SlideShare a Scribd company logo
4thシンポジウム
スキル委員会活動報告:
2017年度版スキルチェック&タスクリスト
2017年10月23日
一般社団法人 データサイエンティスト協会 スキル委員会
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
アジェンダ
1
1.スキル委員会の活動
2.2017年度版スキルチェックリスト公開(本日公開)
3.データサイエンス業務のタスクリスト公開
(IPAとの協働作業、2017/4公開)
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. 2
データサイエンティスト協会
スキル委員会とは?
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル委員会とは・・・
3
そもそもの「データサイエンティスト協会設立の目的」
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル委員会とは・・・
4
2014
年度
 データサイエンティストの人材像、ミッション、スキルカテゴリ、ス
キルレベルの定義の発表
2015
年度
 データサイエンティストに必要とされるスキルを「データサイエン
ティストスキルチェックリスト」としてまとめ、第1版を公開
 「データサイエンティストのミッション、スキルセット、定義、スキル
レベル」について2015年版を発表
活動内容
2016
年度
 スキルチェックのPR、普及活動
 各種コンテンツの取材、発信
 スキルチェックリストの更新
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル委員会とは・・・
5
2014
年度
 データサイエンティストの人材像、ミッション、スキルカテゴリ、ス
キルレベルの定義の発表
2015
年度
 データサイエンティストに必要とされるスキルを「データサイエン
ティストスキルチェックリスト」としてまとめ、第1版を公開
 「データサイエンティストのミッション、スキルセット、定義、スキル
レベル」について2015年版を発表
活動内容
2016
年度
 スキルチェックのPR、普及活動
 各種コンテンツの取材、発信
 スキルチェックリストの更新
2017
年度
 データサイエンティストのタスクリスト作成(IPA協働)
 2017年度版スキルチェックリスト作成
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
3つのスキルセット
6
ビジネス力
(business problem
solving)
データ
サイエンス
(data science)
データ
エンジニアリング
(data
engineering)
課題背景を理解した上で、
ビジネス課題を整理し、
解決する力
情報処理、人工知
能、統計学などの
情報科学系の知恵
を理解し、使う力
データサイエンスを
意味のある形に使えるよ
うにし、実装、運用でき
るようにする力
資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
データサイエンティストとは
7
* ここで「ビジネス」とは社会に役に立つ意味のある活動全般を指す
データサイエンス力、
データエンジニアリング力をベースに
データから価値を創出し、
ビジネス課題に答えを出す
プロフェッショナル
資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキルレベル
8
フル・
データサイエンティスト
シニア・
データサイエンティスト
アソシエート・
データサイエンティスト
アシスタント・
データサイエンティスト
データ使い
• 棟梁レベル
• 業界を代表するレベル
• 独り立ちレベル
• 見習いレベル
• 賢くデータを器用に使
える人
目安スキルレベル 対応できる課題
• 対象組織全体
• 産業領域全体
• 複合的な事業全体
• 担当プロジェクト全体
• 担当サービス全体
• プロジェクトの担当テーマ
デ
ー
タ
サ
イ
エ
ン
テ
ィ
ス
ト
普通の人 • 特になし
一
般
人 • 担当業務
資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル表 2014年版 vs 2017年版(項目数)
9
領域計
★★★
棟梁レベル
(フル)
★★
一人前レベル
(アソシエート)
ビジネス
123
44
49
30
データ
サイエンス
180
58
68
54
データ
エンジニアリング
119
37
43
39★
見習いレベル
(アシスタント)
(422)
(139)
(160)
(123)
レベル
計
資料:データサイエンティスト協会スキル委員会討議
90
67
71
228
52
38
39
129
42
38
71
100
184
125
148
457
2017年版
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキルごとのレベル数、必須数の比較
10
資料:データサイエンティスト協会スキル委員会討議
25.0%
24.0%
33.0%
26.5%
75.0%
76.0%
67.0%
73.5%
0% 25% 50% 75% 100%
データサイエンス
データエンジニアリング
ビジネス
TOTAL
必須スキル それ以外
29.4%
29.5%
20.0%
27.4%
39.5%
40.3%
42.0%
40.3%
31.1%
30.2%
38.0%
32.4%
0% 25% 50% 75% 100%
ータサイエンス
ンジニアリング
ビジネス
TOTAL
★(1つ) ★★(2つ) ★★★(3つ)
データ
サイエンス
データエン
ジニアリング
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:データサイエンスの場合
11
統計数理基礎 統計数理応用
予測
検定/判断
グルーピング
性質・関係性の把握
サンプリング
データ加工
機械学習
時系列分析
言語処理
画像処理
音声処理
パターン発見
グラフィカルモデル
基礎技術
解析技術
非構造化
データ処理
シミュレーション
/データ同化
Data Visualization
Static Dynamic探索的
資料:データサイエンティスト協会スキル委員会討議
2015年版
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:データサイエンスの場合
12
統計数理基礎
予測
検定/判断
グルーピング
性質・関係性の把握
サンプリング
データ加工
機械学習
時系列分析
言語処理 画像・動画処理
音声/音楽処理
パターン発見
グラフィカルモデル
基礎技術
解析技術
非構造化
データ処理
シミュレーション
/データ同化
データ可視化
Static Dynamic探索的
資料:データサイエンティスト協会スキル委員会討議
最適化
分析プロセス
データの理解・検証データ
課題解決
意味合いの抽出・洞察
2017年版
16
17
11
14
14
5
8
37
5
23 4
20
7
13
8
5
3
3
10
5
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
レベル感の目安:データサイエンス(2015年度)
13
業界代表
レベル
棟梁
レベル
一人前
レベル
見習い
レベル
手法の
実行
基本概念
の理解
手法の
組合せ・
最適化
データ
加工
設計
非線形
解析
機械
学習
シミュレー
ション
最適化
画像処理
音声処理
強烈に
素なデータ
の処理
言語
処理
扱えるデータ
2軸の
可視化
多変量・挙
動の可視化
リアルタイム
可視化
データ可視化解析技術習熟度
多変量
解析
資料:データサイエンティスト協会スキル委員会討議
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:エンジニアリングの場合
14
環境構築
データ
収集
守る技術
実装技術
基礎技術
データ
蓄積
データ
加工
プログラミング
ITセキュリティ
データ
構造
データ
共有
資料:データサイエンティスト協会スキル委員会討議
2015年版
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:エンジニアリングの場合
15
環境構築
データ
収集
守る技術
実装技術
基礎技術
データ
蓄積
データ
加工
プログラミング
ITセキュリティ
データ
構造
データ
共有
資料:データサイエンティスト協会スキル委員会討議
2017年版
21
22
15
16 11 17 13 14
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:ビジネスの場合
16
データ
課題解決
基礎能力
論理的思考
行動規範
プロセス
データ
入手
データの
理解・検証
意味合いの
抽出・洞察
活動マネジメント
事業に実装する
ビジネス
課題解決
資料:データサイエンティスト協会スキル委員会討議
2015年版
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
スキル領域の広がり:ビジネスの場合
17
データ
課題解決
基礎能力
論理的思考
行動規範
プロジェクトプロセス
データ
入手
データの
理解・検証
意味合いの
抽出・洞察
活動マネジメント
事業に実装するビジネス
課題解決
資料:データサイエンティスト協会スキル委員会討議
2017年版
解決
知財
20
8
6
4 3 5 4
20
18
12
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
課題解決のフェーズによっても求められるスキルは変わる
18
目的・テーマ設定
問題定義
アプローチの設計
処理・分析
解決
データ
サイエンス
データ
エンジニアリング
ビジネス
資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
タスクリストのカテゴリ
19
分
析
プ
ロ
ジ
ェ
ク
ト
の
立
ち
上
げ
と
組
み
込
み
後
の
業
務
設
計
デ
ー
タ
の
作
成
と
収
集
構造化
データ加工
+
解析用
データ準備
評
価
Phase I Phase II Phase III Phase IV
非構造化
データ処理
業
務
へ
の
組
み
込
み
と
評
価
データ解析
(予測・パターン発見
・最適化等)
データ可視化
資料:IPA ITSS+ データサイエンス領域のタスク https://www.ipa.go.jp/jinzai/itss/itssplus.html
Copyright © 2017 The Japan DataScientist Society. All Rights Reserved.
タスクに必要なスキル
20
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
データサイエンス力
データエンジニアリング力
ビジネス力
資料:IPA ITSS+策定メンバーおよびデータサイエンティスト協会スキル委員会討議
%
タスク中分類別に必要なスキル平均数の分布

More Related Content

What's hot

First step of UX Monitoring 〜UXモニタリングこと始め〜
First step of UX Monitoring 〜UXモニタリングこと始め〜First step of UX Monitoring 〜UXモニタリングこと始め〜
First step of UX Monitoring 〜UXモニタリングこと始め〜
Taro Yoshioka
 
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
Yutaka KATAYAMA
 
Zotero紹介
Zotero紹介Zotero紹介
Zotero紹介
Takara Ishimoto
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
The Japan DataScientist Society
 
「いい検索」を考える
「いい検索」を考える「いい検索」を考える
「いい検索」を考える
Shuryo Uchida
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
Yahoo!デベロッパーネットワーク
 
2023-03-23_Spiral.AI
2023-03-23_Spiral.AI2023-03-23_Spiral.AI
2023-03-23_Spiral.AI
SasakiYuichi1
 
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
The Japan DataScientist Society
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
Recruit Technologies
 
形態素解析
形態素解析形態素解析
形態素解析
Works Applications
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計
Takahiro Kubo
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法
Takeshi Mikami
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPT
nlab_utokyo
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
Satoshi Hara
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
Shiga University, RIKEN
 
道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際
Ichigaku Takigawa
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
ARISE analytics
 
自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep LearningYuta Kikuchi
 
自然言語処理向け データアノテーションとそのユースケース
自然言語処理向け データアノテーションとそのユースケース自然言語処理向け データアノテーションとそのユースケース
自然言語処理向け データアノテーションとそのユースケース
Deep Learning Lab(ディープラーニング・ラボ)
 
機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018
Takahiro Kubo
 

What's hot (20)

First step of UX Monitoring 〜UXモニタリングこと始め〜
First step of UX Monitoring 〜UXモニタリングこと始め〜First step of UX Monitoring 〜UXモニタリングこと始め〜
First step of UX Monitoring 〜UXモニタリングこと始め〜
 
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
人工知能技術を用いた各医学画像処理の基礎 (2022/09/09)
 
Zotero紹介
Zotero紹介Zotero紹介
Zotero紹介
 
スキルチェックリスト 2017年版
スキルチェックリスト 2017年版スキルチェックリスト 2017年版
スキルチェックリスト 2017年版
 
「いい検索」を考える
「いい検索」を考える「いい検索」を考える
「いい検索」を考える
 
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
深層学習による自然言語処理入門: word2vecからBERT, GPT-3まで
 
2023-03-23_Spiral.AI
2023-03-23_Spiral.AI2023-03-23_Spiral.AI
2023-03-23_Spiral.AI
 
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
データサイエンティスト協会スキル委員会2ndシンポジウム講演資料
 
リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介リクルート式 自然言語処理技術の適応事例紹介
リクルート式 自然言語処理技術の適応事例紹介
 
形態素解析
形態素解析形態素解析
形態素解析
 
機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計機械学習で泣かないためのコード設計
機械学習で泣かないためのコード設計
 
レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法レコメンドアルゴリズムの基本と周辺知識と実装方法
レコメンドアルゴリズムの基本と周辺知識と実装方法
 
大規模言語モデルとChatGPT
大規模言語モデルとChatGPT大規模言語モデルとChatGPT
大規模言語モデルとChatGPT
 
アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法アンサンブル木モデル解釈のためのモデル簡略化法
アンサンブル木モデル解釈のためのモデル簡略化法
 
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
構造方程式モデルによる因果推論: 因果構造探索に関する最近の発展
 
道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際
 
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
【論文読み会】Deep Clustering for Unsupervised Learning of Visual Features
 
自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning自然言語処理のためのDeep Learning
自然言語処理のためのDeep Learning
 
自然言語処理向け データアノテーションとそのユースケース
自然言語処理向け データアノテーションとそのユースケース自然言語処理向け データアノテーションとそのユースケース
自然言語処理向け データアノテーションとそのユースケース
 
機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018機械学習で泣かないためのコード設計 2018
機械学習で泣かないためのコード設計 2018
 

Viewers also liked

深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて
ryosuke-kojima
 
Pythonと機械学習によるWebセキュリティの自動化
Pythonと機械学習によるWebセキュリティの自動化Pythonと機械学習によるWebセキュリティの自動化
Pythonと機械学習によるWebセキュリティの自動化
Isao Takaesu
 
Pythonistaデビュー #PyNyumon 2016/5/31
Pythonistaデビュー #PyNyumon 2016/5/31Pythonistaデビュー #PyNyumon 2016/5/31
Pythonistaデビュー #PyNyumon 2016/5/31
Shinichi Nakagawa
 
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
Netwalker lab kapper
 
Kaggle meetup #3 instacart 2nd place solution
Kaggle meetup #3 instacart 2nd place solutionKaggle meetup #3 instacart 2nd place solution
Kaggle meetup #3 instacart 2nd place solution
Kazuki Onodera
 
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
満徳 関
 
Pycon2017
Pycon2017Pycon2017
Pycon2017
Yuta Kashino
 
リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例
Tetsutaro Watanabe
 
エンジニアのための経営学
エンジニアのための経営学エンジニアのための経営学
エンジニアのための経営学
Michitaka Yumoto
 
これからはじめるインフラエンジニア
これからはじめるインフラエンジニアこれからはじめるインフラエンジニア
これからはじめるインフラエンジニア外道 父
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
hoxo_m
 
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか? Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
Google Cloud Platform - Japan
 

Viewers also liked (12)

深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて深層学習と確率プログラミングを融合したEdwardについて
深層学習と確率プログラミングを融合したEdwardについて
 
Pythonと機械学習によるWebセキュリティの自動化
Pythonと機械学習によるWebセキュリティの自動化Pythonと機械学習によるWebセキュリティの自動化
Pythonと機械学習によるWebセキュリティの自動化
 
Pythonistaデビュー #PyNyumon 2016/5/31
Pythonistaデビュー #PyNyumon 2016/5/31Pythonistaデビュー #PyNyumon 2016/5/31
Pythonistaデビュー #PyNyumon 2016/5/31
 
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
Windows10タブレットに各種Linuxディストリを入れて遊ぼう 2017年度東京Spring版
 
Kaggle meetup #3 instacart 2nd place solution
Kaggle meetup #3 instacart 2nd place solutionKaggle meetup #3 instacart 2nd place solution
Kaggle meetup #3 instacart 2nd place solution
 
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
外部委託から内製化アジャイルへの切替支援を通してわかったこと #augj
 
Pycon2017
Pycon2017Pycon2017
Pycon2017
 
リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例リクルートを支える横断データ基盤と機械学習の適用事例
リクルートを支える横断データ基盤と機械学習の適用事例
 
エンジニアのための経営学
エンジニアのための経営学エンジニアのための経営学
エンジニアのための経営学
 
これからはじめるインフラエンジニア
これからはじめるインフラエンジニアこれからはじめるインフラエンジニア
これからはじめるインフラエンジニア
 
機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門機械学習のためのベイズ最適化入門
機械学習のためのベイズ最適化入門
 
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか? Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
Cloud OnAir #04 今話題の機械学習・GCP で何ができるのか?
 

Similar to データサイエンティスト協会スキル委員会4thシンポジウム講演資料

データサイエンティスト協会 会員制度説明資料
データサイエンティスト協会 会員制度説明資料データサイエンティスト協会 会員制度説明資料
データサイエンティスト協会 会員制度説明資料
The Japan DataScientist Society
 
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートよりデータサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
The Japan DataScientist Society
 
データサイエンティストの就労意識
データサイエンティストの就労意識データサイエンティストの就労意識
データサイエンティストの就労意識
The Japan DataScientist Society
 
企画開発運用部門の協調とは
企画開発運用部門の協調とは企画開発運用部門の協調とは
企画開発運用部門の協調とは
UNIRITA Incorporated
 
データサイエンティスト スキルチェックシート(抜粋版)
データサイエンティスト スキルチェックシート(抜粋版)データサイエンティスト スキルチェックシート(抜粋版)
データサイエンティスト スキルチェックシート(抜粋版)
The Japan DataScientist Society
 
データサイエンティスト スキルチェックリスト
データサイエンティスト スキルチェックリストデータサイエンティスト スキルチェックリスト
データサイエンティスト スキルチェックリスト
The Japan DataScientist Society
 
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせますSHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
Nanae Matsushima
 
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
BrainPad Inc.
 
20141211 qpits国連ハビタット福岡プレゼン
20141211 qpits国連ハビタット福岡プレゼン20141211 qpits国連ハビタット福岡プレゼン
20141211 qpits国連ハビタット福岡プレゼン
QPITS_Official
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例
Hirono Jumpei
 
超高速開発の基礎概念 20141119 0
超高速開発の基礎概念 20141119 0超高速開発の基礎概念 20141119 0
超高速開発の基礎概念 20141119 0
正善 大島
 
機械学習 - MNIST の次のステップ
機械学習 - MNIST の次のステップ機械学習 - MNIST の次のステップ
機械学習 - MNIST の次のステップ
Daiyu Hatakeyama
 
【スクー】業務改善のためのデータサイエンス
【スクー】業務改善のためのデータサイエンス【スクー】業務改善のためのデータサイエンス
【スクー】業務改善のためのデータサイエンスIssei Kurahashi
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!デベロッパーネットワーク
 
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
Kuniharu(州晴) AKAHANE(赤羽根)
 
ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展
Recruit Technologies
 
(2017.9.7) Neo4jご紹介
(2017.9.7) Neo4jご紹介(2017.9.7) Neo4jご紹介
(2017.9.7) Neo4jご紹介
Mitsutoshi Kiuchi
 
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
Ryusuke Ashiya
 
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
Ridge-i
 

Similar to データサイエンティスト協会スキル委員会4thシンポジウム講演資料 (20)

データサイエンティスト協会 会員制度説明資料
データサイエンティスト協会 会員制度説明資料データサイエンティスト協会 会員制度説明資料
データサイエンティスト協会 会員制度説明資料
 
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートよりデータサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
データサイエンティストのリアル-2015年~2019年 一般(個人)会員アンケートより
 
データサイエンティストの就労意識
データサイエンティストの就労意識データサイエンティストの就労意識
データサイエンティストの就労意識
 
企画開発運用部門の協調とは
企画開発運用部門の協調とは企画開発運用部門の協調とは
企画開発運用部門の協調とは
 
データサイエンティスト スキルチェックシート(抜粋版)
データサイエンティスト スキルチェックシート(抜粋版)データサイエンティスト スキルチェックシート(抜粋版)
データサイエンティスト スキルチェックシート(抜粋版)
 
データサイエンティスト スキルチェックリスト
データサイエンティスト スキルチェックリストデータサイエンティスト スキルチェックリスト
データサイエンティスト スキルチェックリスト
 
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせますSHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
SHANON Marketing Conference 2017_シャノンも選んだTableauがあなたの会社のデータを語らせます
 
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
データサイエンティストとは? そのスキル/ナレッジレベル定義の必要性
 
20141211 qpits国連ハビタット福岡プレゼン
20141211 qpits国連ハビタット福岡プレゼン20141211 qpits国連ハビタット福岡プレゼン
20141211 qpits国連ハビタット福岡プレゼン
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例
 
深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例	深層学習の導入で抱える課題とユースケース実例
深層学習の導入で抱える課題とユースケース実例
 
超高速開発の基礎概念 20141119 0
超高速開発の基礎概念 20141119 0超高速開発の基礎概念 20141119 0
超高速開発の基礎概念 20141119 0
 
機械学習 - MNIST の次のステップ
機械学習 - MNIST の次のステップ機械学習 - MNIST の次のステップ
機械学習 - MNIST の次のステップ
 
【スクー】業務改善のためのデータサイエンス
【スクー】業務改善のためのデータサイエンス【スクー】業務改善のためのデータサイエンス
【スクー】業務改善のためのデータサイエンス
 
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
Yahoo!プロモーション広告のビックデータ基盤を支える技術と今後の展望
 
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
Redmineチューニングの実際と限界(旧資料) - Redmine performance tuning(old), See Below.
 
ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展ビッグデータ&データマネジメント展
ビッグデータ&データマネジメント展
 
(2017.9.7) Neo4jご紹介
(2017.9.7) Neo4jご紹介(2017.9.7) Neo4jご紹介
(2017.9.7) Neo4jご紹介
 
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
分析のモダナイズへのヒント:データ価値を最大化するビジュアル分析とエンタープライズ組織への展開 - 経営課題解決シンポジウム (2018/09/28)
 
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
[Ridge-i] Deep Learning Lab - ディープラーニング 導入の課題と実例
 

More from The Japan DataScientist Society

学生から見たデータサイエンティスト
学生から見たデータサイエンティスト学生から見たデータサイエンティスト
学生から見たデータサイエンティスト
The Japan DataScientist Society
 
AI・データ利活用継続の鍵はビジネススキル
AI・データ利活用継続の鍵はビジネススキルAI・データ利活用継続の鍵はビジネススキル
AI・データ利活用継続の鍵はビジネススキル
The Japan DataScientist Society
 
コニカミノルタにおけるデータドリブンPLMの取り組み
コニカミノルタにおけるデータドリブンPLMの取り組みコニカミノルタにおけるデータドリブンPLMの取り組み
コニカミノルタにおけるデータドリブンPLMの取り組み
The Japan DataScientist Society
 
エントリー層向けセミナー#04『はじめての最適化』
エントリー層向けセミナー#04『はじめての最適化』エントリー層向けセミナー#04『はじめての最適化』
エントリー層向けセミナー#04『はじめての最適化』
The Japan DataScientist Society
 
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
The Japan DataScientist Society
 
機械学習の先端センシングへの適用と展望
機械学習の先端センシングへの適用と展望機械学習の先端センシングへの適用と展望
機械学習の先端センシングへの適用と展望
The Japan DataScientist Society
 
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
The Japan DataScientist Society
 
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からーコグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
The Japan DataScientist Society
 
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
The Japan DataScientist Society
 
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
The Japan DataScientist Society
 
データサイエンスの全体像とデータサイエンティスト
データサイエンスの全体像とデータサイエンティストデータサイエンスの全体像とデータサイエンティスト
データサイエンスの全体像とデータサイエンティスト
The Japan DataScientist Society
 
分析せよ!と言われて困っているあなたへの処方箋
分析せよ!と言われて困っているあなたへの処方箋分析せよ!と言われて困っているあなたへの処方箋
分析せよ!と言われて困っているあなたへの処方箋
The Japan DataScientist Society
 
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
The Japan DataScientist Society
 
データサイエンス業務と「ツール」
データサイエンス業務と「ツール」データサイエンス業務と「ツール」
データサイエンス業務と「ツール」
The Japan DataScientist Society
 
データサイエンスの全体像
データサイエンスの全体像データサイエンスの全体像
データサイエンスの全体像
The Japan DataScientist Society
 
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
The Japan DataScientist Society
 
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
The Japan DataScientist Society
 
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例 〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例  〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例  〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例 〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
The Japan DataScientist Society
 
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
The Japan DataScientist Society
 
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
The Japan DataScientist Society
 

More from The Japan DataScientist Society (20)

学生から見たデータサイエンティスト
学生から見たデータサイエンティスト学生から見たデータサイエンティスト
学生から見たデータサイエンティスト
 
AI・データ利活用継続の鍵はビジネススキル
AI・データ利活用継続の鍵はビジネススキルAI・データ利活用継続の鍵はビジネススキル
AI・データ利活用継続の鍵はビジネススキル
 
コニカミノルタにおけるデータドリブンPLMの取り組み
コニカミノルタにおけるデータドリブンPLMの取り組みコニカミノルタにおけるデータドリブンPLMの取り組み
コニカミノルタにおけるデータドリブンPLMの取り組み
 
エントリー層向けセミナー#04『はじめての最適化』
エントリー層向けセミナー#04『はじめての最適化』エントリー層向けセミナー#04『はじめての最適化』
エントリー層向けセミナー#04『はじめての最適化』
 
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
基礎から学ぶ! インダストリアルIoTの実現に必須のセンサ計測と予知保全の動向
 
機械学習の先端センシングへの適用と展望
機械学習の先端センシングへの適用と展望機械学習の先端センシングへの適用と展望
機械学習の先端センシングへの適用と展望
 
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
『機械学習による故障予測・異常検知 事例紹介とデータ分析プロジェクト推進ポイント』
 
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からーコグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
コグニティブ・ファクトリーの実像とIoT時代に求められるデータ・サイエンティストとは?ー製造業の視点からー
 
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
製造現場におけるAI×IoT導入と利活用~IoTによる設備のモニタリングとAIによる設備監視の高度化~
 
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
基礎から学ぶ!インダストリアルIoTの実現に必須のセンサ計測とエッジコンピューティング
 
データサイエンスの全体像とデータサイエンティスト
データサイエンスの全体像とデータサイエンティストデータサイエンスの全体像とデータサイエンティスト
データサイエンスの全体像とデータサイエンティスト
 
分析せよ!と言われて困っているあなたへの処方箋
分析せよ!と言われて困っているあなたへの処方箋分析せよ!と言われて困っているあなたへの処方箋
分析せよ!と言われて困っているあなたへの処方箋
 
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
データ分析に必要なスキルをつけるためのツール~Jupyter notebook、r連携、機械学習からsparkまで~
 
データサイエンス業務と「ツール」
データサイエンス業務と「ツール」データサイエンス業務と「ツール」
データサイエンス業務と「ツール」
 
データサイエンスの全体像
データサイエンスの全体像データサイエンスの全体像
データサイエンスの全体像
 
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
データサイエンティスト協会 木曜勉強会 #09 『意志の力が拓くシステム~最適化の適用事例から見たデータ活用システムの現在と未来~』
 
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
データサイエンティスト協会 木曜勉強会#07『Ruby、R、HTML5を用いたデータ解析・データビジュアライゼーション』
 
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例 〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例  〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例  〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
データサイエンティスト協会 木曜勉強会 #04 『クラスター分析の基礎と総合通販会社での活用例 〜 ビッグデータ時代にクラスター分析はどう変わるか 〜』
 
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
データサイエンティスト協会 木曜勉強会 #02 講演2:『ビッグデータの0次分析手法と適用例のご紹介 ~俯瞰から始まる企業内ビッグデータの活用~』
 
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
データサイエンティスト協会 木曜勉強会 #02『クレンジングからビジュアライズまで!実践!データ解析超入門!』
 

Recently uploaded

02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
QlikPresalesJapan
 
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
hfujii2
 
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
QlikPresalesJapan
 
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
QlikPresalesJapan
 
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
QlikPresalesJapan
 
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
QlikPresalesJapan
 

Recently uploaded (6)

02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
02_3_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データの管理(簡単なデータ変換)」
 
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
株式会社アーシャルデザイン_事業説明資料_システム開発_受託開発_WEB開発_Salesforce
 
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
02_4_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「系列と影響分析」
 
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
03 Qlik Cloud データ統合 しっかり学ぶ勉強会 #3 データ変換 タスク監視
 
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
02_2_20240611_Qlik Cloud データ統合 しっかり学ぶ勉強会 #2 - データパイプラインの作成「データマートの作成」
 
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
02_1_20240611_Qlik Cloudデータ統合_データパイプラインの作成「基本動作」
 

データサイエンティスト協会スキル委員会4thシンポジウム講演資料

  • 2. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. アジェンダ 1 1.スキル委員会の活動 2.2017年度版スキルチェックリスト公開(本日公開) 3.データサイエンス業務のタスクリスト公開 (IPAとの協働作業、2017/4公開)
  • 3. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. 2 データサイエンティスト協会 スキル委員会とは?
  • 4. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル委員会とは・・・ 3 そもそもの「データサイエンティスト協会設立の目的」
  • 5. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル委員会とは・・・ 4 2014 年度  データサイエンティストの人材像、ミッション、スキルカテゴリ、ス キルレベルの定義の発表 2015 年度  データサイエンティストに必要とされるスキルを「データサイエン ティストスキルチェックリスト」としてまとめ、第1版を公開  「データサイエンティストのミッション、スキルセット、定義、スキル レベル」について2015年版を発表 活動内容 2016 年度  スキルチェックのPR、普及活動  各種コンテンツの取材、発信  スキルチェックリストの更新
  • 6. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル委員会とは・・・ 5 2014 年度  データサイエンティストの人材像、ミッション、スキルカテゴリ、ス キルレベルの定義の発表 2015 年度  データサイエンティストに必要とされるスキルを「データサイエン ティストスキルチェックリスト」としてまとめ、第1版を公開  「データサイエンティストのミッション、スキルセット、定義、スキル レベル」について2015年版を発表 活動内容 2016 年度  スキルチェックのPR、普及活動  各種コンテンツの取材、発信  スキルチェックリストの更新 2017 年度  データサイエンティストのタスクリスト作成(IPA協働)  2017年度版スキルチェックリスト作成
  • 7. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. 3つのスキルセット 6 ビジネス力 (business problem solving) データ サイエンス (data science) データ エンジニアリング (data engineering) 課題背景を理解した上で、 ビジネス課題を整理し、 解決する力 情報処理、人工知 能、統計学などの 情報科学系の知恵 を理解し、使う力 データサイエンスを 意味のある形に使えるよ うにし、実装、運用でき るようにする力 資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  • 8. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. データサイエンティストとは 7 * ここで「ビジネス」とは社会に役に立つ意味のある活動全般を指す データサイエンス力、 データエンジニアリング力をベースに データから価値を創出し、 ビジネス課題に答えを出す プロフェッショナル 資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  • 9. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキルレベル 8 フル・ データサイエンティスト シニア・ データサイエンティスト アソシエート・ データサイエンティスト アシスタント・ データサイエンティスト データ使い • 棟梁レベル • 業界を代表するレベル • 独り立ちレベル • 見習いレベル • 賢くデータを器用に使 える人 目安スキルレベル 対応できる課題 • 対象組織全体 • 産業領域全体 • 複合的な事業全体 • 担当プロジェクト全体 • 担当サービス全体 • プロジェクトの担当テーマ デ ー タ サ イ エ ン テ ィ ス ト 普通の人 • 特になし 一 般 人 • 担当業務 資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  • 10. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル表 2014年版 vs 2017年版(項目数) 9 領域計 ★★★ 棟梁レベル (フル) ★★ 一人前レベル (アソシエート) ビジネス 123 44 49 30 データ サイエンス 180 58 68 54 データ エンジニアリング 119 37 43 39★ 見習いレベル (アシスタント) (422) (139) (160) (123) レベル 計 資料:データサイエンティスト協会スキル委員会討議 90 67 71 228 52 38 39 129 42 38 71 100 184 125 148 457 2017年版
  • 11. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキルごとのレベル数、必須数の比較 10 資料:データサイエンティスト協会スキル委員会討議 25.0% 24.0% 33.0% 26.5% 75.0% 76.0% 67.0% 73.5% 0% 25% 50% 75% 100% データサイエンス データエンジニアリング ビジネス TOTAL 必須スキル それ以外 29.4% 29.5% 20.0% 27.4% 39.5% 40.3% 42.0% 40.3% 31.1% 30.2% 38.0% 32.4% 0% 25% 50% 75% 100% ータサイエンス ンジニアリング ビジネス TOTAL ★(1つ) ★★(2つ) ★★★(3つ) データ サイエンス データエン ジニアリング
  • 12. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:データサイエンスの場合 11 統計数理基礎 統計数理応用 予測 検定/判断 グルーピング 性質・関係性の把握 サンプリング データ加工 機械学習 時系列分析 言語処理 画像処理 音声処理 パターン発見 グラフィカルモデル 基礎技術 解析技術 非構造化 データ処理 シミュレーション /データ同化 Data Visualization Static Dynamic探索的 資料:データサイエンティスト協会スキル委員会討議 2015年版
  • 13. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:データサイエンスの場合 12 統計数理基礎 予測 検定/判断 グルーピング 性質・関係性の把握 サンプリング データ加工 機械学習 時系列分析 言語処理 画像・動画処理 音声/音楽処理 パターン発見 グラフィカルモデル 基礎技術 解析技術 非構造化 データ処理 シミュレーション /データ同化 データ可視化 Static Dynamic探索的 資料:データサイエンティスト協会スキル委員会討議 最適化 分析プロセス データの理解・検証データ 課題解決 意味合いの抽出・洞察 2017年版 16 17 11 14 14 5 8 37 5 23 4 20 7 13 8 5 3 3 10 5
  • 14. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. レベル感の目安:データサイエンス(2015年度) 13 業界代表 レベル 棟梁 レベル 一人前 レベル 見習い レベル 手法の 実行 基本概念 の理解 手法の 組合せ・ 最適化 データ 加工 設計 非線形 解析 機械 学習 シミュレー ション 最適化 画像処理 音声処理 強烈に 素なデータ の処理 言語 処理 扱えるデータ 2軸の 可視化 多変量・挙 動の可視化 リアルタイム 可視化 データ可視化解析技術習熟度 多変量 解析 資料:データサイエンティスト協会スキル委員会討議
  • 15. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:エンジニアリングの場合 14 環境構築 データ 収集 守る技術 実装技術 基礎技術 データ 蓄積 データ 加工 プログラミング ITセキュリティ データ 構造 データ 共有 資料:データサイエンティスト協会スキル委員会討議 2015年版
  • 16. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:エンジニアリングの場合 15 環境構築 データ 収集 守る技術 実装技術 基礎技術 データ 蓄積 データ 加工 プログラミング ITセキュリティ データ 構造 データ 共有 資料:データサイエンティスト協会スキル委員会討議 2017年版 21 22 15 16 11 17 13 14
  • 17. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:ビジネスの場合 16 データ 課題解決 基礎能力 論理的思考 行動規範 プロセス データ 入手 データの 理解・検証 意味合いの 抽出・洞察 活動マネジメント 事業に実装する ビジネス 課題解決 資料:データサイエンティスト協会スキル委員会討議 2015年版
  • 18. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. スキル領域の広がり:ビジネスの場合 17 データ 課題解決 基礎能力 論理的思考 行動規範 プロジェクトプロセス データ 入手 データの 理解・検証 意味合いの 抽出・洞察 活動マネジメント 事業に実装するビジネス 課題解決 資料:データサイエンティスト協会スキル委員会討議 2017年版 解決 知財 20 8 6 4 3 5 4 20 18 12
  • 19. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. 課題解決のフェーズによっても求められるスキルは変わる 18 目的・テーマ設定 問題定義 アプローチの設計 処理・分析 解決 データ サイエンス データ エンジニアリング ビジネス 資料:データサイエンティスト協会プレスリリース (2014.12.10) http://www.datascientist.or.jp/news/2014/pdf/1210.pdf
  • 20. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. タスクリストのカテゴリ 19 分 析 プ ロ ジ ェ ク ト の 立 ち 上 げ と 組 み 込 み 後 の 業 務 設 計 デ ー タ の 作 成 と 収 集 構造化 データ加工 + 解析用 データ準備 評 価 Phase I Phase II Phase III Phase IV 非構造化 データ処理 業 務 へ の 組 み 込 み と 評 価 データ解析 (予測・パターン発見 ・最適化等) データ可視化 資料:IPA ITSS+ データサイエンス領域のタスク https://www.ipa.go.jp/jinzai/itss/itssplus.html
  • 21. Copyright © 2017 The Japan DataScientist Society. All Rights Reserved. タスクに必要なスキル 20 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 データサイエンス力 データエンジニアリング力 ビジネス力 資料:IPA ITSS+策定メンバーおよびデータサイエンティスト協会スキル委員会討議 % タスク中分類別に必要なスキル平均数の分布