                                                                          Loss F
                                       1500 nm
                        10             3000 nm           Storage
                                                                                    1
                                 comp. dist. = 3 µm
                                    p            µ
Storage Modu




                                                                                               Factor (-)
                                                                                    0.8
                                                                                    0.6
      e




                                                                                    0.4
                                                                       AVG LF (-)
                                                                       AVG LF (-)
                                        Loss factor                    AVG LF (-)
                                                                       AVG LF (-)
S




                                                                       AVG LF (-)

                                                                                    0.2
                        1
                             1                             10
                                           Frequency (Hz)
                                           F         (H )
22 C, 1 mm dia. punch
                     15 C, 100 μm dia. punch
                     10 C, 100 μm dia. punch
           100       5 C, 100 μm dia. punch
     Pa)
E' (MP




           10




                 1                        10
                         Frequency (Hz)
22 C, 1 mm dia. punch
                             15 C 100 μm dia. punch
                                C,        dia
                             10 C, 100 μm dia. punch
           100
                             5 C, 100 μm dia. punch
     Pa)


                     Shift factors:
E' (MP


                     5 to 22: 200
                     10 to 22: 140
                      15 to 22: 8




           10



                                                         4    5
                 1        10           100       1000   10   10
                                      ω*At (rad/s)
1000
                      loss factor
                                                           1




                                                            Loss Factor (-)
           100                  storage modulus
      a)




                                                               s
E' (MPa




           10

                            Freq range: 1 to 10 kHz
                                                           0.1
                                                           01
                                                  4    5
                 10   100        1000         10      10
                       ω (At) (rad/s)
THANKS EVERYONE!

More Related Content

Similar to Basic Nanoindentation Of Viscoelastic Solids

Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite Limits
Matthew Leingang
 

Similar to Basic Nanoindentation Of Viscoelastic Solids (14)

QTPIE and water (Part 2)
QTPIE and water (Part 2)QTPIE and water (Part 2)
QTPIE and water (Part 2)
 
Prediction of Financial Processes
Prediction of Financial ProcessesPrediction of Financial Processes
Prediction of Financial Processes
 
Elastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin FilmsElastic Modulus And Residual Stress Of Thin Films
Elastic Modulus And Residual Stress Of Thin Films
 
Lesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite LimitsLesson 6: Continuity II, Infinite Limits
Lesson 6: Continuity II, Infinite Limits
 
Dr. Amir Nejat
Dr. Amir NejatDr. Amir Nejat
Dr. Amir Nejat
 
Proj Stat
Proj StatProj Stat
Proj Stat
 
Regression Theory
Regression TheoryRegression Theory
Regression Theory
 
Semi-Infinite and Robust Optimization
Semi-Infinite and Robust OptimizationSemi-Infinite and Robust Optimization
Semi-Infinite and Robust Optimization
 
Lesson 4: Limits Involving Infinity
Lesson 4: Limits Involving InfinityLesson 4: Limits Involving Infinity
Lesson 4: Limits Involving Infinity
 
Evgeniya Balmashnova
Evgeniya BalmashnovaEvgeniya Balmashnova
Evgeniya Balmashnova
 
Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.Cosmin Crucean: Perturbative QED on de Sitter Universe.
Cosmin Crucean: Perturbative QED on de Sitter Universe.
 
Notes 4-4
Notes 4-4Notes 4-4
Notes 4-4
 
Presentation
PresentationPresentation
Presentation
 
Lesson8
Lesson8Lesson8
Lesson8
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Victor Rentea
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Exploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with MilvusExploring Multimodal Embeddings with Milvus
Exploring Multimodal Embeddings with Milvus
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...Apidays New York 2024 - The value of a flexible API Management solution for O...
Apidays New York 2024 - The value of a flexible API Management solution for O...
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
Web Form Automation for Bonterra Impact Management (fka Social Solutions Apri...
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
Connector Corner: Accelerate revenue generation using UiPath API-centric busi...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 

Basic Nanoindentation Of Viscoelastic Solids

  • 1. Measuring the constitutive behavior of viscoelastic solids in the time and frequency domain using flat  punch nanoindentation punch nanoindentation E. G. Herbert, W. C. Oliver, A. L. Lumsdaine Agilent Technologies, Oak Ridge, TN G. M. Pharr University of Tennessee, Knoxville; Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN
  • 3. MOTIVATION What we’re after: – Constitutive behavior of small volumes of viscoelastic solids  subjected time varying excitation over as wide a range of time  or frequency as possible. Extend the applicability of nanoindentation to time‐dependent behavior p – Flat punch indentation, complex test geometry – DMA, triple clamp fixture, complex test geometry – Uniaxial compression simple test geometry compression, simple test geometry  • Material’s response in the frequency domain ‐ short time • Material’s response in the time domain ‐ long time • Bringing them together • Do it all with flat punch indentation • Material selection: Highly plasticized PVC
  • 4. NANOINDENTATION & DMA COMPARISON PDMS, Tg ~ 120oC C. C. White et al., Mater.  Res. Soc. Symp. Proc. 841 RSS P 841 (2005) 
  • 5. MODELING THE INSTRUMENTATION • Measure time‐dependent material properties i d d il i • Then we need to understand the time‐dependent  properties of the measurement tool
  • 6. MODELING THE INSTRUMENTATION Nano Indenter® XP: FREE SPACE Raw displacement, ± 1 mm && & Fo e iωt = mh + Ch + Kh h(t ) = ho e i (ωt −φ ) F K S = o cos φ + mω 2 ho ) (( −1 ) ho ⎡ ⎤ 12 2 = ⎢ K − mω 2 + ω 2C 2 ⎥ F sinφ Fo ⎣ ⎦ C= o ho ω Cω tan φ = K − mω 2
  • 7. MODELING THE INSTRUMENTATION Nano Indenter® XP: FREE SPACE 1 degree of freedom, Z fd Z Raw displacement, ± 1 mm && & Fo e iωt = mh + Ch + Kh h(t ) = ho e i (ωt −φ ) F K S = o cos φ + mω 2 ho ) (( −1 ) ho ⎡ ⎤ 12 2 = ⎢ K − mω 2 + ω 2C 2 ⎥ F sinφ Fo ⎣ ⎦ C= o ho ω Cω tan φ = K − mω 2
  • 8. MODELING THE INSTRUMENTATION Nano Indenter® XP: FREE SPACE 1 degree of freedom, Z fd Z Raw displacement, ± 1 mm && & Fo e iωt = mh + Ch + Kh h(t ) = ho e i (ωt −φ ) F K S = o cos φ + mω 2 ho FUNCTION OF ) (( −1 ) ho ⎡ ⎤ 12 2 = ⎢ K − mω 2 + ω 2C 2 POSITION ⎥ F sinφ Fo ⎣ ⎦ C= o ho ω Cω tan φ = K − mω 2
  • 9. Measured stiffness and damping in free space position = 18 8 μm space, 18.8 1000 200 ffness, Fo / ho cos φ (N/m) Dam mping, Fo / ho si φ (N/ 0 800 Measured stiffness Model -200 Fo K s − mω 2 = cos φ 600 FREE SPACE F c ho -400 400 Fo Cω = sinφ ho 400 -600 Measured damping in Model -800 200 -1000 Stif /m) 0 -1200 1 10 Frequency (Hz)
  • 10. Measured stiffness and damping in free space position = 18 8 μm space, 18.8 1000 200 ffness, Fo / ho cos φ (N/m) Dam mping, Fo / ho si φ (N/ 0 800 Measured stiffness Model -200 Fo K s − mω 2 = cos φ 600 FREE SPACE F c ho -400 400 Fo Cω = sinφ ho 400 -600 Measured damping in Model -800 200 -1000 Stif /m) m = 12.15 g 0 -1200 Ks = 95.4 N/m 1 10 C = 2.81 Ns/m / Frequency (Hz)
  • 11. ADD THE CONTACT COUPLED Fo cos φ + mω 2 S= ho Fo sinφ C= ho ω COUPLED RESPONSE = SAMPLE + INSTRUMENT ⎡F ⎤ ⎡F ⎤ = ⎢ o cos φ + mω 2 ⎥ − ⎢ o cos φ + mω 2 ⎥ K contact ⎢ ho coupled ⎥ ⎦ ⎢o inst. (free space) ⎥ h ⎣ ⎣ ⎦
  • 12. PHASOR DIAGRAM: PHYSICAL INSIGHT Damped, forced oscillator magina axis (damping, Cω, N/m) FREE SPACE , Fo Cω = sinφ ho Fo ho Fo ary K s − mω 2 = cos φ ho φ Im Real axis (stiffness, Ks-mω2, N/m) (stiffness mω
  • 13. PHASOR DIAGRAM: PHYSICAL INSIGHT Damped, forced oscillator magina axis (damping, Cω, N/m) FREE SPACE , Fo Cω = sinφ COUPLED ho Fo ho Fo ary K s − mω 2 = cos φ ho φ Im Real axis (stiffness, Ks-mω2, N/m) (stiffness mω
  • 14. PHASOR DIAGRAM: PHYSICAL INSIGHT maginar axis (dampin Ceqω, N/m) Damped, forced oscillator FREE SPACE ω ng, Fo ho Fo Ceq ω = sinφ COUPLED ( ho Fo K eq − mω 2 = cos φ ry ho φ Real axis (stiffness Keq-mω2, N/m) Im (stiffness, mω
  • 15. PHASOR DIAGRAM: PHYSICAL INSIGHT maginar axis (dampin Ceqω, N/m) Damped, forced oscillator FREE SPACE Depends on sample properties and the p ppp ω geometry of the  contact ng, Fo ho Fo Ceq ω = sinφ COUPLED COUPLED ( ho Fo K eq − mω 2 = cos φ ry ho φ Real axis (stiffness Keq-mω2, N/m) Im (stiffness, mω
  • 16. FROM S AND Cω → E’ AND E” Phasor diagram of Phasor diagram of a linear Imaginary axis (viscous stres Pa) mping, Cω N/m) experimental measurements viscoelastic solid ss, E * = E ′ 2 + E ′′ 2 ω, SAMPLE RESPONSE SAMPLE RESPONSE E * = E ′ + iE ′′ Fo σo Imaginary axis (dam ho E* = F Cω = o sinφ εo ho σo sinφ E ′′ = εo y y σo Fo cos φ S= E′ = cos φ εo ho φ φ Real i ( tiff R l axis (stiffness, S N/ ) S, N/m) Real i ( l ti t R l axis (elastic stress, Pa) P) The fundamental equation of nanoindentation: π1S π 1 Cω E′ = (1 − ν 2 ) E ′′ = (1 − ν 2 ) 2β A 2β A
  • 17. DMA VS. NANOINDENTATION Highly plasticized polyvinylchloride, the complex modulus at 22 oC MPa) DMA DMA 1 Nanoindentation Nanoindentation 10 0.9 odulus (M punch diameter = 100 μm Loss Factor (-) 9 0.8 0.7 8 0.6 7 0.5 torage Mo F 6 0.4 5 0.3 4 St 0.2 3 1 10 1 10 Frequency ( ) q y (Hz) Frequency (Hz) q y( )
  • 18. NEXT STEPS • Do a better job comparing flat punch experiments to tests  with simpler geometry. with simpler geometry • Study creep compliance with a flat punch. • Combine frequency specific results with creep  compliance.
  • 20. COMPRESSION & INDENTATION Fo E′ = cos φ (geometry factor ) ho 10 F E ′′ = o sinφ (geometry f t ) uniaxial compression i il i i t factor 9 ho 1 mm dia. flat punch 8 100 μm dia. flat punch 7 a) E' (MPa 6 5 Geometry factors: E 4 L Compression: A FREQUENCY DOMAIN 3 π1 1 (1 − υ 2 ) Indentation: 2β A 0.01 0.1 1 10 100 Frequency (Hz)
  • 21. Fo E′ = cos φ (geometry factor ) ho 1 F E ′′ = o sinφ (geometry f t ) uniaxial compression i t factor ho 1 mm dia. flat punch 100 μm dia. flat punch Loss Factor (-) r Geometry factors: 0.1 01 L Compression: A FREQUENCY DOMAIN π1 1 (1 − υ 2 ) Indentation: 2β A 0.01 0.1 1 10 100 Frequency (Hz)
  • 22. Displace Compression: Indentation: 80 205 ΔL mN) P P h 79.6 ε= σ= σα H = εα Load On Sample (m ement Into Surface (μm) transient response L A A D 79.2 200 A ΔL 2Rh(t ) J c (t ) = D( t ) = 78.8 P (1 − ν 2 ) 6 mN step load LP O 78.4 78 4 195 10-6 78 77.6 190 2300 2400 2500 2600 2700 2800 2900 Time On Sample (s) D(t) (m2/N) J (t), flat punch indentation ( ), p c -7 (diameter = 983 μm) 10 ε (t ) D( t ) = D(t), uniaxial compression σo TIME DOMAIN 10-8 8 10-3 10-2 10-1 100 101 102 103 Creep Time (s)
  • 23. TRANSFORMING FROM FREQUENCY TO TIME 4 term Prony series: FREQUENCY DOMAIN: E′ J′ = E ′2 + E ′′2 4 Ji J ′ = J0 + ∑ 1+ τ i ω 2 2 i =1 TIME DOMAIN: −t 4 D(t ) = j 0 + ∑ J i (1 − e τ i ) i =1
  • 24. 6 Fo 0.05 Hz Oscillation E′ = cos φ (geometry factor ) 4 1 mm Dia. Flat Punch ho Load (mN) 2 Fo E ′′ = sinφ (geometry factor ) 0 ho -2 L -7 5x10 -4 FREQUENCY DOMAIN -6 -7 1200 18003x10 -1800 -1200 -600 1800 1200 600 0 600 Displacement (nm) 2x10‐7 E′ J' (m2/N) J′ = 2 E ′ + E ′′ 2 -7 1x10 uniaxial compression Geometry factors: 8x10-8 1 mm dia. mm flat punch -8 8 L 6x10 Compression: A -8 4x10 π1 1 (1 − υ 2 ) Indentation: 0.01 0.1 1 10 100 2β A Frequency (Hz)
  • 25. J’ (FREQ. DOMAIN) FIT TO PRONY SERIES FLAT PUNCH INDENTATION FREQ. DOMAIN: -7 3.2x10 fit parameters: E′ τ = 7.5198E-03 J′ = 7 5198E 03 1 E ′2 + E ′′2 2.8x10-7 τ2 = 3.8620E+00 τ3 = 4.1034E-02 fit parameters: -7 2.4x10 4 J = 3.6960E-08 Ji J ′ = J0 + ∑ τ4 = 2.9883E-01 0 N) J' (m2/N J = 8 2830E 08 8.2830E-08 1+ τ i ω 2 2 -7 1 i =1 2x10 J = 4.6922E-08 2 J = 8.8235E-08 1.6x10-7 3 J = 7.5425E-08 J 4 TIME DOMAIN: -7 1.2x10 −t 4 D(t ) = j 0 + ∑ J i (1 − e τ i ) -8 nanoindentation data 8x10 4 term parametric model i =1 curve c r e fit -8 4x10 10-2 10-1 100 101 102 103 ω (rad/s)
  • 26. MAXIMIZING THE TIME AND FREQUENCY RANGE 5x10-7 D(t), uniaxial compression, Combining indentation  -7 measured in the time 3x10 domain data acquired in the  frequency and time  D(t) (m2/N) 0.1 0 .1 domain allows the PVC  = 10 s = 0.002 s 0.01 H Hz 50 Hz reference material to be  -7 characterized over nearly  1x10 8x10-8 6 decades in time (2x10‐3 D Predicted from flat punch to 6x102). -8 nanoindentation data 6x10 acquired in the frequency domain, 0.01 < f < 50 Hz 4x10-8 -5 -4 -3 -2 -1 0 1 2 3 10 10 10 10 10 10 10 10 10 Creep Time (s) p ()
  • 27. CONCLUSIONS * Dynamic nanoindentation of viscoelastic solids requires robust  dynamic characterization of the measurement tool itself, a known  contact geometry, steady‐state harmonic motion, and linear  viscoelasticity. * In the frequency domain Sneddon’s stiffness equation works In the frequency domain, Sneddon s stiffness equation works  remarkably well. * The Prony series model provides a valid path to transition between the  y p p frequency and time domains.   * It is possible to combine frequency and time domain data from a flat  punch indentation experiment and therefore characterize the sample’s  f ’ behavior over the widest possible range of time and frequency.
  • 28. GEOMETRY OF THE CONTACT Circular flat punch: Advantages: – Known contact area Known contact area – Area not affected by creep or  thermal drift  Disadvantages: – Full contact – Stress concentration Any tip geometry, consider: – Steady‐state harmonic motion – Linear viscoelasticity Linear viscoelasticity • Compression distance • Oscillation amplitude
  • 29. Pre-Compression Dependence 3 3 μm MPa) punch dia. = 103 µm 5 μm 10 μm ulus (M 1 μm 15 Loss F Storage 20 μm 10 1 ho = 50 nm Storage Modu Factor (-) 0.8 0.6 e 0.4 AVG LF (-) AVG LF (-) Loss factor AVG LF (-) S AVG LF (-) () 0.2 1 1 10 Frequency (Hz) F (H )
  • 30. Amplitude Independence 3 MPa) punch dia. = 103 µm 50 nm 100 nm ulus (M 500 nm Loss F 1500 nm 10 3000 nm Storage 1 comp. dist. = 3 µm p µ Storage Modu Factor (-) 0.8 0.6 e 0.4 AVG LF (-) AVG LF (-) Loss factor AVG LF (-) AVG LF (-) S AVG LF (-) 0.2 1 1 10 Frequency (Hz) F (H )
  • 31. 22 C, 1 mm dia. punch 15 C, 100 μm dia. punch 10 C, 100 μm dia. punch 100 5 C, 100 μm dia. punch Pa) E' (MP 10 1 10 Frequency (Hz)
  • 32. 22 C, 1 mm dia. punch 15 C 100 μm dia. punch C, dia 10 C, 100 μm dia. punch 100 5 C, 100 μm dia. punch Pa) Shift factors: E' (MP 5 to 22: 200 10 to 22: 140 15 to 22: 8 10 4 5 1 10 100 1000 10 10 ω*At (rad/s)
  • 33. 1000 loss factor 1 Loss Factor (-) 100 storage modulus a) s E' (MPa 10 Freq range: 1 to 10 kHz 0.1 01 4 5 10 100 1000 10 10 ω (At) (rad/s)