T.chhay


                                      VIII. tMNcakp©it
                                   Eccentric Connections
8>1> ]TahrN_sMrab;tMNcakp©itExemples of Eccentric Connections
         tMNcakp©itCatMNmYyEdlkMlaMgpÁÜbminkat;tamTIRbCMuTMgn;rbs;eRKOgP¢ab; b¤TWkbnSar. Rb
sinebItMNmanbøg;sIuemRTI eKeRbITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;rbs;eRKOgP¢ab; b¤TwkbnSarCacM
nuceKal (reference point) ehIycMgayEkgBIExSskmμrbs;kMlaMgeTATIRbCMuTMgn;RtUv)aneKehAfa cM
Nakp©it. eTaHbICatMNCaeRcInGacrgnUvkMlaMgcakp©it EtkñúgkrNICaeRcIncMNakp©itTaMgenaHmantMél
tUcEdlGacecal)an.
         kartP¢ab; framed beam EdlbgðajenAkñúgrUbTI 8>1 a CaRbePTmYyéntMNcakp©it. kart
P¢ab;enH eTaHCakñúgTMrg;tP¢ab;edayb‘ULúg b¤edaypSark¾eday vaRtUv)aneKeRbICaTUeTAsMrab;tP¢ab;FñwmeTA
ssr. eTaHbICacMNakp©itkñúgtMNRbePTenHGacecal)ank¾eday EtvaRtUv)anykmkbgðajenATIenH.
vamankartP¢ab;BIrepSgKñaKW kartP¢ab;BIEdkEkgeTAEdkFñwm nigkartP¢ab;EdkEkgeTAEdkssr. kart
P¢ab;TaMgenHbgðajBItMNcakp©iteKalBIrRbePT³ tMNcMNakp©itEdlbegáItEtkMlaMgkat;TTwgenAkñúg
eRKOgP¢ab; b¤TwkbnSar nigtMNcMNakp©itEdlbegáItTaMgkMlaMgkat;TTwg nigkMlaMgTaj.




       RbsinebIeNBicarNaFñwm nigEdkEkgdac;edayELkBIssr dUcEdlbgðajenAkñúgrUbTI 8>1 b
enaHvabgðajy:asc,as;fa Rbtikmμ R eFVIGMeBIcMNakp©it e BITIRbCMuTMgn;rbs;RkLaépÞrbs;eRKOgP¢ab;enA
                                            292                                         tMNcakp©it
T.chhay


kñúgRTnugFñwm. dUcenHeRKOgP¢ab;TaMgenHrgTaMgkMlaMgkat;TTwg nigm:Um:g;KUr (couple) EdlsßitenAelI
rbs;tMN ehIybegáItCakugRtaMgkMlaMgkat;rmYl (torsional shearing stress).
         RbsinebIssr nigEdkEkgRtUv)anpþac;ecjBIFñwm dUcbgðajenAkñúgrUbTI 8>3 c enaHeyIgeXIj
y:agc,as;fa eRKOgP¢ab;enAkñúgsøabssrrgnRbtikmμ R EdlmanGMeBIenAcMNakp©it e BIbøg;rbs;eRKOg
P¢ab; edaybegáIt couple dUcBImun. b:uEnþ kñúgkrNIenH bnÞúkminsßitenAkñúgbøg;rbs;eRKOgP¢ab; dUcenH
couple eFVIeGayEpñkxagelIrbs;tMNrgkugRtaMgTaj ehIyEpñkxageRkamrgkugRtaMgsgát;. dUcenH

eRKOgP¢ab;enAEpñkxagelIbMputrbs;tMNrgTaMgkMlaMgkat;TTwg nigkMlaMgTaj.
         eTaHbICa eyIgeRbIkartP¢ab;edayb‘ULúgenATIenHedIm,Ibgðajk¾eday k¾kartP¢ab;edaykarpSar
Gacbgðajy:agsmBaØBIkarrgEtkMlaMgkat;TTwg b¤kMlaMgkat;TTwgrYmTaMgkMlaMgTaj.
         RbtikmμbnÞúkemKuNGtibrmasMrab;tMN framed beam epSg²RtUv)aneGayenAkñúg Table 9-2
rhUtdl; 9-12 in Part 9 of the Manual, “Simple Shear and PR Moment Connections” (Volume
II). cMNap©itEdltUcEmnETnsMrab;tMNenHGacecal)an ehIyeKBicarNaEtkMlaMgkat;TTwgEtb:ueNÑaH.



8>2> tMNcMNakp©itedayb‘ULúg³ EtkMlaMgkat;
          Eccentric Bolted Connections: Shear only
       rUbTI 8>2 EdlbgðajBI column bracket connection Ca]TahrN_BItMNedayb‘ULúgEdlrg
kMlaMgkat;TTwgcakp©it. eKmanviFIBIrsMrab;edaHRsaybBaðaenH³ traditional elastic analysis ¬viPaK
eGLasÞicburaN¦ nigviFIEdlmanlkçN³suRkitCag ¬b:uEnþsμúKsμajCag¦ Ca ultimate strength
analsysis ¬viPaKersIusþg;cugeRkay¦. viFITaMgBIrenHnwgRtUv)anbgðaj.




                                            293                                        tMNcakp©it
T.chhay


          Elastic Analysis
          enAkñúgrUbTI 8>3 a, RkLaépÞkMlaMgkat;TTwgrbs;eRKOgP¢ab; nigbnÞúkRtUv)anbgðajdac;eday
ELkBIssr nig bracket plate. eKGacdak;bnÞúkcMNakp©it P CamYynwgbnÞúkdUcKñaEdlmanGMeBIRtg;
TIRbCMuTMgn;rYmCamYynwg couple, M = Pe Edl e CacMNakp©it. RbsinebIeyIgeFVIEbbenH bnÞúknwgman
GMeBIcMp©it ehIyeKsnμt;faeRKOgP¢ab;nImYy²Tb;Tl;nUvcMENkbnÞúkesμI²Kña KW pc = P / n Edl n CacMnYn
eRKOgP¢ab;. kMlaMgeRKOgP¢ab;Edl)anBI couple Gacrk)anedaysnμt;fakugRtaMgkMlaMgkat;TTwgenAkñúg
eRKOgP¢ab;CalT§plrbs; torsion énmuxkat;EdlekItBIRkLaépÞmuxkat;rbs;eRKOgP¢ab;. RbsinebI
eyIgeFVIkarsnμt;EbbenH kugRtaMgkMMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²GacRtUv)anrkBIrUbmnþkMlaMgrmYl
           fv =
                 Md
                   J
                                                                                     ¬*>!¦
Edl d = cMgayBITIRbCMuTMgn;rbs;RkLaépÞeTAcMnucEdlkugRtaMgkMBugRtUv)ankMNt;
           J = m:Um:g;niclPaBb:UElrba;RkLaépÞeFobTIRbCMuTMgn;

ehIykugRtaMg f v EkgeTAnwg d . eTaHbICarUbmnþkMlaMgrmYlGnuvtþn_)anEtcMeBaHragsIuLaMg EteKeRbIva
enATIenHedIm,IsnSMsMéc edaysar yielding stress mantMéLFMCagkugRtaMgBitR)akd.




      RbsinebIeKeRbIRTwsþIbTGkS½Rsb (parallel-axis theorem) ehIyeKecalm:Um:g;niclPaBb:UElr
énRkLaépÞeFobG½kSTIRbCMuTMgn;rbs;va enaHeKGackMNt; J sMrab;RkLaépÞsrubKW

                                           294                                       tMNcakp©it
T.chhay



          J = ∑ Ad 2 = A ∑ d 2
          edayRKb;eRKOgP¢ab;manRkLaépÞ A dUcKña. enaHsmIkar *>! GacRtUv)ansresrCa
                  Md
          fv =
                 A∑ d 2
          ehIykMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²EdlekIteLIgeday couple KW
                           Md          Md
          Pm = Af v = A            =
                          A∑ d 2       ∑d2
dUcenHbgÁúMkMlaMgkat;TTwgTaMgBIrEdl)ankMNt;RtUv)anbUkbEnßmedaybBaÄredIm,ITTYl)ankMlaMgpÁÜb P
dUcbgðajenAkñúgrUbTI 8>3 b EdleyIgykeRKOgP¢ab;enAxagsþaMEpñkxageRkameKbMputmkbgðaj. enA
eBlEdleKkMNt;)ankMlaMgpÁÜbFMCageKbMput TMhMeRKOgP¢ab;k¾RtUv)aneRCIserIsedIm,ITb;Tl;kMlaMgenaH.
eKminGaceFVIkarGegátedIm,IrkeRKOgP¢ab;EdleRKaHfñak;CaeKeT KWeKRtUveFVIkarKNnaCatMélelx.
       CaTUeTA vamanlkçN³gayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg. sMrab;
eRKOgP¢ab;nImYy² bgÁúMkMlaMgedk nigbgÁúMkMlaMgQrEdl)anBIkMlaMgkat;TTwgedaypÞal;KW
        pcx = x
                 P
                 n
                         nig pcy = Pny
Edl Px nig Py CabgÁúMkMlaMgtamTis x nigTis y rbs;kMlaMgsrub P dUcEdl)anbgðajenAkñúgrUbTI
8>4. eKGacrkbgÁúMkMlaMgedk nigQrEdlekIteLIgedaycMNakp©itdUcxageRkam.




          cMgayBITIRbCMuTMgn;rbs;tMNeTAeRKOgP¢ab;nImYy²
                    (
          ∑ d 2 = ∑ x2 + y2   )
Edl cMnucrYmrbs;RbBn§½kUGredaenKWCaTIRbCMuTMgn;énRkLaépÞkMlaMgkat;rYmrbs;eRKOgP¢ab;. kMlaMgpÁÜb
tamTis x rbs; pm KW³

                                             295                                       tMNcakp©it
T.chhay


                   y      y Md     y   Md          My
          p mx =
                   d
                     pm =        =
                                            (
                          d ∑ d 2 d ∑ x2 + y2
                                              =
                                                      ) (
                                                ∑ x2 + y2   )
dUcenH pmy =          Mx
                    (
                   ∑ x2 + y2   )
ehIykMlaMgeRKOgP¢ab;srubKW
          p=    (∑ p x )2 + (∑ p y )2
Edl       ∑ p x = pcx + p mx

          ∑ p y = pcy + p my

RbsinebI P ¬bnÞúkEdlGnuvtþeTAelItMN¦ CabnÞúkemKuN enaHkMlaMg p enAelIeRKOgP¢ab;Ca bnÞúkem
KuNedIm,ITb;Tl;nwg shear nig bearing EdlCa design strength EdlRtUvkar.

]TahrN_ 8>1³ kMNt;kMlaMgrbs;eRKOgP¢ab;EdleRKaHfñak;enAkñúg bracket connection Edl)anbgðaj
enAkñúgrUbTI 8>5.




dMeNaHRsay³ TIRbCMurbs;RkumeRKOgP¢ab;GacRtUv)anrkedayeRbIG½kSedkkat;tameRkam nigedayGnuvtþ
eKalkarN_m:Um:g;
               2(5) + 2(8) + 2(11)
          y=                       = 6in.
                        8
bgÁúMkMlaMgQr nigkMlaMgedkKW
                                                296                               tMNcakp©it
T.chhay


          Px =
            5
                 1
                     (50) = 22.63kips ←     nig Py = 25 (50) = 44.72kips ↓
edayeyageTAtamrUbTI 8>6 a, eyIgGacKNnam:Um:g;rbs;bnÞúkeFobTIRbCMuTMgn;³
      M = 44.72(12 + 2.75) − 22.36(14 − 6 ) = 480.7in. − kips           ¬RsbRTnicnaLika¦




rUbTI 8>6 b bgðajBITisedArbs;bgÁúMkMlaMgb‘ULúg nigTMhMénbgÁúMkMlaMgb‘ULúgEdlRtUvKñaEdlekIteLIg
edaym:Um:g;KUr (couple). edayeRbITisedATaMgenH nigTMhMEdlRtUvKñaCakarnaMpøÚvEdlkMlaMgTaMgenaH
RtUv)anbUktamc,ab;RbeLlURkam. eyIgGacsnñidæan)anfaeRKOgP¢ab;xagsþaMEpñkxageRkameKbMput
nwgmankMlaMgpÁÜbFMCageKbMput.
        bgÁúMkMlaMgedk nigbBaÄrrbs;eRKOgP¢ab;nImYy²Edl)anBIkMlaMgcMp©itKW
                       = 2.795kips ← nig pcy =
                 22.36                            44.72
         pcx =                                           = 5.590kips ↓
                   8                                 8
sMrab; couple
                                            297                                         tMNcakp©it
T.chhay



           (               )            [                     ]
          ∑ x 2 + y 2 = 8(2.75)2 + 2 (6)2 + (1)2 + (2)2 + (5)2 = 192.5in 2
                      My        480.7(6)
          p mx =
                   (
                 ∑ x2 + y2
                             =
                              )  192.5
                                          = 14.98kips ←

                      Mx          480.7(2.75)
                 ∑ (x 2 + y 2 )
          p my =                =             = 6.867kips ↓
                                    192.5

          ∑ p x = 2.795 + 14.98 = 17.78kips ←
          ∑ p y = 5.590 + 6.867 = 12.46kips ↓

          P=      (17.78)2 + (12.46)2   = 21.7 kips  ¬emIlrUbTI 8>6 c¦
cMeLIy³ kMlaMgb‘ULúgEdleRKaHfñak;KW 21.7kips . karGegátBITMhM nigTisedArbs;bgÁúMkMlaMgedk
nigbBaÄrbBa¢ak;fakarsnñidæanfaeRKOgP¢ab;Edl)aneRCIserIsBitCamaneRKaHfñak;Emn.

          Ultimate Strength Analysis
        viFIEdlerobrab;BIxagmuxmanlkçN³gayRsYlkñúgkarGnuvtþn_ b:uEnminsuRkit. kñúgkarviPaK
KW)ansnñidæanfaTMnak;TMngbnÞúk-kMhUcRTg;RTayrbs;eRKOgP¢ab;manlkçN³smamaRt ¬CabnÞat;¦ ehIy
fa yield stress minRtUvFM. karBiesaFn_bgðajfavaminEmnCakrNI ehIyfaeRKOgP¢ab;nImYy²minman
shear yield stress BitR)akdeT. viFIsaRsþEdlBN’naenATIenHkMNt; ultimate strength rbs;tMN

edayeRbITMnak;TMngminsmamaRtbnÞúk-kMhUcRTg;RTayEdlkMNt;edaykarBiesaFn_ sMrab;eRKOgP¢ab;
nImYy².
        karsikSaedaykarBiesaFn_EdlraykarN_enAkñúg Crawford and Kulak (1971) edayeRbI
b‘ULúgRbePT bearing A325 Ggát;p©it 3 / 4in. nigEdkbnÞH A36 b:uEnþlT§plGaceRbIsMrab;b‘ULúg
 A325 EdlmanTMhMepSg²CamYynwgEdkRbePTepSg²CamYynwglT§pllMeGogtictYc. viFIenHnwgpþl;

nUvlT§pllMeGogenAeBleRbICamYyb‘ULúg slip-critical nigCamYyb‘ULúg A490 (AISC, 1994).
        kMlaMgb‘ULúgEdlRtUvnwgkMhUcRTg;RTay Δ KW
                       (
          R = Rult 1 + e − μΔ    )λ
                   (
               = 74 1 − e10Δ   )0.55                                         ¬*>@¦
Edl       Rult = kMlaMgkat;TTwgrbs;b‘ULúgenAeBldac; = 74kips = 330MPa
          e = eKalrbs;elakenEB = 2.718

          μ = emKuNkat;bnßy = 10

                                                 298                                  tMNcakp©it
T.chhay


          μ= emKuNkat;bnßy = 0.55
Ultimate strength rbs;tMNKWQrelIkarsnμt;dUcxageRkam³

       !> enAeBldac; RkumeRKOgP¢ab;vilCMuvij instantaneous center (IC).
       @> kMhUcRTg;RTayrbs;ERKOgP¢ab;mYy²smamaRteTAnwgcMgayBI IC nwgeFVIGMeBIEkgeTAkaMén
           rgVil.
       #> eKGacTTYl)anlT§PaBrbs;tMNenAeBlEdl ultimate strength rbs;eRKOgP¢ab;enAq¶aybM
           putBI IC. ¬rUbTI 7>8 bgðajBIkMlaMgb‘ULúgCakMlaMgTb;Tl;EdleFVIGMeBIRbqaMgnwgkMlaMg
           Gnuvtþn_¦.
       $> EpñkEdlRtUvP¢ab;RtUvEtrwg.
       Cavi)akénkarsnμt;TIBIr kMhUcRTg;RTayrbs;eRKOgP¢ab;nImYy²KW
          Δ=
                r
                      Δ max =
                                 r
                                       (0.34)
               rmax             rmax
Edl        cMgayBI IC eTAeKOgP¢ab;
          r=

        rmax = cMgayeTAeRKOgP¢ab;EdlenAq¶aybMput

        Δ max = kMhUcRTg;RTayrbs;eRKOgP¢ab;q¶aybMputenA ultimate = 0.34in. ¬EdlkMNt;eday

karBiesaFn_¦




CamYynwg elastic analysis, vamanPaBgayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg b¤
       Ry = R
              x
              r
                      b¤ Rx = ry R
                                                299                                tMNcakp©it
T.chhay


Edl x nig y CacMgayedk nigcMgaybBaÄrBI instantaneous center eTAeRKOgP¢ab;. enAxN³eBl
dac; lMnwgRtUv)anrkSa ehIysmIkarlMnwgbIxageRkamRtUv)anGnuvtþeTAelIRkumeRKOgP¢ab; ¬eyageTAelI
rUbTI 8>7¦³
                  m
         ∑ Fx = ∑ (R x )n − Px = 0                                                 ¬*>#¦
                 n =1
                              m
          M IC = P(ro + e ) − ∑ (rn × Rn ) = 0                                    ¬*>$¦
                             n =1

ehIy ∑ Fy = ∑(R y )n − Py = 0
                  m
                                                                                         ¬*>%¦
Edl Gnu)at n kMNt;nUveRKOgP¢ab;mYy² nig m CacMnYnsrubrbs;eRKOgP¢ab;. viFIsaRsþTUeTAKWsnμt;TI
taMg instantaneous center bnÞab;mkkMNt;tMélRtUvKñarbs; P EdlbMeBjsmIkarlMnwg. RbsinebI
GBa©wgEmn TItaMgenHKWRtwmRtUv ehIy P CalT§PaBrbs;tMN. viFIsaRsþCak;lak;KWdUcxageRkam³
         !> snμt;tMélsMrab; ro .
         @> edaHRsayrk P BIsmIkar *>$.
         #> CMnYs ro nig P eTAkñúgsmIkar *># nig *>%.
         $> RbsinebIsmIkarTaMgenaHRtUv)anbMeBjCamYynwgkMrwtlMeGogEdlGacTTYlyk)an karviPaK
             enHRtUv)anbBa©b;. EtebImindUecñaHeT eKRtUveFVIkareRCIserIstMélsakl,g ro fμI
             ehIyeKRtUveFVIkarKNnaeLIgvij.
         sMrab;krNITUeTAénbnÞúkbBaÄr smIkar *># nwgRtUv)anbMeBjedaysVy½Rbvtþ. edIm,IPaBgay
RsYl nigkMueGay)at;bg;»PasPaB eyIgBicarNaEtkrNIenH. Et eTaHbICamYykarsnμt;enH karKNna
sMrab; trial problem CaeRcInmanlkçN³lM)ak EdlRtUvkarCMnYykMuBüÚT½rCacaM)ac;. Epñk (B) rbs;]Ta-
hrN_ 8>2 RtUv)aneFVIkarCamYynwgCMnYyBI standard spreadsheet program sMrab; personal
computers.



]TahrN_ 8>2³ Bracket connection EdlbgðajenAkñúgrUbTI 8>8 RtUvRTkMlaMgemKuNcakp©it 53kips .
tMNRtUv)anKNnaedayeGaymanb‘ULúgBIrCYrQr EdlkñúgmYyCYr²manb‘ULúg 4 RKab; Etb‘ULúgmYyRKab;
RtUv)andkecaledayKμanectna. RbsinebIeKeRbIb‘ULúg bearing-type A325 EdlmanGgát;p©it 7 / 8in.
etItMNenHmanlkçN³RKb;RKan;b¤Gt;? snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. eRbIEdk A36 nigGnuvtþ
nUvkarviPaKxageRkam³ (a) elastic analysis; (b) ultimate strength analysis.
                                                 300                                tMNcakp©it
T.chhay




dMeNaHRsay³ a. Elastic analysis. sMrab;RbBn§½kUGredaenEdlmanKl;enARtg;p©itrbs;b‘ULúgxag
eRkamEpñkxageqVg ¬rUbTI 8>9¦
             2(3) + 2(6 ) + 1(9)
          y=                     = 3.857in.
                     7
             3(3)
          x=      = 1.286in.
              7
  (          )
∑ x 2 + y 2 = 4(1.286)2 + 3(1.714)2 + 2(3.857 )2 + 2(0.857 )2 + 2(2.143)2 + 1(5.143)2 = 82.29in.2

          e = 3 + 5 − 1.286 = 6.714in.
          M = Pe = 53(6.714 ) = 355.8in. − kips          ¬RsbRTnicnaLika¦
                   53
          pcy =       = 7.571kips ↓         pcx = 0
                   7
BITisedA nigTMhMEdlRtUvKñaEdlbgðajenAkñúgrUbTI 8>9 b‘ULúgeRkameKEpñkxagsþaMRtUv)ancat;TukfaCa
b‘ULúgEdlmaneRKaHfñak;CageK
                       My          355.8(3.857 )
          p mx =
                  (∑ x2 + y2 ) =
                                      82.29
                                                 = 16.68kips ←

                      Mx         355.8(1.714 )
                ∑ (x 2 + y 2 )
          Pmy =                =               = 7.411kips ↓
                                    82.29

          ∑ p x = 16.68kips
          ∑ p y = 7.571 + 7.411 = 14.98kips

          p=      (16.68)2 + (14.98)2   = 22.4kips



                                                301                                  tMNcakp©it
T.chhay




edIm,IkMNt; design strength rbs;b‘ULúgrg bearing eRbIGgát;p©itrn§
                     1 7 1 15
           h=d+       = +  = in.
                    16 8 16 16
sMrab;rn§EdlenAEk,rRCugEKmCageK eRbI Le = 2in. enaH
                    h       15 / 16
           Lc = Le −  = 2−          = 1.513in.
                    2          2
                 ⎛7⎞
           2d = 2⎜ ⎟ = 1.75in.
                 ⎝8⎠
eday Lc < 2d bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.531)(0.455)(58) = 36.4kips / bolt
sMrab;rn§epSgeTot eRbI s = 3in. enaH
                           15
           Lc = s − h = 3 −    = 2.062in. > 2d
                           16
                                         ⎛7⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟(0.455)(58) = 41.56kips / bolt
                                         ⎝8⎠
tMél bearing TaMgBIrFMCagkMlaMgkñúgmYyb‘ULúg dUcenH bearing strength KWRKb;RKan;.
sMrab; shear
                  π (7 / 8)2
           Ab =                = 0.6013in.2
                      4
          φRn = φFv Ab = 0.75(48)(0.6013) = 21.6kips < 22.4kips           (N.G.)
cMeLIy³ tMNminbMeBjlkçxNÐeday elastic analysis.

                                               302                                  tMNcakp©it
T.chhay


b.eyIgedaHRsaytamviFI ultimate strength analysis CamYynwgCMnYyrbs; standard spreadsheet
software. lT§plrbs;tMélsakl,gcugeRkayrbs; ro = 1.57104in. RtUv)aneGayenAkñúgtarag 8>1.

RbBn§½kUGredaen nigelxerogb‘ULúgRtUv)anbgðajenAkñúgtarag 8>10.
tarag 8>1
            eKalenARtg;    eKalenARtg;
eRKOg
            b‘ULúgelx !           IC
                                                              Δ                                Ry
 P¢ab;                                                 r               R         rR

             x'      y'    x             y
     1      0.000 0.000   0.285        -3.857         3.868   0.255   70.774    273.731       5.221

     2      3.000 0.000   3.285        -3.857         5.067   0.334   72.553    367.598      47.045

     3      0.000 3.000   0.285        -0.857         0.903   0.060   47.649     43.046      15.050

     4      3.000 3.000   3.285        -0.857         3.395   0.224   69.563    236.188      67.310

     5      0.000 6.000   0.285        2.143          2.162   0.143   63.631    137.555       8.398

     6      3.000 6.000   3.285        2.143          3.922   0.259   70.891    278.061      59.377

     7      0.000 9.000   0.285        5.143          5.151   0.340   72.631    374.107       4.023

srub                                                                           1710.287 206.424




                                                303                                       tMNcakp©it
T.chhay


BIsmIkar *>$
          P(ro + e ) = ∑ rR
               ∑ rR         1710.29
          P=          =                = 206.424kips
              ro + e 1.57104 + 6.71429
Edl e RtUv)anyk 5 xÞg;eRkayex,ósedIm,IsuRkitPaBx<s;.
BIsmIkar *>%
          ∑ F y = ∑ R y − P = 206.424 − 206.424 = 0.00

bnÞúkEdlGnuvtþminmnabgÁúMkMlaMgedk dUcenHsmIkar *># RtUv)anbMeBjedaysV½yRbvtþ.
        bnÞúk 206.424kips EdleTIbnwg)ankMNt;Ca failure load sMrab;kartP¢ab; ehIyRtUv)anQr
enAelIeKalkarN_EdleRKOgP¢ab;EdleRKaHfñak;eTAdl; ultimate load capacity. RbsinebIbnÞúkdac;
rbs;tMNRtUv)anKuNedaypleFob fasterner design strength elI fasterner ultimate strength
74kips (Crawford nig Kulak, 1971), eyIgnwgTTYl)anlT§PaBrbs;tMN.

        BI a. design strength rbs;b‘ULúgmYy ¬EdlQrelI shear¦ KW 21.6kips .
        bnÞúkemKuNGtibrma = 206(21.6 / 74) = 60.1kips > 53kips (OK)
cMeLIy³ kartP¢ab;manlkçN³RKb;RKan;eday ultimate strength analysis.

          Table 8-18 dl; 8-25 enAkñúg Part 8 of the Manual (Volume II) pþl;eGayemKuNsMrab;
viPaK b¤KNnaKMrUFmμtaénRkumb‘ULúgEdlrgnUvbnÞúkcakp©it. sMrab;kartMeobb‘ULúgnImYy²Edl)an
BicarNa taragTaMgenaHpþl;nUvtMél C EdlCapleFob connection failure load elI fasterner
ultimate strength. edImI,TTYl)anbnÞúktMNEdlmansuvtßiPaB tMélefrenHRtUv)anKuNeday design

strength rbs;eRKOgP¢ab;EdleRbI. sMrab;bnÞúkcakp©itminRtUv)anbBa©ÚleTAkñúgtaragTaMgenHeT dUcenH

eKGaceRbI elastic method EdlCaviFImansuvtßiPaB. BitNas; kmμviFIkMuBüÚT½r b¤ spreadsheet software
k¾RtUv)aneRbIedIm,IKNna ultimate strength anlysis.

]TahrN_ 8>3³ eRbItaragenAkñúg Part 8 of the Manual edIm,IkMNt; factored load capacity Pu Edl
QrelI bolt shear sMrab;tMNEdlbgðajenAkñúgrUbTI 8>11. b‘ULúg bearing-type A325 Ggát;p©it
3 / 4in. edayeFμjsßitenAkñúgbøg;kat;. b‘ULúgrgnUv single shear.


                                           304                                        tMNcakp©it
T.chhay




design strength   rbs;b‘ULúgGgát;p©it 3 / 4in. Edlrg single shear KW
          φrn = φ (48)Ab = 0.75(48)(0.4418) = 15.90kips
eday C = Pu / φrn /
          Pu = Cφrn = 1.53(15.90) = 24.3kips
cMeLIy³ lT§PaBbnÞúkemKuNGtibrma (maximum factored load capacity) rbs;tMNKW 24.3kips .

8>3> tMNcMNakp©itedayb‘ULúg³ kMlaMgkat;bUknwgkMlaMgTaj
          Eccentric Bolted Connections: Shear Plus Tension
        sMrab;kartP¢ab;EdleKeRbI tee stub bracket dUckñúgrUbTI 8>12 bnÞúkcMNakp©itbegáIt couple
EdlGacbegáInkMlaMgTajenAkñúgCYrxagelIrbs;eRKOgP¢ab; ehIykat;bnßykugRtaMgTajenAkñúgCYrxag
eRkam. RbsinebIeRKOgP¢ab;Cab‘ULúgEdlKμankugRtaMgTajedIm b‘ULúgxagelInwgRtUv)andak;eGayrgkug
RtaMgTaj ehIyb‘ULúgxageRkamnwgminrgT§iBl. edayminKitBIRbePTrbs;eRKOgP¢ab; b‘ULúgnImYy²
nwgrgnUvcMENkkMlaMgkat;esμI²Kña.




                                              305                                     tMNcakp©it
T.chhay


        RbsinebIeRKOgP¢ab;Cab‘ULúgersIusþg;x<s;EdlrgeRbkugRtaMg épÞb:Hrvagsøabssr nigsøab
bracket nwgrgkarsgát;esμI munnwgkMlaMgxageRkAGnuvtþmk. Bearing pressure nwgesμInwgkMlaMgTaj

b‘ULúgsrubEdlEckedayépÞb:H. edaysarbnÞúk P Gnuvtþbnþicmþg² kMlaMgsgát;enAxagelInwgRtUv)an
kat;bnßy ehIykMlaMgsgát;enAxageRkamnwgekIneLIg dUcbgðajenAkñúgrUbTI 8>13 a. enAeBlEdlkM
laMgsgát;enAxagelIRtUv)anrMsayGs;rlIg bgÁúMkMlaMgnwgRtUv)anbMEbk ehIy couple Pe nwgRtUv)an
Tb;Tl;edaykMlaMgb‘ULúgTaj ehIykMlaMgsgát;enAelIépÞb:HEdlenAsl; dUcEdlbgðajenAkñúgrUbTI
8>13 b. enAeBlEdlkMlaMgxiteTArk ultimate load kMlaMgenAkñúgb‘ULúgnwgxiteTACit ultimate
tensile strength rbs;va.

        viFIEdlsamBaØ nigmansuvtßiPaBRtUv)aneRbIenATIenH. eKsnμt;G½kSNWtrbs;tMNkat;tamTIRbCMu
TMgn;rbs;RkLaépÞb‘ULúg. bU‘LúgEdlsßitenABIxagelIG½kSenHrgkMlaMgTaj ehIyb‘ULúgEdlenABIxag
eRkamG½kSenHRtUv)ansnμt;fargkMlaMgsgát; dUcbgðajenAkñúgrUbTI 8>13 c. b‘ULúgnImYy²RtUv)ansnμt;
faTTYl)antMél ultimate rut . edaysarEtmanb‘ULúgBIrRKab;enARKb;nIv:U ¬rUbTI 8>13 c¦ kMlaMgnI-
mYy²RtUv)anbgðaj 2rut . kMlaMgpÁÜbénkMlaMgTaj nigkMlaMgsgát;Ca couple EdlesμInwgm:Um:g;Tb;rbs;
tMN. m:Um:g; couple GacRtUv)anrkedayeFVIplbUkm:Um:g;énkMlaMgb‘ULúgeFobG½kSNamYyEdlgayRsYl
dUcCaG½kSNWt. enAeBlEdlm:Um:g;Tb;RtUv)andak;eGayesμIm:Um:g;Gnuvtþn_ eKGacrkkMlaMgTajb‘ULúg rut
EdlminsÁal;BIsmIkarEdlTTYl)an. ¬viFIenHRsedogKñanwg Case II in Part 8 of the Manual,
Volume II).




                                          306                                       tMNcakp©it
T.chhay


]TahrN_ 8>4³ tMN beam-to-column RtUv)anbegáIteLIgeday structural tee dUcbgðajenAkñúgrUbTI
8>14. eKeRbIb‘ULúg fully tightened bearing-type A325 Ggát;p©it 3 / 4in. cMnYn 8 RKab;edIm,IP¢ab;
søabrbs; tee eTAnwgsøabssr. cUrGegátPaBRKb;RKan;rbs;tMN ¬tee-to-column connecvtion¦ Rb
sinebIvargbnÞúkemKuN 88kips enAcMNakp©it 3in. . snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. EdkTaMg
Gs;Ca A36 .




dMeNaHRsay³ shear/bearing load sMrab;b‘ULúgmYyKW 88 / 8 = 11kips . sMrab; bearing design
strength   eRbIGgát;p©itRbehag
                   1 3 1 13
           h=d+     = +  = in.
                  16 4 16 16
sMrab;RCugEdlenAEk,rRCugEKmCageKbMput yk Le = 1.5in. . enaH
                    h         13 / 16
           Lc = Le −  = 1.5 −         = 1.094in.
                    2           2
                 ⎛3⎞
           2d = 2⎜ ⎟ = 1.5in.
                 ⎝4⎠
edaysar Lc < 2d /
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)(0.560)(58) = 31.98kips > 11kips    (OK)
sMrab;RbehagepSgeTotyk s = 3in. . enaH
                           13
           Lc = s − h = 3 −    = 2.188in. > 2d
                           16
                                        ⎛3⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.560)(58) = 43.85kips > 11kips
                                        ⎝4⎠
                                                                                      (OK)


                                              307                                      tMNcakp©it
T.chhay


tMNmanlkçN³RKb;RKan;sMrab; bearing.
sMrab; shear design strength
                 π (3 / 4)2
          Ab =                = 0.4418in 2
                     4
          φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips
KNnakMlaMgTajsMrab;b‘ULúgmYy nwgbnÞab;mkRtYtBinitü tension-shear interaction. edaysarPaB
sIuemRTI TIRbCMuTMgn;sßitenAkMBs;Bak;kNþal. rUbTI 8>15 bgðajRkLaépÞb‘ULúg nigkarEbgEckkMlaMg
Tajb‘ULúg.
         m:Um:g;rbs; resisting couple RtUv)anrkedayeFVIplbUkm:Um:g;eFobG½kSNWt³
          ∑ M NA = 2rut (4.5 + 1.5 + 1.5 + 4.5) = 24rut
m:Um:g;EdlGnuvtþKW
          M u = Pu e = 88(3) = 264in. − kips
dak;m:Um:g;Tb; nigm:Um:g;Gnuvtþn_eGayesμIKña eyIg)an
          24rut = 264 b¤            rut = 11kips

Tensile design strength KW

          φRn = φFt Ab = 0.75(90)(0.4418) = 29.82kips
RtYtBinitü RCSC Equation LRFD 4.2 BI bolt specification (RCSC, 1994) CamYynwg
 Pu = rut = 11kips nig Vu = bolt shear force = 11kips
                     2               2
          ⎡ Pu ⎤       ⎡ V       ⎤ ⎛ 11 ⎞
                                             2
                                                ⎛ 11 ⎞
                                                         2
          ⎢         ⎥ +⎢ u ⎥ =⎜            ⎟   +⎜      ⎟ = 0.615 < 1.0     (OK)
          ⎢ (φRn )t ⎥
          ⎣         ⎦  ⎢ (φRn )v ⎥
                       ⎣         ⎦ ⎝ 29.82 ⎠    ⎝ 15.9 ⎠
cMeLIy³ tMNKWRKb;RKan;




                                                308                                 tMNcakp©it
T.chhay


       enAeBlEdlb‘ULúgenAkñúgtMN slip-critical rgkarTaj slip-critical strength CaFmμtaRtUv)an
kat;bnßyedayemKuNEdlpþl;eGayeday AISC Equation A-J3-2 ¬emIl Epñk 7>9¦. mUlehtuKWfa
clamping effect nigkMlaMgkkitRtUv)ankat;bnßy. b:uEnþenAkñúgtMNEdleTIbnwgBicarNa vamankMlaMg

sgát;bEnßmenAkñúgEpñkxageRkamrbs;tMNEdlbegáInkMlaMgkkit EdlvaTUTat;nwgkarkat;bnßyenAkñúg
EpñkxageRkamrbs;tMN. sMrab;mUlehtuenH slip-critical strength minKYrRtUv)ankat;bnßyenAkñúgRb
ePTtMNenHeT.

8>4> tMNcMNakp©itedaypSar³ EtkMlaMgkat;
          Eccentric Welded Connections: Shear only
       eKviPaKtMNcMNakp©itedaypSartamviFIdUcKñasMrab;tMNedayb‘ULúg elIkElgRtg;kMlaMgkñúg
eRKOgP¢ab;mYy²RtUv)anCMnYsedaykMlaMgkñúgRbEvgTwkbnSarÉktþa. dUckñúgkrNIEdltMNcMNakp©it
edayb‘ULúgrgkMlaMgkat; tMNedaypSarrgkMlaMgkat;GacRtUv)anGegátedayviFI elastic method b¤
ultimate strength method.
Elastic method
         bnÞúkenAelI bracket EdlbgðajenAkñúgrUbTI 8>16 a GacnwgRtUv)anBicarNaeGayeGVIGMeBIenA
kñúgbøg;énTwkbnSar EdlCabøg;rbs; throat. RbsinebIeyIgsnμt;EbbenH bnÞúknwgRtUv)anTb;edayRkLa
épÞTwkbnSarEdlbgðajenAkñúgrUb 8>16 b. b:uEnþ karKNnamanlkçN³samBaØ RbsinebIeKeRbI throat
mYyÉktþa. bnÞab;mkbnÞúkEdlKNna)anRtUvKuNnwg 0.707 CamYynwgTMhMrbs;TwkbnSaedIm,ITTYl)an
bnÞúkBitR)akd.




        bnÞúkcMNap©itenAkñúgbøg;TwkbnSarEdleFVIeGayTwkbnSarrgTaMgkMlaMgkat;pÞal; (direct shear)
nigkMlaMgkat;edayrmYl (torsional shear). edaysarFatunImYy²rbs;TwkbnSarTb;Tl;nwgcMENk
esμIrbs; direct shear enaH direct shear stress KW
                                            309                                        tMNcakp©it
T.chhay


                 P
          f1 =
                 L
Edl L CaRbEvgsrubrbs;TwkbnSar ehIyesμInwgRkLaépÞkMlaMgkat;edayKitCaelx edaysareKsnμt;
TMhM throat esμInwgmYyÉktþa. RbsinebIeKeRbIkMub:Usg;Ekg
         f1x = x
                P
                 L
                       nig f1y = PLy
Edl Px nig Py CabgÁúMkMlaMgtamTis x nig y . kugRtaMgkMlaMgkat;EdlekIteLIgedaysar couple
RtUv)aneKrkCamYynwgrUbmnþkMlaMgrmYl
                 Md
          f2 =
                  J
Edl       d= cMgayBITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;eTAcMnucEdlkugRtaMgkMBugRtUv)anKNna
         J = m:Um:g;niclPaBb:UElrrbs;RkLaépÞenaH

rUbTI 8>17 bgðajBIkugRtaMgTaMgenHenARtg;kac;RCugxagelIEpñkxageRkamrbs;TwkbnSar. tamkMub:Usg;
Ekg
         f 2x =
                 My
                  J
                         nig f 2 y = MxJ
Edl J = ∫A r 2 dA = ∫A (x 2 + y 2 )dA = ∫A x 2 dA + ∫A y 2 dA = I y + I x




Edl I x nig I y Cam:Um:g;niclPaBrbs;RkLaépÞkMlaMgkat;. enAeBlEdlbgÁúMkMlaMgTaMgGs;RtUv)ankM
Nt; eyIgGacbUkbgÁúMkMlaMgedIm,ITTYl)ankugRtaMgkMlaMgkat;srubenARtg;cMnucEdleyIgcg;dwg b¤
          fv =       (∑ f x )2 + (∑ f y )2
dUcKñanwgtMNedayb‘ULúg CaTUeTATItaMgeRKaHfñak;sMrab;kugRtaMgpÁÜbGacRtUv)ankMNt;BIkarsegátelItMél
nigTisedArbs;bgÁúM direct shear nig torsional shearing stress.
         edaysareKeRbITwkbnSarkñúgmYyÉktþa karKNnaTIRbCMuTMgn; nigm:Um:g;niclPaBKWmanlkçN³Ca
ExSbnÞat;. enAkñúgesovePAenH eyIgKitGgát;TwkbnSarCaGgát;ExSEdleyIgsnμt;eTARbEvgdUcKñanwgRCug
                                             310                                      tMNcakp©it
T.chhay


EKmrbs;EpñkEdlRtUvP¢ab;EdlenAEk,rva. elIsBIenH eyIgecalm:Um:g;niclPaBrbs;Ggát;ExSeFobeTA
nwgG½kSEdlRtYtKñaCamYynwgExS.

]TahrN_ 8>5³ kMNt;TMhMrbs;TwkbnSarEdlRtUvkarsMrab;tMN bracket enAkñúgrUbTI 8>18. bnÞúk
60kips    CabnÞúkemKuN. eKeRbIEdk A36 sMrab;ssr nig bracket.




dMeNaHRsay³ eKGacCMnYsbnÞúkcakp©itedaybnÞúkcMp©it nig couple dUcbgðajenAkñúgrUbTI 8>18.
Direct shearing stress     KitCa kips / in. KWdUcKñasMrab;RKb;Ggát;TwkbnSar ehIyesμInwg
                       60      60
          f1 y =             =    = 2.143kips / in.
                   8 + 12 + 8 28
munnwgKNnabgÁúMkMlaMgrmYlrbs; shearing stress, eKRtUvkMNt;TItaMgrbs;TIRbCMuTMgn;rbs;RkLaépÞ
kMlaMgkat;. BIeKalkarN_m:Um:g;CamYynwgplbUkm:Um:g;eFobG½kS y /
        x(28) = 8(4)(2)        b¤ x = 2.286in.

                                                 311                                      tMNcakp©it
T.chhay


cMNakp©it e KW 10 + 8 − 2.286 = 15.71in.
ehIym:Um:g;rmYlKW M = Pe = 60(15.71) = 942.6in. − kips
RbsinebIeKecalm:Um:g;niclPaBrbs;TwkbnSartamTisedknImYy²eFobG½kSTIRbCMuTMgn;rbs;va enaH
m:Um:g;niclPaBénRkLaépÞsrubeFobnwgG½kSTIRbCMuTMgn;tamTisedkKW
          Ix =
                 1
                   (1)(12)3 + 2(8)(6)2 = 720.0in.4
                12
                  ⎡1                        ⎤
dUcKña    I y = 2 ⎢ (1)(8)3 + 8(4 − 2.286)2 ⎥ + 12(2.286)2 = 195.0in.4
                  ⎣12                       ⎦
ehIy J = I x + I y = 720.0 + 195.0 = 915.0in 4
rUbTI 8>18 bgðajTisedArbs;bgÁúMkugRtaMgTaMgBIrenAkac;RCugrbs;tMNnImYy². tamkarsegát/ kac;
RCugxagelIEpñkxagsþaM b¤kac;RCugxageRkamEpñkxagsþaMGacRtUv)anKitCaTItaMgEdlmaneRKaHfñak;. Rb
sinebIeKeRCIserIskac;RCugxageRkamEpñkxagsþaM enaH
                 My 942.6(6)
            f2x =   =         = 6.181kips / in.
                  J    915.0
                 M    942.6(8 − 2.286 )
            f2y = x =                   = 5.886kips / in.
                  J        915.0
            fv =    (6.181)2 + (2.143 + 5.886)2   = 10.13kips / in.
RtYtBinitüersIusþg;rbs; base metal. BIsmIkar &>@!
          φRn = φFBM × area subject to shear
                                                   ⎛9⎞
               = φFBM × t = 0.54 F y t = 0.54(36)⎜ ⎟
                                                   ⎝ 16 ⎠
               = 10.94kips / in. > 10.13kips / in. (OK)
BIsmIkar &>@0 weld strength KW
          φRn = 0.707 × w × L × φFW
Electrode    EdlRtUvKñasMrab;Edk A36 KW E 70 / CamYynwg φFW = 31.5ksi . dUcenHTMhMTwkbnSarEdl
RtUvkarKW
                   φRn        10.13
          w=             =                  = 0.455in.
               0.707 LφFW 0.707(1.0 )(31.5)
cMeLIy³ eRbI fillet weld 1 / 2in. CamYynwg electrode E 70 .


                                                  312                               tMNcakp©it
T.chhay


Ultimate Strength Analysis
         eKGacKNna Eccentric welded shear connection edayeRbI elastic method y:agsuvtßiPaB
b:uEnþemKuNsuvtßiPaBGacFMCagGVIEdlRtUvkar ehIyGacERbRbYlBItMNmYyeTAtMNmYy (Bultler, Pal,
and Kulak, 1920). karviPaKRbePTenHmanKuNvibtþixøHdUc elastic method sMrab; eccentric bolted

connections, edayrYbbBa©ÚlTaMgkarsnμt;faTMnak;TMngrvag bnÞúk-kMhUcRTg;RTay sMrab;karpSar. Rb

PBepSgeTotrbs;kMhusKWkarsnμt;faersIusþg;rbs;TwkbnSarminGaRs½ynwgTisedArbs;bnÞúkEdlGnuvtþ.
Ultimat strength procedure RtUv)anbgðajenAkñúg Part 8 of the Manual (Volume II) ehIyRtUv)an

segçbenATIenH. vaQrelIkarsikSaRsavRCavrbs; Butler et al. (1972) nig Timler (1984) ehIyviFI
EdlesÞIrEtdUcKñaEdlbegáIteLIgsMrab; eccentric bolted connections eday Crawford and Kulak
(1971).

         CMnYseGaykarBicarNaelIeRKOgP¢ab;mYy² eyIgKitTwkbnSarEdlCab;CaGgát;TwkbnSardac;²
EdlpÁúMP¢ab;Kña. enAeBldac; bnÞúkEdlGnuvtþmkelItNRtUv)anTb;edaykMlaMgenAkñúgFatunImYy² CamYy
                                                 M
nwgkMlaMgEdleFVIGMeBIEkgeTAnwgkaMEdlbegáIteLIgBI instantaneous center of rotation eTATIRbCMuTMgn;
rbs;Ggát;TwkbnSar dUcbgðajenAkñúgrUbTI 8>19. KMnitkñúgkarKNnaenHKWRsedogKñanwgKMnitEdl eRbIsM
rab;eRKOgP¢ab;. b:uEnþ karkMNt;kMhUcRTg;RTayGtibrmarbs;Ggát;TwkbnSar nigkarkMNt;kMlaMgkñúgén
Ggát;TwkbnSarnImYy²enAeBlEdldac;KWBi)ak. edIm,IkMNt;FatuEdlmaneRKaHfñak; eKRtUvkMNt;pl
eFob Δ max / r sMrab;FatunImYy²/ Edl
          Δ max = 1.087 w(θ + 6)−0.65 ≤ 0.17 w
          θ=  mMurvagkMlaMgTb; nigG½kSrbs;Ggát;TwkbnSar ¬emIlrUbTI 8>19¦
          w = TMhMTwkbnSar

          r = cMgayBI IC eTATIRbCMuTMgn;rbs;Ggát;TwkbnSar




                                             313                                      tMNcakp©it
T.chhay


FatuEdlmanpleFobtUcCageKKWCaFatuEdleTAdl; ultimate capacity muneK. bnÞab;mkkMhUcRTg;
RTayrbs;Fatud¾éTeTotRtUv)ankMNt;eday
                r
          Δ=          Δ max
               rmax
Edl       kaMsMrab;Fatu
          r=
       Δ max Δ
             = sMrab;FatuEdleRKaHfñak;
       rmax      r
eKGackMNt;kMlaMgTb;sMrab;FatunImYy²BI
                          (                  )
          R = 0.60 FEXX 1.0 + 0.50 sin1.5 θ [ p(1.9 − 0.9 p )]0.3
Edl       FEXX = weld electrode tensil strength
                 Δ
          p=
               Δ max
¬mindUckrNItMNedayb‘ULúgEdl R CaGnuKmn_eTAnwg θ ¦. karKNnaBImunKWQrelIkarsnμt;TItaMg
rbs; instantaneous center of rotation. RbsinebIvaCaTItaMgBitR)akd smIkarlMnwgnwgRtUv)anbMeBj.
karKNnabnþeTotKWRsedogKñanwgtMNedayb‘ULúg.
       !> KNna load capacity BIsmIkar
                    ∑ M IC = 0
            Ed;lIC Ca instantaneous center.
         @> RbsinebIsmIkarlMnwgkMlaMgBIrRtUv)anbMeBj enaHTItaMg instantaneous center Edl)an
            snμt; nigbnÞúkEdl)anrkenAkñúgCMhanmYyBitCaRtwmRtUv EtebImindUecñaHeT eKRtUvsnμt;TI
            taMgfμI ehIyeFVIkarKNnasareLIgvij.
         vabgðajy:agc,as;nUv)aBcaM)ac;kñúgkareRbIR)as;kmμviFIkMuBüÚT½r. dMeNaHRsayedaykMuBüÚT½rsM
rab;TMrg;FmμtaCaeRcInsMrab; eccentric welded shear connection RtUv)aneGayenAkñúgtaragEdlman
enAkñúg Part 8 og the Manual. Table 8-38 rhUtdl; 8-45 eGaylT§PaBbnÞúkemKuN (factored load
capacity) sMrab;karbnSMGgát;TwkbnSartamTisedk nigTisbBaÄrFmμtaCaeRcInedayQrelI ultimate

strength analysis. taragTaMgenHGacRtUv)aneRbIsMrab;karKNna b¤karviPaK nwgerobrab;nUvsßanPaBCa

eRcInEdlvisVkrGacnwgCYbRbTH. sMrab;tMNTaMgLayNaEdlmin)anerobrab;enAkñúgtarageKGaceRbI
elastic methoid.



                                                 314                                   tMNcakp©it
T.chhay


]TahrN_ 8>6³ kMNt;TMhMTwkbnSarEdlcaM)ac;sMrab;kartP¢ab;enAkñúg]TahrN_ 8>5 edayQrelIkar
BicarNa ultimate strength. cUreRbItaragsMrab; eccentrically load weld group EdleGayenAkñúg
Part 8 of the Manual.

dMeNaHRsay³ TwkbnSarrbs;]TahrN_ 8>5 CaRbePTdUcKñaeTAnwgrUbEdlbgðajenAkñúg Tabl;e 8-42
(angle = 0 o )/ ehIykardak;bnÞúkk¾dUcKña. eKRtUvkartMélefrxageRkamsMrab;bBa©ÚleTAkñúgtarag³
            al e 15.7
          a=   = =      = 1.3
             l  l   12
            kl 8
          k= =    = 0.67
            l 12
edayeFVI interpolation enAkñúg Table 8-42 sMrab; a = 1.3
         C = 1.14       sMrab; k = 0.6         ehIy C = 1.30         sMrab;   k = 0 .7

enaHsMrab; k = 0.67 eyIgTTYl)an C = 1.25
sMrab; electrode E 70 XX / C1 = 1.0
tMél D EdlcaM)ac;KW
                Pu       60
          D=       =                = 4 .0
               CC1l 1.25(1.0 )(12 )
dUcenHTMhMTwkbnSarEdlcaM)ac;KW
           1
          16
             (4.0) = 0.25        ¬TMhMTwkbnSarEdlRtUvkarenAkñúg]TahrN_ 8>5 KW 0.455
cMeLIy³ eRbI electrode E 70 / fillet weld 1 / 4in.

karpþl;eGayCaBiesssMrab;Ggát;rgbnÞúktamG½kS                   Special Provision for
Axially Loaded Members
        enAeBlEdlGgát;eRKOgbgÁúMrgbnÞúktamG½kS kugRtaMgRtUv)anBRgayesμIenAelImuxkat; ehIykM
laMgpÁÜbRtUv)anBicarNafaeFVIGMeBItamG½kSTIRbCMuTMgn; EdlvaCaG½kSEvgkat;tamTIRbCMuTMgn;. sMrab;Ggát;
EdlrgbnÞúkcMp©itenAxagcugrbs;va kMlaMgTb;pÁÜbEdlpþl;eGayedaytMNk¾RtUveFVIGMeBItamG½kSenHEdr.
RbsinebIGgát;enHmanmuxkat;sIuemRTI lT§plGacRtUv)ansMercedaykarpSar b¤P¢ab;b‘ULúgedaysIuemRTI.
RbsinebIGgát;manmuxkat;minsIuemRTI dUcCamuxkat;EdkEkgDub (double-angle section) enAkñúgrUbTI
8>20 karpSar b¤karP¢ab;b‘ULúgedaysIuemRTIeFVIeGaytMNenaHCatMNrgbnÞúkcakp©it CamYynwg couple
Te dUcbgðajenAkñúgrUbTI 8>20 b.

                                              315                                        tMNcakp©it
T.chhay




          AISC J1.8GnuBaØateGayecalcMNakp©itenHsMrab;Ggát;rgkMlaMgsþaTic. enAeBlEdlGgát;rg
fatigue EdlbNþalmkBIPaBRcMdEdlénkardak;bnÞúk b¤PaBmanGt;rbs;kugRtaMg cMNakp©itRtUvEtyk

mkBicarNa b¤k¾minykmkBicarNaedaysarkartP¢ab;edaykarpSar b¤edayb‘ULúgEdlmanlkçN³sm
Rsb . ¬CakarBit eTaHbIdMeNaHRsayGacRtUv)aneKeRbIsMrab;EtGgát;EdlrgEtkMlaMgsþaTick¾eday¦.
eKGackMNt;karP¢ab;enHedayGnuvtþsmIkarlMnwgkMlaMg nigm:Um:g;. sMrab;tMNEdlpSarEdlbgðajenA
kñúgrUbTI 8>21 smIkardMbUgGacRtUv)anTTYledayplbUkm:Um:g;eFobTwkbnSartamTisedkxageRkam³
                          L
          ∑ M L2 = Tc − P3 3 − P L3 = 0
                                1
                           2




       eKedaHRsaysmIkarenHedIm,Irk P1 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTisedkxagelI.
bnÞab;mkeKGacCMnYstMélenHeTAkñúgsmIkarlMnwgkMlaMgxageRkam³
                                          316                                   tMNcakp©it
T.chhay


          ∑ F = T − P − P2 − P3 = 0
                     1

      eKGacedaHRsaysmIkarenHedIm,IrktMél P2 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTis
edkxageRkam. sMrab;RKb;TMhMrbs;TwkbnSar eKGacedaHRsayrkRbEvg L1 nig L2 . dMeNIrkaredaH
RsayRtUv)anbgðajenAkñúg]TahrN_ 8>7 EdleKsÁal;Ca balancing the weld.

]TahrN_ 8>7³ Ggát;rgkarTajEdlpSMeLIgeday double-angle section, 2L5 × 3 × 1 / 2 EdleKdak;
eCIgEvgrbs;vaTl;xñgKña. EdkEkgRtUv)anP¢ab;eTAnwg gusset plate kMras; 3 / 8in. . EdkTaMgGs;Ca
 A36 . KNnatMNedaykarpSar edayeFVIkarkat;bnßycMNakp©itedIm,ITb;nwg tensil capacity eBj

rbs;Ggát;.
dMeNaHRsay³ Load capacity rbs;Ggát;edayQrelI gross section KW
          φt Pn = 0.90 F y Ag = 0.90(36 )(7.5) = 243.0kips

Load capacity EdlQrelI net seactionRtUvkartMélrbs; U .
eKminsÁal;RbEvgTwkbnSar dUcenHeKminGacKNna U BI AISC Equation B3-2 )aneT. edayeRbI
tMélmFüm 0.85 eKTTYl)an³
          Ae = UAg = 085(7.5) = 6.375in.2

          φt Pn = 0.75Fu Ae = 0.75(58)(6.375) = 277.3kips > 243.0kips
Yeildingrbs; gross section CasßanPaBkMNt;EdlykmksikSa dUcenH φt Pn = 243.0kips . sMrab;
EdkEkgmYy bnÞúkEdlRtUvTb;KW
          243.0
                = 121.5kips
            2
Electrode EdlRtUvKñanwgEdk A36 KW E70 XX / ehIy
      TMhMTwkbnSarGb,brma = 16 in. (AISC Table J2.4)
                              3


      TMhMGtibrma = 1 − 16 = 16 in. (AISC J2.2b)
                    2
                         1    7


sakl,g electrode E 70 fillet weld 5 / 16in. ³
      lT§PaBenAkñúgRbEvg 1in. = 0.707w(φFW )
                                         ⎛5⎞
                                  = 0.707⎜ ⎟(31.5)
                                         ⎝ 16 ⎠
                                  = 6.960kips / in.
                                              317                                     tMNcakp©it
T.chhay


          lT§PaBrbs; base metal rgkMlaMgkat; = t (φFBM ) = t (0.54Fy )
                                                       ⎛ 3⎞
                                                     = ⎜ ⎟(0.54)(36 )
                                                       ⎝8⎠
                                                     = 7.29kips / in.
          edayersIusþg;rbs;TwkbnSartUcCageK dUcenHeRbIersIusþg;rbs;TwkbnSar 6.960kips / in. .




          eyagtamrUbTI 8>22. lT§PaBrbs;TwkbnSarenAxagcugrbs;EdkEkgKW
          P3 = 6.960(5) = 34.80kips
                                      ⎛5⎞
          ∑ M L2 = 121.5(3.25) − 34.80⎜ ⎟ − P (5) = 0
                                             1
                                      ⎝2⎠
          P = 61.58kips
           1
          ∑ F = 121.5 − 61.58 − 34.80 − P2 = 0   /          P2 = 25.12kips

          L1 =
                 P1 = 61.58 = 8.85in.
               6.960 6.960
                                        yk 9in.
          L2 =
               25.12
               6.960
                     = 3.61in.yk   4in.

cMeLIy³ eRbIkarpSaredUcbgðajenAkñúgrUbTI 8>23




                                              318                                        tMNcakp©it
T.chhay


8>5> tMNcMNakp©itedaypSar³ kMlaMgkat; nigkMlaMgTaj
          Eccentric Welded Connections: Shear and Tension
       tMNcMNakp©itCaeRcIn CaBiesskartP¢ab; beam-to-column TwkbnSarrgkMlaMgTaj nigkMlaMg
kat;. tMNEbbenHBIrRbePTRtUv)anbgðajenAkñúgrUbTI 8>24.




    Seated beam connection     pSMeLIgedayEdkEkgEdlmanRbEvgxøIRtUv)aneRbICaeFñIr (shelf) edIm,I
RTFñwm. TwkbnSarEdlP¢ab;EdkEkgenHeTAssrRtUvTb;nwgm:Um:g;EdlekIteLIgedayRbtikmμcakp©it k¾dUc
direct shear Edl)anBIRbtikmμrbs;Fñwm. EdkEkgEdlP¢ab;enAxagelIrbs;søabFñwmpþl;nUv torsional

stability eTAeGayFñwm Etvamin)anCYyRTRbtikmμeT. eKGacP¢ab;vaeTAnwgRTnugrbs;FñwmCMnYseGaykar

P¢ab;eTAnwgsøabrbs;Fñwm)an. beam-to-angle connection GacRtUv)aneFVIeLIgedaykarpSar b¤b‘ULúg
ehIyvaminRTnUvbnÞúkKNnaNaeT.
     Framed beam connection ¬manlkçN³FmμtaCageK¦ EdlmanEdkEkgbBaÄrpSarP¢ab;eTAnwg

ssr ehIyrgnUvRbePTbnÞúkdUckrNI seated beam connection. Epñkrbs;kartP¢ab; beam-to-angle
k¾CaRbePTcakp©it b:uEnþbnÞúkenAkñúgbøg;énkMlaMgkat;TTwg dUcenHvaminmankMlaMgTajeT. TaMg seated
connection nig framed connection GacRtUv)anP¢ab;edayb‘ULúg.




                                           319                                       tMNcakp©it
T.chhay


      enAkñúgRbePTnImYy²Edl)anerobrab;xagelI TWkbnSarbBaÄrenAelIsøabssrrgbnÞúkdUcbgðajenA
kñúgrUbTI 8>25. dUcKñaCamYynwgtMNedayb‘ULúgenAkñúgrUbTI 8>3 bnÞúkcakp©it P nig couple M = Pe .
kugRtaMgkMlaMgkat;KW
                 P
          fv =
                 A
    Edl A CaRkLaépÞ throat srubrbs;TwkbnSar. eKGacKNnakugRtaMgkMlaMgTajGtibrmaBI
flexure formula
              Mc
         ft =
               I
    Edl I Cam:Um:g;niclPaBeFobG½kSTIRbCMuTMgn;rbs;RkLaépÞEdlpSMeLIgedayRkLaépÞ throat
srubrbs;TwkbnSar nig c CacMgayBIG½kSTIRbCMuTMgn;eTAcMnucq¶abMputrbs;RCugEdlrgkarTaj. eKGac
rkkugRtaMgkMlaMgpÁÜbGtibrmaedayeFVIplbUkviuTr½kMub:Usg;TaMgBIrenH enaHeK)an
          fr =       f v2 + f t2

     sMrab;xñat kips nig in. / kugRtaMgenHnwgRtUv)anKitCa kips / in 2 . RbsinebIkñúgkarKNnaenH eK
eRbITMhM throat Éktþa enaHeKGacsMEdgtMélenAHCa kips / in. . RbsinebI f r RtUv)ankMNt;BIbnÞúkem
KuN eKGaceRbobeFobvaCamYynwg design strength rbs;TwkbnSarénRbEvgÉktþa. eTAHbICaviFIKNna
RtUv)ansnμt;eFVIkarCalkçN³eGLasÞick¾eday k¾vamanlkçN³suvtßiPaBCamYynwg LRFD context Edr.




]TahrN_ 8>8³ eKeRbI L6 × 4 × 1 / 2 enAkñúg seated beam connection dUcbgðajenAkñúgrUbTI 8>26.
vaRtUvRTnUvbnÞúkemKuNRbtikmμ 22kips . EdkTaMgGs;Ca A36 ehIyeKeRbI electrode E 70 XX . etI
eKRtUvkarTMhMTwkbnSar fillet weld b:unμansMrab;tP¢ab;eTAnwgsøabssr?
                                           320                                       tMNcakp©it
T.chhay




dMeNaHRsay³ dUckñúg]TahrN_KNnaBImun/ eKeRbITMhM throat ÉktþasMrab;KNna. eTaHbICakarpSar
enHRtUvkar end return k¾eday edIm,IsMrYlkñúgkarKNna eKnwgecalvasMrab;karKNnaxageRkam.
enARKb;krNI eKGac)a:n;sμanRbEvgrbs;vaenARtg;cMnucenH edaysareKminTan;)ankMNt;TMhMTwkbnSar.
        edaysarmanKMlatBIssr 3 / 4in. FñwmRtUv)anRTeday 3.25in. elIRbEvg 4in. éneCIgrbs;
EdkEkg. RbsinebIeKsnμt;eGaykMlaMgRbtikmμeFVIGMeBIRtg;cMnuckNþalrbs;RbEvgEdlb:H enaHcMNak
p©iteFobnwgTwkbnSarKW
                       3.25
          e = 0.75 +        = 2.375in.
                         2
ehIym:Um:g;Kw
          M = Pe = 22(2.375) = 52.25in. − kips




                                           321                                   tMNcakp©it
T.chhay


sMrab;rUbragénkarpSarEdlsnμt;enAkñúgrUbTI 8>27
             2(1)(6 )3
                       = 36in.4 /
                                           6
         I=                            c = = 3in.
                12                         2
              Mc 52.25(3)
          ft =   =          = 4.354kips / in.
               I     36
              P    22
          fv = =         = 1.833kips / in.
              A 2(1)(6 )
          fr =    f t2 + f v2 =   (4.354)2 + (1.833)2   = 4.724kips / in.

eKGacrkTMhMTwkbnSarEdlcaM)ac; w edayeGay f r esμIeTAnwglT§PaBTwkbnSarkñúgmYyÉktþaRbEvg
          f r = 0.707 w(φFW )
          4.724 = 0.707 w(31.5)    /       w = 0.212in.

BI AISC Table J2.4,
         TMhMTwkbnSarGb,brma = 1 in. ¬edayQrelITMhMsøabrbs;ssr 5 / 8in.
                                4
BI AISC J2.2b,
         TMhMGtibrma = 1 − 16 = 16 in.
                       2
                            1    7


RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal:
          Applied direct shear = f v = 1.833kips / in.

                                                         (
          Shear capacity of angle leg = t (φFBM ) = t 0.54 F y =  )   1
                                                                      2
                                                                        (0.54)(36)
                                                      = 9.72kips / in. > 1.833kips / in.   (OK)
cMeLIy³ eRbI electrode E70 XX / fillet weld 1 / 4in. .




         eyIgecalnUv end returns enAkñúg]TahrN_ 8>8 b:uEnþeKGacbBa©ÚlvaedaykareFVIkarKNna
elIkTIBIrCamYynwg end return EdlmanRbEvgBIrdgTMhMTwkbnSarEdl)anrkeXIjenAkñúgkarKNna
elIkTImYy. ¬CMhanbENßmenHminRtUv)anGnuvtþenAkñúg]TahrN_enHeTedaysarTMhMTwkbnSarGb,-
brmaRKb; RKan;sMrab;karKNna¦. End return RtUv)anykmkniyayenAkñúg]TahrN_ 8>9.

                                                322                                         tMNcakp©it
T.chhay


]TahrN_ 8>9³ rUbTI 8>28 bgðajBI framed beam connection edaypSar. Edk framing angle Ca
            ehIyssrCa W 12 × 72 . EdkTaMgGs;CaRbePT A36 ehIyeKeRbI electrode
L4 × 3 × 1 / 2

E70 XX edIm,IbegáIt fillet weld 3 / 8in. . kMNt;kMlaMgRbtikmμemKuNrbs;FñwmEdlkMNt;edayTwk

bnSarenAelIsøabssr.




    dMeNaHRsay³ eKsnμt;kMlaMgRbtikmμrbs;FñwmeFVIGMeBIkat;tamTIRbCMuTMgn;rbs;TwkbnSarén framing
angle   . dUcenH cMNakp©itrbs;kMlaMgeFobnwgTwkbnSarenARtg;søabssrCacMgayBITIRbCMuTMgn;eTAsøab
ssr. sMrab;TMhM throat mYyÉktþa nigTwkbnSarEdlbgðajenAkñúgrUbTI 8>29 a
               2(2.5)(1.25)
          x=                = 0.1689in. nig e = 3 − 0.1689 = 2.831in.
               32 + 2(2.5)
m:Um:g;enAelITwkbnSarEdlenAelIsøabssrKW
          M = Re = R 2.831in. − kips
Edl R CaRbtikmμrbs;FñwmKitCa kips
BITMhMEdleGayenAkñúgrUbTI 8>29 b/ lkçN³rbs;TwkbnSarenAelIsøabssr
                  32(16 )
          y=               = 15.63in.
                 32 + 0.75
               1(32 )3
          I=           + 32(16 − 15.63)2 + 0.75(15.63)2 = 2918in.4
                 12
sMrab;TwkbnSarTaMgBIr
          I = 2(2918) = 5836in.4
               Mc 2.831R(15.63)
          ft =     =                = 0.007582 Rkips / in.
                I        5836
                R        R
          fv = =                 = 0.01527 Rkips / in.
                A 2(32 + 0.75)
                                              323                                   tMNcakp©it
T.chhay


          fr =     (0.007582 R )2 + (0.01527 R )2   = 0.01705Rkips / in.




yk 0.01705R = 0.707w(φFW ) ykKNnarktMél R
                        ⎛ 3⎞
         0.0175R = 0.707⎜ ⎟(31.5) / R = 489.8kips
                        ⎝8⎠
RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal ¬kMras;rbs;EdkEkglub¦
                        (       )
          t (φFBM ) = t 0.54 F y = 0.5(0.54 )(36 ) = 9.72kips / in.

Direct shear     RtUv)anTb;Kw
           489.8
                   = 7.48kips / in. < 9.72kips / in.       (OK)
          2(32.75)
cMeLIy³ kMlaMgRbtikmμFñwmemKuNGtibrma = 490kips

8>6> tMNTb;m:Um:g; Moment-Resisting Connection
       enARKb; beam-to-column connection nig beam-to-beam connection TaMgGs; vaEtgman
karTb;m:Um:g;xøH eTaHbICakarKNnatMNenaHCatMNsamBaØ b¤k¾tMNEdlKμanm:Um:g;k¾eday. müa:gvijeTot
eKBi)akkñúgkareFVIeGayman perfectly frictionless pin or hinge ehIytMNCaeRcInEdlRtUv)anKNna
CatMNEdldac;edayKμanm:Um:g;. dUcKña eKk¾Bi)akkñúgkareFVIeGayman perfectly rigid joint EdlGac
manlT§PaBepÞr moment capacity rbs;Ggát;mYyeTAGgát;mYyeTotEdr. dUcenH eTaHbICa framed nig
seated beam connections EdlbgðajkñúgrUbTI 8>24 k¾GacCatMNrwgxøH EdlvaGacbBa¢Únm:Um:g;tictYc



                                                324                               tMNcakp©it
T.chhay


RbsinebI connecting angle man flexible RKb;RKan;. dUcEdl)ankt;cMNaMBIxagelI bnÞúkcakp©iteFob
eTAnwgb‘ULúg b¤TwkbnSarKWtUcNas; ehIyEdlCaTUeTARtUv)anecal.
       AISC Specification kMNt;kartP¢ab;enHCaBIrRbePT enAkñúg Section A2.2, “Types of
Comstruction.”
          Type FR – Fully Restrained (Rigid, or Continuous, Framing).   eRKOgbgÁúMEdlman
moment-resistingg joint GacepÞrm:Um:g;EdlGgát;GacTb;)an edaymineFVIeGayGgát;enaHmanmMurgVil

enARtg;tMNenaH. RbsinebIeRKagRtUv)anKNnaCa rigid frame dUcenHtMNRtUv)anKNnaCa moment
connection.

        Type PR – Partially Restrained (semirigid Framing). eRKagRbePTenHCa eRKagEdl

RtUv)anKNnaedayQrelIkarsÁal;brimaNTb; (restraint) cenøaHrvagtMNsamBaØ nigtMNrwg. CaTUeTA
moment restraint sßitenAcenøaH 20% eTA 90% rbs; member moment capacity. bBaðacMbgrbs;

eRKagEdlmantMNRbePTenHKWTamTarnUvkarviPaKeRKagd¾saMjauMedaysarvtþmanrbs; partial joint
restraint. tMrUvkarcaM)ac; sMrab;tMNRbePTenHKWExSekag m:Um:g;-mMurgVil.

        RbsinebIeKecal partial restraint eKGaccat;TukFñwmCaFñwmTMrsamBaØEdlminman moment
restraint enARtg;tMN. Framed and seated beam connections sßitenAkñúgRbePTenH. CaTUeTAtMN

EdlepÞr member capacity ticCag 20% RtUv)ancat;TukCatMNsamBaØ. TMrFñwmEdlRtUv)anKNnaenA
kñúgkrNIenH eBlxøHRtUv)aneKehAfa shear connection EdlmanEtkMlaMgRbtikmμ b¤kMlaMgkat;enAxag
cugEdlRtUv)anbBa¢Ún.
        eRKagEdlman shear connection RtUv)anBRgwgenAkñúgbøg;rbs;eRKagedaysarvaKμan “frame
action”edIm,IeFVIeGayman lateral stability. cMrwg (bracing) TaMgenHmaneRcInTMrg; GacCa diagonal

bracing members, shear wall, or lateral support BIeRKagEdlenACab;. m:Um:g;EdlekItBIbnÞúkxag

¬CaTUeTAKW xül; nigrBa¢ÜydI¦ RtUv)anykmkKitkñúgkarKNnasMrab;kareRCIserIs beam-to-column
connections. sMrab;viFIenH eKsnμt;tMNeGayeFVIkarCatMNsamBaØedIm,ITb;Tl;nwgbnÞúkefr nigbnÞúk

Gefr ¬bnÞúkTMnaj gravity load¦ nigCa moment connection CamYynwglT§PaBEdlmankMNt;kñúgkar
Tb;Tl;m:Um:g;xül;. RbsinebIeKKNnaFñwmCaRbePTTMrsamBaØ m:Um:g;bnÞúkTMnajGtibrmaGac
overestimated ehIyFñwmGac overdesigned. b:uEnþkñúgkrNICaeRcIn m:Um:g;xül;GacmantMéltUc.

RbsinebIeKeRbItMNsamBaØ Specification TamTareGayeKarBnUvlkçxNÐxageRkam³
                                           325                                       tMNcakp©it
T.chhay


         !> eTaHbICaFñwm ¬rt¦ minRtUv)anRTedayTMrsamBaØk¾eday k¾vaRtUvEtRTbnÞúkTMnajtamEtvaGac
             eFVI)an.
         @> tMN nigGgát;EdlRtUv)anP¢ab; ¬Fñwm nigssr¦ RtUvmanlT§PaBGacTb;m:Um:g;xül;)an.
         #> tMNRtUvman inelastic rotational capacity RKb;RKan;EdleRKOgP¢ab; b¤TwkbnSarnwgmin
             RtUv)an overload eRkambnSMénbnÞúkTMnaj nigbnÞúkxül;.
         enAkñúgsovePAenH eyIgBicarNaEttMNBIrRbePTKW³ tMNsamBaØ (simple connection) Edl
KNnasMrab;bnÞúkTMnaj ¬CamYynwg lateral frame stability Edlpþl;eGayeday positive bracing
system¦ nigtMNrwg (rigid connection) EdlKNnasMrab; moment capacity rbs;FñwmFMCag 90% .

eyIg)anBicarNa simple connection enAkñúg framed nig seated beam connections rYcehIy dUcenH
eyIgnwgRtUvkarykcitþTukdak;eTAelI rigid connectionsvijmþg.
         ]TahrN_FmμtaCaeRcInEdleRbI moment connection RtUv)anbgðajenAkñúgrUbTI 8>30. Ca
TUeTA karepÞrm:Um:g;PaKeRcInRtUv)anbBa¢ÚntamsøabFñwm ehIy moment capacity k¾RtUv)aneLIg. tMN
enAkñúgrUbTI 8>30 a bgðajBIKMnitenH. EdkbnÞHEdlP¢ab;RTnugFñwmeTAssrKWRtUv)anpSarP¢ab;eTAnwg
ssrenAeragCag nigRtUv)ancab;b‘ULúgeTAnwgFñwmenAkardæan. CamYynwgkarerobcMEbbenH FñwmRtUv)an
Gacdak;enAelITItaMgy:agRsYledayeGaysøabGacRtUv)anpSarP¢ab;eTAnwgssrenAkardæan. Plate
connection RtUv)anKNnaedIm,ITb;Tl;EtkMlaMgkat; nigTTYlRbtikmμrbs;Fñwm. Complete penetra-

tion groove welds P¢ab;søabFñwmeTAssr nigGacepÞrm:Um:g;esμInwg moment capacity rbs;søab Fñwm.

vanwgrYmKñaCamYy moment capacity rbs;FñwmPaKeRcIn b:uEnþbrimaNrbs;karTb;RtUv)anpþl;eGay eday
plate connection. ¬edaysar strain harderning full plastic moment capacity rbs;FñwmGac

RtUv)anbegáIteLIgtamry³søab¦. kareFVIkartP¢ab;søabTamTarfaEpñkd¾tUcrbs;RTnugFñwmRtUv)andk
ecjehIy “backing bar” RtUv)aneRbIenAelI søabmYyedIm,IGnuBaØateGaykarpSarTaMgGs;eFVIeLIgBIelI.
enAeBlEdlkarpSarBIxagelIRtCak; vanwg rYjCaTUeTARbEhl 1 / 8in. . bMlas;TItamTisbeNþayEdl
TTYl)anRtUv)anykmkKitsMrab;eRbIR)as; slotted bolt hole nigedayrwtbNþwgb‘ULúgeRkayeBlTwk
bnSarRtUv)anRtCak;.tMNRbePTenH eRbI column stiffenders EdlminRtUvkarCaTUeTAeT ¬emIlEpñk
8>7¦.


                                          326                                     tMNcakp©it
T.chhay


          Moment connection  rbs;rUbTI 8>30 a k¾RtUv)anbgðaj recommended connection design
practice: RKb;eBlTaMgGs; karpSarKYrEtRtUv)aneFVIenAkñúgeragCag ehIykarcab;b‘ULúgKYreFVIenAkardæan.

karpSarenAeragCagmantMélefakCag niggayRsYlkñúgkarRtYtBinitü.
        sMrab; beam-to-column moment connections Ggát;CaEpñkrbs; plane frame ehIyRtUv)an
dak;dUcbgðajenAkñúgrUbTI 8>30 a EdlRTnugenAkñúgbøg;rbs;eRKagEdlkarBt;rbs;Ggát;nimYy²eFobeTA
nwgG½kSemrbs;va. enAeBlEdlFñwmRtUv)anP¢ab;eTAnwgRTnugrbs;ssrCaCagsøabrbs;ssr ¬Ca-
]TahrN_ enAkñúgeRKaglMhr¦ eKeRbItMNdUcEdlbgðajenAkñúgrUbTI 8>30 b. tMNenHRsedogKñaeTA
nwgGVIEdlbgðajenAkñúgrUbTI 8>30 a b:uEnþTamTarnUvkareRbI column stiffener edIm,IeFVIkartP¢ab;eTAnwg
søabFñwm.




         eTaHbICatMNEdlbgðajenAkñúgrUbTI 8>30 a CatMNsamBaØk¾eday k¾kartMeLIgrbs;faTamTar
nUvkMritlMeGantUcEdr. RbsinebIFñwmtUcCagkarrMBwgTukcenøaHrvagssr nigsøabFñwmGacbgáPaBlM)ak
kñúgkarpSar enAeBlxøHeKeRbI backing bar. Three-plate connection EdlbgðajenAkñúgrUbTI 8>30 c
minman handicap eT ehIyvamanGtßRbeyaCn_bEnßmEdlRtUv)anP¢ab;edayb‘ULúgy:agl¥enAkardæan.
Flange plate nig web plate RtUv)anpSarenAkñúgeragCageTAnwgsøabssr nigcab;b‘ULúgeTAFñwmRtUv)an

eFVIenAkardæan. edIm,Ipþl;eGaysMrab;karERbRbYlenAkñúgkMBs;Fñwm cMgayrvag flange plates RtUv)aneFVI
                                             327                                         tMNcakp©it
T.chhay


eLIgFMCagkMBs; Fmμtarbs;Fñwm b:uEnþRbEhl 3 / 8in. . KMlatenHRtUv)anbMeBjenAsøabxagelIkñúgeBl
dMeLIgCamYy shims/ Edl thin strip rbs;EdkedayRtUv)aneRbIsMrab;EktMrUvkarP¢ab;enARtg;tMN.
Shim GacCaRbePTmYykñúgcMeNamBIrRbePTKW conventional shim nig finger shim EdlGacs‘k

eRkayeBlb‘ULúgRtUv)anP¢ab; dUcbgðajenAkñúgrUbTI 8>30 d. enAkñúgtMbn;EdlmantMbn;rBa¢ÜyFM tMN
EdlbgðajenAkñúgrUbTI 8>30 a RtUvkarkarKNnaBiess (FEMA, 1995).
        ]TahrN_ 8>10 bgðajBIkarKNnarbs; three-plate moment connect edayrYmbBa©ÚlTaMg
tMrUvkarsMrab;kartP¢ab;Ggát; Edlmanerobrab;eday AISC J5.

]TahrN_ 8>10³ KNna three-plate moment connection rbs;RbePTEdl)anbgðajrUbTI 8>31 sM
rab;kartP¢ab;Fñwm W 21× 50 eTAsøabrbs;ssr W 14 × 99 . snμt;Fñwm set-back 1 / 2in. . karviPaK
eRKagbgðajfatMNRtUvEtepÞrm:Um:g;bnÞúkemKuN 210 ft. − kips nigkMlaMgkat;emKuN 33kips . RKb;bnÞH
EdkEdlpSareTAnwgssrCamYynwg electrode E70 XX nigkarP¢ab;b‘ULúgeTAFñwmCamYynwg bearing-
type bolts A325 . EdkTaMgGs;CaRbePTEdk A36 .




dMeNaHRsay³ sMrab; web plate ¬edayecalcMNakp©it¦ sakl,gb‘ULúgGgát;p©it 3 / 4in. . snμt;fa
eFμjsßitenAkñúgbøg;kMlaMgkat;. lT§PaBkMlaMgkat;TTwgrbs;b‘ULúgKW
          φFv Ab = 0.75(48)(0.4418) = 15.90kips
      cMnYnb‘ULúgEdlRtUvkar = 1533 = 2.08
                                 .90
sakl,gb‘ULúg 3 RKab; nigkMNt;kMras;bnÞHEdlTamTarsMrab; bearing. eRbIKMlat nigcMgayeTARCug
EKmenAkñúgrUbTI 8>32 a ehIyGgát;p©itrn§KW
                  1 3 1 13
          h=d+     = +  = in.
                 16 4 16 16

                                            328                                     tMNcakp©it
T.chhay


sMrab;RbehagEdlenAEk,rRCugEKmbMput
                   h         13 / 16
          Lc = Le −  = 1.5 −         = 1.094in.
                   2           2
                ⎛3⎞
          2d = 2⎜ ⎟ = 1.5in.
                ⎝4⎠
edaysar Lc < 2d / bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)t (58) = 57.11tkips / bolt




sMrab;Rbehagd¾éT
                          13
          Lc = s − h = 3 −    = 2.188in. > 2d
                          16
                                        ⎛3⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.03tkips / bolt
                                        ⎝4⎠
edIm,IrkkMras;EdlRtUvkardak; total bearing strength esμInwg applied load:
         57.11t + 2(78.30t ) = 33       b¤ t = 0.154in.
sMrab;RTnugFñwm (beam web) t w = 0.380in. > 0.154in.
edIm,IkMNt;kMras;bnÞHEdkEdlRtUvkarsMrab;kMlaMgkat; cUrBicarNamuxkat;bBaÄrkat;tambnÞHEdk. BI
AISC J5, “Connecting Elements,”
         φRn = 0.90[0.60 Ag F y ]                                       (AISC Equation J5-3)

          33 = 0.90[0.60(9t )(36 )]
          t = 0.189in.     ¬lub¦
dUcenHyk          t = 1 / 4in.




                                                 329                                 tMNcakp©it
T.chhay


sMrab;kartP¢ab; shear plate eTAnwgsøabssr TMhM fillet weld Gb,brmaKW 1 / 4in. . ¬edayQrelI
EpñkEdlRtUvP¢ab;EdlmankMras;Rkas;Cag TMhMfillet weld Gb,brmaKW 5 / 16in. b:uEnþvaminRtUvkarFM
CagkMras;rbs;EpñkEdlRtUvP¢ab;EdlesþIgCageT¦. enaH
        lT§PaBkñúgmYyÉktþaRbEvg = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5)
                                                         ⎜ ⎟
                                                         ⎝4⎠
                                        = 5.568kips / in.
lT§PaBkMlaMgkat;TTwgrbs; base metal KW
                    (
          tφFBM = t 0.54 F y =   )   1
                                     4
                                       (0.54)(36) = 4.86kips / in.   ¬lub¦
dUcenHRbEvgEdlcaM)ac;rbs; fillet weld 1 / 4in. KW
           33
               = 6.79in.
          4.86
karpSarCab;KñaenAelIRCugmçagrbs;bnÞHGacRKb;RKan; b:uEnþCaTUeTAeKRtUvpSarsgxag ehIyRtUv)anGnuvtþ
enATIenH.
         TTwgGb,brmarbs;bnÞHEdkGacRtUv)ankMNt;BIkarBicarNacMgayeTARCugEKm. bnÞúkEdl
RtUv)anRT ¬RbtikmμFñwm¦ KWmanTisbBaÄr dUcenHcMgayeTARCugEKmcaM)ac;eKarBtamtMrUvkarrbs; AISC
Table J3.4. RbsinebIeyIgsnμt;RCugEKmCa sheared edge cMgayeTARCugEKmGb,brmaKW 1 1 4 in. .

         CamYynwg beam setback 1 / 2in. nigcMgayeTARCugEKm 1 12 in. dUcEdl)anbgðajenAkñúgrUbTI
8>32 b TTwgrbs;bnÞHEdkKW
         0.5 + 2(1.5) = 3.5in. ykbnÞHEdkTMhM 3 1 2 × 1 4

sMrab; flange plates, rkkMlaMgRtg;épÞb:HrvagsøabFñwm nigbnÞHEdk. BIrUbTI 8>33




                                           M 210(12)
          M = Hd           nig       H=
                                           d
                                             =
                                               20.83
                                                     = 121.0kips




                                                  330                                tMNcakp©it
T.chhay


sakl,gb‘ULúg A325 Ggát;p©it 3 / 4in. . ¬edaysarb‘ULúgGgát;p©it 3 / 4in. RtUv)aneRCIserIssMrab;
shear connection dUcenHeyIgsakl,gTMhMb‘ULúgdUcKña¦. RbsinebIkMlaMgkat;TTwgb‘ULúglub cMnYnb‘U

LúgEdlRtUvkarKW
                    1 3 1 13
          h=d+       = +  = in.
                   16 4 16 16
sMrab;RbehagEdlenAEk,rRCugEKmCageK
                      h         13 / 16
          Lc = Le −     = 1.5 −         = 1.094in.
                      2           2
          2d = 2(3 / 4 ) = 1.5in.
edaysar Lc < 2d / bearing strength KW
          φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094 )t (58) = 57.11tkips / bolt
sMrab;RbehagepSgeTot
                          13
          Lc = s − h = 3 −    = 2.188in. > 2d
                          16
                                        ⎛3⎞
dUcenH    φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.30tkips / bolt
                                        ⎝4⎠
edIm,IrkkMras;EdlRtUvkar dak; total bearing strength eGayesμI applied load:
         2(57.11t ) + 6(78.30t ) = 121.0 b¤     t = 0.207in.

Flange plate TaMgBIrnwgRtUv)anKNnaCa tension connecting elements.

¬ebIeTaHbICabnÞHEdkmYyrgkMlaMgsgát;k¾eday kartP¢ab;lMGitecalnUvbBaðaesßrPaBTaMgGs;¦.
eKnwgkMNt;muxkat;Gb,brmaEdlRtUvkarsMrab;kugRtaMgTajenAelI gross nig net area. BI AISC
Equation J5-1,
                      (
          φRn = 0.90 Ag F y   )
          Ag   EdlRtUvkar = 0.φRnF
                              90
                                         =
                                                H
                                                     =
                                                       121.0
                                             0.90 F y 0.90(36)
                                                               = 3.735in.2
                                     y

BI AISC Equation J5-2,
          φRn = 0.75 An Fu

           EdlRtUvkar = 0.φ75nF = 0.75F = 0121(.58) = 0.782in.2
          An
                            R        H
                                            .75
                                                0
                               u       u

sakl,gTTwgrbs;bnÞHEdk wg = 6.5in. ¬esμIeTAnwgTTwgsøabrbs;Fñwm¦. kMNt;kMras;caM)ac;edIm,I
bMeBjtMrUvkar requirement.
                                                   331                                tMNcakp©it
T.chhay


                              b¤ t = 0.575in.
          Ag = 6.5t = 3.735in.2

KNnakMras;EdlcaM)ac;edIm,IbMeBjtMrUvkar net area
                        (                )
                                         ⎡       ⎛ 7 ⎞⎤
          An = twn = t wg − ∑ d hole = t ⎢6.5 − 2⎜ ⎟⎥ = 4.750t
                                         ⎣       ⎝ 8 ⎠⎦
yk 4.750t = 2.782in.2 b¤ t = 0.586in. ¬lub¦
kMras;k¾RtUvFMCagGVIEdlTamTarsMrab; bearing dUcenHvaRtUvCakMras;Gb,brmaEdlGacTTYlyk)an.
sakl,gbnÞH 6 12 × 5 8 . bnÞHenHCa tension connecting element dUcenH net area rbs;vaminGac
elIsBI 0.85 Ag enAkñúgkarKNna (AISC J5.2):
              5⎡       ⎛ 7 ⎞⎤
          An = ⎢6.5 − 2⎜ ⎟⎥ = 2.969in.2
              8⎣       ⎝ 8 ⎠⎦
          0.85 Ag = 0.85(0.625)(6.5) = 3.453in.2 > 2.969in.2       (OK)

ykbnÞH 6 12 × 5 8
Epñkrbs;RkLaépÞsøabrbs;FñwmnwgRtUv)an)at;bg;edaysarRbehagrbs;b‘ULúg nig moment capacity
RtUv)ankat;bnßy. AISC B10 GnuBaØatkarkat;bnßyenHedIm,IeGayecalenAeBl
          0.75 Fu A fn ≥ 0.90 F y A fg                                    (AISC Equation B10-1)

Edl       A fg = gross flange area

               = b f ⋅ t f = 6.530(0.535) = 3.494in.2
          A fn = net flange area

                    (           )       ⎡         ⎛ 7 ⎞⎤
               = t f b f − ∑ d h = 0.535⎢6.530 − 2⎜ ⎟⎥ = 2.557in.2
                                        ⎣         ⎝ 8 ⎠⎦
edayeRbI AISC Equation B10-1 eyIgTTYl)an
          0.75 Fu A fn = 0.75(58)(2.557 ) = 111.2kips

          0.9 F y A fg = 0.9(36 )(3.494) = 113.2kips > 111.2kips

edaysar AISC Equation B10-1 minRKb;RKan; flexural KYrRtUvQrelIRkLaépÞsøabRbsiT§PaB
(effective flange area)
                5 Fu
         A fe =      A fn
                6 Fy
               5 ⎛ 58 ⎞
              = ⎜ ⎟(2.557 ) = 3.433in.2                                   (AISC Equation B10-3)
               6 ⎝ 36 ⎠




                                               332                                      tMNcakp©it
T.chhay


RkLaépÞenHminxusKñay:agxøaMgBI actual gross flange are 3.494in.2 dUcenH flexural strength eday
minRtUvEkERb.
cMeLIy³ eRbItMNEdlbgðajenAkñúgrUbTI 8>34 ¬tMrUvkar column stiffener nwgRtUv)anBicarNaenAkñúg
Epñk 8>7¦*




8>7>       Column Stiffeners and other Reinforcement
         m:Um:g;PaKeRcInEdl)anepÞrBIFñwmeTAssrenAkñúgtMNrwgmanTMrg;Ca couple EdlpSMeLIgedaykM
laMgTaj nigkMlaMgsgát;EdlmanenAkñúgsøabrbs;Fñwm. karGnuvtþn_kMlaMgcMnucEdlmantMélFMGacTam
TarkarBRgwgssr. sMrab;m:Um:g;GviC¢manEdldUckrNICamYybnÞúkTMnaj kMlaMgTaMgenHmanTisedAdUc
bgðajenAkñúgrUbTI 8>35 CamYynwgsøabxagelIbMputrbs;FñwmEdlbBa¢ÚnkMlaMgTajeTAssr ehIysøab
xageRkamEdlbBa¢ÚnkMlaMgsgát;.
         kMlaMgTaMgBIrRtUvbBa¢ÚneTARTnugssrCamYynwgkMlaMgsgát;EdlmaneRKaHfñak;Cagedaysar
stability problem. kMlaMgTajenAxagelIGacrMxansøabssr ¬rUbTI 8>35 c¦ EdlbegáItbnÞúkbEnßm

eTAelIkartP¢ab;edaypSarénsøabssreTAsøabFñwm. RbePTeRKOgBRgwg (stiffener) Edl)an
bgðaj)anBRgwgsøabssr. dUc)aneXIjy:agc,as; stiffener RtUv)anpSarP¢ab;eTAnwgRTnug nigsøab.

*
    rUbTI 8>34 k¾bgðajBInimitþsBaØasMrab; bevel groove weld, edayeRbIenATIenHsMrab; beam flange plate-to-column connection
                                                         333                                                  tMNcakp©it
T.chhay


RbsinebIm:Um:g;EdlGnuvtþminpøas;bþÚrTisedA stiffener EdlTb;Tl;nwgkMlaMgsgát; ¬stiffener xag
eRkam¦ minRtUvkarkarpSareT.

AISC Specification Requirements
        tMrUvkarrbs; AISC sMrab;karBRgwgRTnugssrRtUv)anerobrab;enAkñúg Chapter K, “strength
Design Considerations.”. sMrab;EpñkCaeRcIn karpþl;eGayenHQrenAelIkarviPaKedayRTwsþIEdl

RtUv)anEkERbedIm,IeGayRtUvnwglT§plrbs;karBiesaFn_. RbsinebIbnÞúkemKuNGnuvtþn_EdlRtUv)an
epÞredaysøabFñwm b¤ flange plate FMCag design strength φRn sMrab;RKb;sßanPaBkMNt;Edl)an
BicarNaTaMgGs; enaHeKRtUvEteRbI stiffener.
        edIm,IeCosvag local bending failure rbs;søabssr kMlaMgTajBIsøabFñwmdac;xatminRtUv
FMCag
                  (
          φRn = φ 6.25t 2 F yf
                        f        )                                   (AISC Equation K1-1)


Edl       φ = 0.90
          tf =kMras;rbs;søabssr
        F yf = yield stress rbs;søabssr

        sMrab;sßanPaBkMNt;rbs; local web yielding rgkugRtaMgsgát;
        φRn = φ [(5k + N )Fywt w ]                                     (AISC Equaton K1-2)

b¤ enAeBlEdlbnÞúkRtUv)anGnuvtþedaycMgayBIcugrbs;Ggát;EdlesμIkMBs;rbs;Ggát;
        φRn = φ [(2.5k + N )Fywt w ]                                   (AISC Equation K1-3)

Edl φ = 1.0
        k = cMgayBIépÞsøabxageRkArbs;ssreTAeCIgrbs; fillet EdlenAelIRTnug

        N = RbEvgrbs;bnÞúkGnuvtþn_ = kMras;rbs;søabFñwm b¤ flange plate

        F yw = yield stress rbs;RTnugssr

        t w = kMras;rbs;RTnugssr

eyIgk¾eRbI AISC Eqution K1-2 nig K1-3 in Section 5.13 edIm,IGegát web yielding enAkñúgFñwmEdl
rgbnÞúkcMcMnuc.

                                            334                                        tMNcakp©it
T.chhay


        edIm,IkarBar web crippling enAeBlEdlbnÞúksgát;RtUv)anbBa¢ÚneTAEtsøabmYy dUckñúgkrNI
ssrxageRkAEdlmanP¢ab;CamYyFñwmEtmçag enaHbnÞúkGnuvtþn_minRtUvFMCag design strength EdleGay
daysmIkarmYykñúgcMeNamsmIkarxageRkam. ¬eyIgk¾Føab;)anerobrab;BI web crippling enAkñúg web
crippling enAkñúgEpñkTI 5>13¦ enAeBlEdlbnÞúkRtUv)anGnuvtþenAcMgayy:agtic d / 2 BIcugrbs;ssr
                           ⎡                  1.5 ⎤
                              ⎛N    ⎞⎛ t w ⎞      ⎥ Fywt f
          φRn = φ135t w ⎢1 + 3⎜
                      2
                                    ⎟⎜ ⎟                                       (AISC Equation K1-4)
                        ⎢       ⎝ d ⎠⎜ t f ⎟
                                     ⎝ ⎠
                                                  ⎥  tw
                           ⎢
                           ⎣                      ⎥
                                                  ⎦
Edl       φ = 0.75
          d=kMBs;srubrbs;ssr
RbsinebIbnÞúkRtUv)anGnuvtþenAcugrbs;ssr
                       ⎡                  1.5 ⎤
                              ⎛N   ⎞⎛ t w ⎞⎥ Fywt f
          φRn = φ 68t w ⎢1 + 3⎜
                      2
                        ⎢      ⎝
                                   ⎟⎜ ⎟
                                 d ⎠⎜ t f ⎟⎥     tw
                                                             sMrab;   N
                                                                      d
                                                                        ≤ 0.2 (AISC Equation K1-5b)
                       ⎢
                       ⎣            ⎝ ⎠    ⎥
                                           ⎦
                       ⎡                      1.5 ⎤
                      2⎢ ⎛ N          ⎞⎛ t w ⎞ ⎥ Fywt f
b¤        φRn = φ 68t w 1 + ⎜ 4 − 0.2 ⎟
                       ⎢ ⎝ d
                                       ⎜ ⎟
                                      ⎠⎜ t f ⎟ ⎥    tw
                                                                      sMrab;   N
                                                                               d
                                                                                 > 0.2
                       ⎢
                       ⎣               ⎝ ⎠ ⎥      ⎦
                                                                                  (AISC Equation K1-5b)

        kMlaMgsgát; backling rbs;RTnugRtUv)anGegátenAeBlEdlbnÞúkRtUv)anbBa¢ÚneTAsøabssr
TaMgBIr. bnÞúkEbbenHnwgekItmanenAssrxagkñμúgCamYynwgFñwmEdlP¢ab;eTAssrTaMgsgxag. Design
strength sMrab;sßanPaBkMNt;enHKW
                  ⎡ 4100t w Fyw ⎤
                          3
          φRn = φ ⎢             ⎥                                              (AISC Equation K1-8)
                  ⎢       h     ⎥
                  ⎣             ⎦
Edl       φ = 0.90
          h=kMBs;RTnugssrBIeCIgrbs; fillet eTAeCIgrbs; fillet ¬rUbTI 8>36¦
       RbsinebIkartP¢ab;enAEk,rcugrbs;ssr ¬EdlRbsinebIbnÞúkRtUv)anGnuvtþenAcMgay d / 2 BI
cug¦ ersIsþg;EdleGayeday AISC Equation K1-8 KYrRtUv)ankat;bnßyBak;kNþal.
       niyayedaysegçb edIm,IGegátPaBcaM)ac;sMrab; column stiffener eKRtUvRtYtBinitüsßanPaBkM
Nt;bIdUcxageRkam³
       !> Local flang bending (AISC Equation K1-1)

                                                      335                                     tMNcakp©it
T.chhay


         @> Loacl web yielding (AISC Equation K1-2 or K1-3)
         #> Web crippling b¤kMlaMgsgát; buckling rbs;RTnug. ¬RbsinebIkMlaMgsgát;RtUv)anGnuvtþ
eTAelIsøabEtmYy eKRtUvRtYtBinitü web crippling [AISC Equation K1-4 b¤ K1-5]. RbsinebIkMlaMg
sgát;RtUv)anGnuvtþeTAelIsøabTaMgBIr eKRtUvRtYtBinitü compressive buckling rbs;RTnug [AISC
Equation K1-8]¦.




        RbsinebI stiffener EdlRtUvkareday AISC Equation K1-2 sMrab; local web yielding, eKGac
rkRkLaépÞmuxkat;EdlRtUvkarsMrab; stiffener dUcxageRkam. snμt;faeKGacTTYl)an design strength
bEnßmBIRkLaépÞrbs; stiffener Ast Edl yield. dUcenHBI AISC Equation K1-2.
        φRn = φ [(5k + N )Fywt w + Ast Fyst ]

Edl Fyst Ca yield stress rbs; stiffener. dak;eGayGgÁxagsþaMrbs;smIkarenHesμInwgbnÞúkGnuvtþn_
EdlsMKal;eday Pbf nigedaHRsaysMrab; Ast eKTTYl)an
                  Pbf / φ − (5k + N )Fywt w
          Ast =
                            Fyst
                  Pbf − (5k + tb )Fywt w
              =
                           Fyst
                                                                                 ¬*>^¦
Edl φ = 1.0 nig tb KWkMras;rbs;søabssr b¤ flange plate. smIkar 8>6 k¾GacRtUv)aneRbIedIm,IRtYt
Binitü local buckling yielding strength rbs;ssr. edaHRsayrk Ast RbsinebITTYl)anlT§pl
GviC¢man eKnwgminRtUvkar stiffener sMrab;sßanPaBenHeT.
        RbsinebIeKRtUvkar stifferner AISC K1-9 eGaynUvTMhMsmamaRtrbs;vadUcxageRkam³
                                              336                                  tMNcakp©it
T.chhay


           TTwgrbs; stiffener bUknwgkMras;Bak;kNþalrbs;RTnugssrRtUvFMCagb¤esμInwgmYyPaKbIén
           TTwgrbs;søabFñwm b¤ flange plate EdlbBa¢ÚnkMlaMgeTAssr b¤BIrUbTI 8>37
               t
           b+ w ≥ b
                2
                    b
                     3
                               dUcenH b ≥ b3b − t2
                                                 w


           kMras;rbs; stiffener dac;xatRtUvEtFMCagb¤esμInwgBak;kNþalkMras;rbs;søabFñwm b¤ flange
           plate b¤
                  t
            t st ≥ b
                   2
           pleFobTTwgelIkMras;RtUvEt
           t
            b
              ≤
                250
                 F
                           ¬xñat IS¦            b
                                             t st
                                                    ≤
                                                        95
                                                        Fy
                                                             ¬xñat US¦
             st        y




       eKRtUvkar Full-depth stiffener sMrab;krNI compression buckling b:uEnþeKGnuBaØateGayeRbI
half-depth stiffener sMrab;sßanPaBkMNt;epSgeTot. dUcenHeKRtUvkar full-depth stiffener EtenA

eBlEdlFñwmRtUv)anP¢ab;eTAnwgssrTaMgsgxag.
        sMrab;RKb;sßanPaBkMNt;TaMgGs; karsMerckñúgkarpSar stiffener P¢ab;eTAsøabKWQrelIlkçxNÐ
xageRkam³
        enAelIxagEdlrgkMlaMgTaj eKRtUvpSar stiffener P¢ab;eTAnwgRTnug nigsøab.
        enAelIxagEdlrgkMlaMgsgát; stiffener RKan;EtRtUvkardak;EGbnwgsøabEtb:ueNÑaH EteKk¾Gac
        pSarvaP¢ab;eTAnwgsøab.
       Part 3 of the Manual, “Column Design,” mantMélefrEdlRtUv)anerobCataragEdlGaceFVI

karkMNt;karcaM)ac;sMrab; stiffener. kareRbIR)as;rbs;vaRtUv)anbgðajenAkñúg]TahrN_EdlmanenAkñúg
“General Notes” EtminRtUv)anbgðajenATIenHeT.




                                          337                                        tMNcakp©it
T.chhay


kMlaMgkat;enAkñúgRTnugssr         Shear in the Column Web

        karepÞrm:Um:g;EdlmantMélFMeTAssrGacbegáItkugRtaMgkMlaMgkat;FMenAkñúgRTnugssr
enAkñúgRBMEdn rbs;tMN. ]TahrN_ tMbn; ABCD enAkñúgrUbTI 3>38. eBlxøH eKehAtMbn;enHCa
panel zone. Net moment RtUv)anKit dUcenHRbsinebIFñwmRtUv)antP¢ab;eTARCugTaMgsgxagrbs;ssr

plbUkBiCKNiténm:U m:g;begáIt web shear enH.




       RbsinebIkMlaMgsøabFñwmRtUv)ansnμt;eGayeFVIGMeBIenAcMgay 0.95db BIKña Edl db CakMBs;Fñwm
enaHkMlaMgsøabnImYy²GacRtUv)anykCa
               M1 + M 2
          H=
                0.95d b
         RbsinebIkMlaMgkat;ssrenAEk,r panel Ca Vu ehIymanTisedAdUcbgðaj kMlaMgkat;TTwgsrub
enAkñúg panel KW
                       M + M2
          P = H − Vu = 1
                        0.95d b
                                 − Vu                                           ¬*>&¦
         Web shear strength RtUv)aneGayenAkñúg AISC K1.7 Ca φRv Edl φ = 0.90 ehIy Rv Ca

GnuKmn_ eTAnwgbnÞúktamG½kSenAkñúgssr. enAeBlEdl Pu ≤ 0.4Py
          Rv = 0.60 F y d c t w                                     (AISC Equation K1-9)

enAeBlEdl Pu > 0.4Py /
                                             338                                    tMNcakp©it
T.chhay


                                ⎡      ⎛P     ⎞⎤
          Rv = 0.60 F y d c t w ⎢1.4 − ⎜ u    ⎟⎥                       (ASIC Equation K1-10)
                                ⎢      ⎜ Py   ⎟⎥
                                ⎣      ⎝      ⎠⎦
Edl       Pu =  bnÞúktamG½kSenAkñúgssr
           Py = axial yield strength rbs;ssr = AF y

           A = RkLaépÞmuxkat;rbs;ssr edayrYmbBa©ÚlTaMgeRKOgBRgwg ¬]TahrN_/ doubler plates¦

          d c = TMhMssrtamTisFñwmsrub

          t w = kMras;RTnugssr edayrYmbBa©ÚlTaMgbnÞHEdkEdlBRgwg

           Fy = yield stress rbs;RTnugssr

          RbsinebIRTnugssrman shear strength minRKb;RKan; eKRtUvBRgwgva. eKGaceRbI double plate
EdlmankMras;RKb;RKan;edIm,IpSarP¢ab;eTAnwgRTnug b¤ diagonal stiffener mYyKUr. kñúgkarGnuvtþeKeRcIn
eRbI stiffener Cag.
          AISC K1.7 k¾)anpþl;nUvsmIkaredIm,IenAeBlEdleKBicarNaBI frame stabality EdlrYmbBa©Úl

TaMgkMhUcRTg;RTayrbs; panel zone. vaminRtUv)anerobrab;enATIenHeT.

]TahrN_ 8>11³ kMNt;faetItMNén]TahrN_ 8>10 RtUvkar stiffener b¤k¾ column web
            . snμt;fa Vu = 0 nig Pu / Py = 0.4 .
reinforcement

dMeNaHRsay³ BI]TahrN_ 8>10 flange force RtUv)anykesμInwg
          Pbf = H = 121.0kips

RtYtBinitü local flange bending CamYynwg AISC Equation K1-1:
                   (
          φRn = φ 6.25t 2 F yf
                        f        )
                       [                      ]
               = 0.90 6.25(0.780)2 (36) = 123kips > 121kips     (OK)
RtYtBinitü local web yielding CamYynwg AISC Equation K1-2:
                   [
          φRn = φ (5k + N )Fywt w     ]
                    ⎡          5⎤
               = 1.0⎢5(1.438) + ⎥ (36)(0.485) = 136kips > 121kips      (OK)
                    ⎣          8⎦
RtYtBinitü web crippling CamYynwg AISC Equation K1-4:
                           ⎡                      1.5 ⎤
                              ⎛N     ⎞⎛ t w ⎞        ⎥ Fywt f
          φRn = φ135t w ⎢1 + 3⎜
                      2
                                     ⎟⎜ ⎟
                        ⎢        ⎝ d ⎠⎜ t f ⎟
                                      ⎝ ⎠
                                                     ⎥  tw
                           ⎢
                           ⎣                         ⎥
                                                     ⎦
                                                          339                           tMNcakp©it
T.chhay


                                   ⎡     ⎛ 5 / 8 ⎞⎛ 0.485 ⎞ ⎤ 36(0.780 )
                                                           1.5
               = 0.75(135)(0.485)2 ⎢1 + 3⎜       ⎟⎜       ⎟ ⎥
                                   ⎢
                                   ⎣     ⎝ 14.16 ⎠⎝ 0.780 ⎠ ⎥  ⎦
                                                                 0.485
               = 193kips > 121kips       (OK)
cMeLIy³ eKminRtUvkar column stiffener eT.
     sMrab;kMlaMgkat;TTwgeNAkñúgRTnugssr BIsmIkar *>& nigedayecalkMras;rbs; shim enAkñúg
karKNnark db kMlaMgkat;TTwgemKuNenAkñúg column web panel zone KW
          P=
                (M 1 + M 2 ) − V
                                    u
                0.95d b
                     210(12)
             =                        − 0 = 120kips
               0.95[20.83 + 2(5 / 8)]
edaysar Pu = 0.4Py eRbI AISC Equation K1-9:
          Rv = 0.60 F y d c t w = 0.60(36 )(14.16 )(0.485) = 148.3kips

Design strength     KW
          φRv = 0.90(148.3) = 134kips > 120kips            (OK)
cMeLIy³ eKminRtUvkar column web reinforcement eT.

]TarhrN_ 8>12³ rUbTI 8>39 bgðajBI beam-to-column connection EdlepÞrm:Um:g;emKuN
142 ft − kips. m:Um:g;enHekIteLIgedaysarbnÞúkTMnagefr nigGefr. eKeRbIEdkRbePT A36 nig
electrode E 70 . cUreFVIkarGegát colum stiffener nigtMrUvkar web panel-zone reinforcement.

snμt;fa Vu = 0 nig Pu < 0.4Py .
dMeNaHRsay³ flange force KW
                     M        142(12)
          Pbf =           =              = 98.07kips
                  d b − tb 17.90 − 0.525
edIm,IRtYtBinitü flange bending eKeRbI AISC Equation K1-1:
                   (
          φRn = φ 6.25t 2 Fyf
                        f           )
                         [                 ]
               = 0.90 6.25(0.560)2 (36) = 63.50kips < 98.07kips          (N.G.)
dUcenH eKRtUvkar stiffener edIm,IkarBar loacla flange bending.
edIm,IRtYtBinitü local web yielding eKeRbIsmIkar 8>6 CMnYseGaykareRbI AISC Equation K1-2:
                  Pbf − (5k + tb )Fywt w
          Ast =
                             Fyst

                                                340                                  tMNcakp©it
T.chhay


                    98.07 − [5(1.062) + 0.525](36)(0.36 )
               =                                          = 0.6236in.2
                                    36
edaysar Ast viC¢man dUcenHeKRtUvkar stiffener mYyKUrEdlman combined cross-sectional area
y:agtic 0.623in.2 .




RtYtBinitü web crippling strength edayeRbI AISC Equation K1-4:
                        ⎡                 1.5 ⎤
                              ⎛ N ⎞⎛ t w ⎞ ⎥ Fywt f
          φRn = φ135t w ⎢1 + 3⎜ ⎟⎜ ⎟
                      2
                        ⎢     ⎝ d ⎠⎜ t f ⎟ ⎥
                                   ⎝ ⎠ ⎥        tw
                        ⎢
                        ⎣                     ⎦
                                  ⎡     ⎛ 0.525 ⎞⎛ 0.360 ⎞ ⎤ 36(0.560 )
               = 0.75(135)(0.36)2 ⎢1 + 3⎜       ⎟⎜       ⎟1.5⎥
                                  ⎣     ⎝ 8.25 ⎠⎝ 0.560 ⎠ ⎦    0.360
               = 107.9kips > 98.07kips (OK)
eKeRCIserIsTMhM stiffener edayQrelIlkçxNÐEdlpþl;eGayeday AISC Section K1-9, ehIybnÞab;
mkeKRtUvRtYtBinitüRkLaépÞmuxkat;EdlTTYl)an.
       TTwgGb,brmaKW
               bf t    6.015 0.360
          b≥     − w =      −      = 1.825in.
               3   2     3     2



                                                 341                             tMNcakp©it
T.chhay


RbsinebIeKminGnuBaØateGaybnøay stuffene eTAhYsRCugrbs;søabssr TTwgGtibrmaKW
               8.07 − 0.360
          b≤                = 3.855in.
                     2
kMras;Gb,brmaKW
          tb 0.525
             =     = 0.2625in.
           2   2
sakl,g 3× 5 /16 ³
                 ⎛5⎞
          Ast = 3⎜ ⎟ × 2stiffeners = 1.875in.2 > 0.6236in 2       (OK)
                 ⎝ 16 ⎠
RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratio)
           b       3
               =       = 9.6
          t st 5 / 16
             95      95
                 =       = 15.8 > 9.6     (OK)
             Fy       36

edaysarEtkartP¢ab;enHmanEtmçag dUcenHeKminRtUvkar full-depth stiffeners eT. dUcenH
                     = 4.125in. yk 4 1 2 in.
          d 8.25
             =
           2      2
cMeLIy³ eRbIEdkTMhM 3 × 5 /16 × 4 12 cMnYn 2 bnÞH. ¬kat;RcwbRCugEkgxagkñúgrbs;bnÞHEdkedIm,IeCos
vag fillet enARtg;kEnøgEdlsøab nigRTnugrbs;ssrCYbKña. kat;RcwbedaymMu 45o sMrab;TMhM
5 / 8in. ¦.

          KNnaTwkbnSarsMrab;P¢ab; stiffener eTARTnugssr
                   TMhMGb,brma = 16 in. (AISC Table J2.4, edayQrelIkMras;RTnug)
                                       3


          TMhMcaM)ac;sMrab;ersIusþg;KW
                       force resisted by stiffener
                  w=
                             0.707 L(φFW )
          BIsmIkar *>^ kMlaMgEdlRtUvTb;eday stiffener KW
                  Ast Fyst = Pbf − (5k + tb )Fywt w

                           = 98.07 − [5(1.062 ) + 0.525](36 )(0.360 ) = 22.45kips
          RbEvgEdlGacpSarP¢ab; stiffener eTAnwgRTnugssrKW
                      ⎛      5⎞
                  L = ⎜ 4.5 − ⎟ × 2sids × 2stiffeners = 15.5in.
                      ⎝      8⎠
                                                                  ¬emIlrUbTI 8>40¦

                                               342                                    tMNcakp©it
T.chhay


                  w=
                            22.45
                       0.707(15.5)(31.5)
                                                       3
                                         = 0.0650in. < in.
                                                      16
                                                                  TMhMGb,brma
          ersIusþg;kMlaMgkat;rbs; base metal KW
                                                         ⎛5⎞
                  φRn = φFBM t = 0.54 Fy t st = 0.54(36)⎜     ⎟ = 6.075kips / in.
                                                         ⎝ 16 ⎠
          nig ersIusþg;TwkbnSarcaM)ac; ¬sMrab; stiffener mYy¦ = 0.0650(0.707)(31.5)(2)
                                                             = 2.09kips / in. < 6.075kips / in. (OK)




cMeLIy³ yk filler weld 3 /16in. .
          KNnaTwkbnSarsMrba;P¢ab; stiffener eTAnwgsøabssr
               TMhMGb,brma = 1 in. (AISC Table J2.4, edayQrelIkMras;søab)
                                4
               lT§PaBTwkbnSarkñúg 1in. = 0.707⎛ 1 ⎞(31.5) = 5.538kips / in.
                                                 ⎜ ⎟
                                                 ⎝4⎠
                                           < 0.54 Fy t st = 0.6075kips / in.        (OK)

                   RbEvgEdlmansMrab; = ⎛ 3 − 8 ⎞(2)(2) = 9.5in.
                                       ⎜
                                       ⎝
                                             5
                                               ⎟
                                               ⎠
          TMhMcaM)ac;sMrab;ersIusþg;KW
                       force resisted by stiffener        22.45                   1
                  w=                               =                  = 0.106in. < in.
                             0.707 L(φFW )           0.707(9.5)(31.5)             4
cMeLIy³ yk fillet weld 1/ 4in. . ¬m:Um:g;Gnuvtþn_EdlekIteLIgedaybnÞúkTMnaj ehIyEdlminGac
bþÚrTisedAGnuvtþn_)an dUcenHeKGacdak; stiffener Pa¢b;eTAnwgsøabssr Edl stiffener enHTb;søabrg
karsgát;rbs;FñwmedaymincaM)ac;pSar b:uEnþkrNIenHmin)anniyayenATIenHeT¦.
         RtYtBinitüRTnugssrsMrab;kMlaMgkat;TTwg. BIsmIkar *>&
          P=
               (M 1 + M 2 ) − V       142(12)
                              u =               − 0 = 100.2kips
                 0.95d b            0.95(17.90)

                                                  343                                       tMNcakp©it
T.chhay


          BI AISC Equation K1-9
                  Rv = 0.60 Fy d c t w = 0.60(36 )(8.25)(0.360 ) = 64.15kips

          Design strength   KW
                  φRv = 0.90(64.15) = 57.74kips < 100.5kips   (N.G.)
          eRbI AISC Equation edIm,IrkkMras;RTnugEdlRtUvakar. edaHRsayrk t w edayKuNPaKyk
          nigPaKEbgeday φ
          t w = required doubler plate thickness

             = 0.625 − 0.360 = 0.265in.
         sakl,g td = 5 /16in. . TwkbnSarRtUvmanTMhMeGayRtUvKñanwgersIusþg;kMlaMgkat;énkMras;
caM)ac;rbs; doubler plate. yk
          φFBM t d = 0.707 w(φFW )
               φFBM t d      0.54(36 )(0.265)
b¤        w=
             0.707(φFW )
                           =
                               0.707(31.5)
                                              = 0.231in.

yk w = 1/ 4in.
BI AISC J2.2b, TMhMTwkbnSarGtibrmaKW
                  1  5 1 1
          td −      = − = in.             (OK)
                 16 16 6 4
cMelIy³ double plate 5 /16in. nig fillet weld 1/ 4in
eRbI diagonal stiffener
eRbI full-depth horizontal stiffeners dUcbgðajenAkñúgrUbTI 8>41 ¬RKan;EtCaCMerIs¦.




                                               344                                     tMNcakp©it
T.chhay


kMlaMgkat;TTwgEdlTb;eday web reinforcement KW 100.2 − 57.74 = 42.46kips . RbsinebIkMlaMg
enHRtUv)anKitCakMub:Usg;kMlaMgtamG½kSedk P enAkñúg stiffener
          P cosθ = 42.46kips
                      ⎛ db ⎞
                           ⎟ = tan −1 ⎛
                                        17.90 ⎞
Edl       θ = tan −1 ⎜
                     ⎜     ⎟          ⎜
                                      ⎝ 8.25 ⎠
                                              ⎟ = 65.26
                                                        o
                      ⎝ dc ⎠
                  42.46
          P=
                  (
               tan 65.26 o   ) = 101.5kips
yk φRn = φAst Fy = 0.9 Ast (36) = 101.5kips
bnÞab;mk          Ast =
                          101.5
                         0.9(36)
                                 = 3.13in.2

eRbI stiffener BIr/ 3× 9 /16 enAsgxagRTnug
                                  ⎛9⎞
          Ast Edlpþl;eGay = 2(3)⎜ ⎟ = 3.38in.2 > 3.13in.2 EdlRtUvkar      (OK)
                                  ⎝ 16 ⎠
RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratrio):
           b     3            95
              =       = 5.3 <     = 15.8             (OK)
          t st 9 / 16          36
KNnaTwkbnSar. RbEvgrbs; diagonal stiffener nImYy²KW
           dc     8.25
              =
                         (
          cosθ cos 65.26 o      )
                           = 19.7in.

RbsinebIeKpSarenAelIépÞTaMgsgxagrbs; stiffener enaHRbEvgTwkbnSarKW
          L = 19.7(4 ) = 78.8in.
TMhMTwkbnSarEdlcaM)ac;sMrab;ersIusþg;KW
                     P            101.5
          w=                =                  = 0.058in.
               0.707 L(φFW ) 0.707(78.8)(31.5)
eRbITMhMGb,brma 1/ 4in. (AISC Table J2.4)
edaysarTMhMEdlcaM)ac;sMrab;ersIusþg;mantMéltUc eyIgnwgGegátemIllT§PaBkñúgkareRbITwknSarEdl
minCab;Kña. BI AISC J2.2b
        RbEvgGb,brma = 4w = 4⎛ 1 ⎞ = 1.0in. b:uEnþvaminRtUvtUcCag 1.5in. ¬1.5in. lub¦
                              ⎜ ⎟
                              ⎝ 4⎠
lT§PaB nigKMlatrbs;RkuménTwkbnSarbYnKW
                                       ⎛1⎞
          4(0.707 )wL(φFw ) = 4(0.707 )⎜ ⎟(1.5)(31.5) = 33.41kips
                                       ⎝4⎠

                                                  345                             tMNcakp©it
T.chhay


          lT§PaBEdlcaM)ac;kñúg 1in. = 101.75 = 5.152kips / in.
                                      19
                                          .


          KMlatEdlcaM)ac;rbs;TwkbnSar = 5.152 = 6.48in.
                                            33.41

          shear capacity of base metal = 0.54 Fy t w = 0.54(36 )(0.360 ) = 7.00kips / in.

       lT§PaBrbs;TwkbnSar = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5)
                                                        ⎜ ⎟
                                                        ⎝4⎠
                              = 5.57 kips / in. < 7.00kips / in. (OK)

cMeLIy³ eRbITwkbnSarminCab;Kña 1/ 4in.×1 12 in. EdlmanKMlatBImYyeTAmYy 6in. KitBIG½kS enAelIépÞ
nImYy²rbs; diagonal stiffener.

        dUcEdl)anbgðajBImun eKniymeRbI diagonal stiffener Cag doubler plate b:uEnþsMrab;lkçN³
esdækic©eKKYrEteRbIvaCamYynwgmuxkat;ssrFM. tMélBlkmμCamYynwg doubler plate nig stiffener
TaMgGs;GacnwgbEnßmtMéleRcIneTAelIsMPar³sMrab;ssrmuxkat;FM.

8>8>      End Plate Connection
          End plate connection Ca beam-to-column nig beam-to-beam connection Edlmankar
eBjniym ehIyRtUv)aneKeRbIcab;taMgBIBak;kNþalTsvtSr_qñaM 1950 mkemøH. rUbTI 8>42 bgðajBI
end plate connection BIrRbePTKW³ tMNsamBaØ b¤tMNrgEtkMlaMgkat; (Type PR construction) nig

tMNrwg b¤tMNTb;m:Um:g; (Type FR construction). Rigid connection k¾RtUv)anehA mü:ageTotfa
extended end plate connection. eKalkarN_rbs;RbePTTaMgBIrKW bnÞHEdkEdlRtUv)anpSarP¢ab;enA

xagcugrbs;FñwmRtUv)ancab;P¢ab;eTAnwgssr b¤Fñwmedayb‘ULúg. tMNenHRtUvkarb‘ULúgticCagkartP¢ab;
epSgeTotEdlGaceFVIeGaykartMeLIgelOn.
        sMrab;tMNsamBaØ eKRtUvykcitþTukdak;kñúgkareFVIeGaymanlkçN³ flexible RKb;RKan;edIm,IeFVI
eGayFñwmmanmMurgVilenAxagcug. eKGacTTYl)an flexibility enH RbsinebIbnÞHEdkmanTMhMtUc nigesþIg
ebIeRbobeFobCamYynwg tMNRbePT fully restrained. Manual of Steel Construction, in Part 9,
“Simple Shear Connections,” )anENnaMfa kMras;RtUvsßitenAcenøaH 1 / 4in. nig 3 / 8in. edIm,ITTYl)an

flexibility. EpñkenHrbs; Manual k¾bgðajBIeKalkarN_ENnaM nig]TaheN_EdlrYmman reaction

capacities sMrab;bnSMCaeRcInénbnÞHEdk nigb‘ULúg.

                                                346                                         tMNcakp©it
T.chhay




        karKNna moment-resisting end plate connections RtUvkarkarkMNt;kMras;bnÞH TMhMTwk
bnSar nigkarlMGitBIb‘ULúgCaedIm. karKNnaBITwkbnSar nigb‘ULúgCakarGnuvtþn_nUv traditional
analysis procedures. b:uEnþ karKNna kMras;bnÞHKWQrelIlT§plrbs;karBiesaFn_ nig statistical

research (Krishnamuthy, 1978). EpñkrgkarTajrbs;tMNKWmaneRKaHfñak; Éb‘ULúgenAEpñkrgkar

sgát;mannaTICaGñkrkSatMNeGayenARtg;G½kS. RbsinebImanm:Um:g;sgxag eKRtUvKNnaEpñkrgkar
TajTaMgsgxag. viFITUeTAKWxageRkam³
        !> kMNt;kMlaMgenAkñúgsøabrgkarTajrbs;Fñwm
       @> eRCIserIsb‘ULúgEdlcaM)ac;edIm,ITb;Tl;nwgkMlaMgenH
           nigtMerobvaeGaymanlkçN³sIuemRTIeFobnwgsøabrgkarTaj.
           RbsinebIm:Um:g;sßitenAsgxag eKRtUveFVIkartMerobdUcKñaenAelIEpñkrgkarsgát;Edr.
           b‘ULúgRtUvEtmancMnYnRKb;RKan;edIm,ITb;Tl;nwgkMlaMgkat;TTwgEdl)anmkBIRbtikmμFñwm.
       #> cat;TukEpñkrbs;søabFñwm nigbnÞHEdkEdlenAek,reFVIkarCa tee-shape
           EdlrgbnÞúkTajEdlGnuvtþeTAelIRTnugrbs;va dUcbgðajenAkñúgrUbTI 8>43.

                                           347                                       tMNcakp©it
T.chhay


          $> eRCIserIsTTwg nigkMras;rbs;søab tee enHedIm,IbMeBjtMrUvkar flexural dUcKñanwgviFIKNna
             tee hanger ¬emIlEpñk 7>8¦.

          %> RtYtBinitükMlaMgkat;enAkñúgbnÞHEdk.
          ^> KNnaTwkbnSar.




          Manual of Steel Construction (Volume II),  bgðajbIviFIsaRsþKNnalMGitCamYynwg]Ta-
hrN_enAkñúg Part 10, “Fully Restrained (FR) Moment Connection”. viFIsaRsþkñúgkarKNnarbs;
vaRsedogKñanwgGVIEdl)anerobrab;xagelIedaymankarEkrsMrYlxøH eBlxøHeKehAvafa Split-tee
method (Krishnamurthy, 1978). GVIEdlxusKña KWCMhanTI $ sMrab;karKNnam:Um:g;Bt;enAkñúgbnÞHEdk.

Traditional analysis KitbBa©ÚlTaMg prying forces EdlmanniyayenAkñúgEpñkTI 7>8. sMrab;viFI

KNnanaeBlbc©úb,nñ kareRCIserIsb‘ULúg nigkMras;bnÞHEdkminGaRs½ynwgkarBIcarNaBI prying action
                                               348                                        tMNcakp©it
T.chhay


eT. karKNnam:Um:g;KWQrelIkarsikSa stitistical analysis of finite element EdlmankarbBa¢ak;eday
kareFVIBiesaFn_. CMhandMbUgenAkñúgviFIsaRsþKNnaKW KNnakMlaMgenAkñúgsøabrgkarTajrbs;Fñwm.
                   Mu
          Puf =
                  d −t f

          bnÞab;mk eKeRCIserIsb‘ULúgedIm,ITb;nwgkMlaMgTajenH ehIyeKtMerobvaCaBIrCYreGayman
lkçN³sIuemRTIeFobnwgsøabrgkarTajrbs;Fñwm. eKRtUvbEnßmb‘ULúgy:agticBIrenARtg;søabrgkarsgát;
sMrab;tMrUvkarrbs;RbtikmμFñwm. cMnYnb‘ULúgEdlRtUvkaredIm,ITb;Tl;nwgRbtikmμFñwmnwgQrelI shear
capacity b¤k¾ slip-critical capacity rbs;b‘ULúg EdlGaRs½ynwgRbePTrbs;tMN. RbsinebItMNCa

bearing-type eKRtUvRtYtBinitüGnþrkmμénkMlaMgkat; nigkMlaMgTajenAkñúgb‘ULúg. eKmincaM)ac;eFVIkar

GegátenH sMrab; clip-critcal connection.
          m:Um:g;GtibrmaenAkñúg split –tee nwgekItmanenARtg; “load line”, muxkat; 1-1 EdlbgðajenA
kñúgrUbTI 8>43 KW
          M t = F1s

Edl       F1 =  kMlaMgkat;TTwg = P2
                                  uf


          s = cMgayBI load line eTAcMnucrbt; = e
                                              p
                                               2
          pe = p f − 0.25d b − 0.707 w

BIrUbTI 8>43/ p f CacMgayBIG½kSb‘ULúgeTAsøabFñwm EdlCaTUeTAesμnwgGgát;p©itb‘ULúg db + 1/ 2in.
ehIy w CaTMhMTwkbnSar. eKehA p f CacMgayb‘ULúg (bolt distance) ehIy pe CacMgayb‘ULúg
RbsiT§PaB (effective bolt distance b¤ effective span). m:Um:g; M t EdlRtUv)anbMElgedayemKuN
α m edIm,ITTYl)anm:Um:g;RbsiT§PaB M eu

          M eu = α m M t
Edl       α m = C a Cb (A f / Aw )1 / 3 ( pe / d b )1 / 4

          Ca =    cMnYnefrEdlTak;TgeTAnwglkçN³rbs;sMPar³rbs;b‘ULúg nigbnÞHEdk.
          Cb = b f / b p

          bf =   TTwgrbs;søabFñwm


                                                       349                            tMNcakp©it
T.chhay


          bp =   TTwgrbs;       end plate [Krishnamurthy (1978)   )anENnaMnUvTTwgRbsiT§PaBGtibrma
                 b f + 2 w + t p Edl t p CakMras;rbs; end plate. Manual ENnaMTTwgCak;EsþgGtibrma
                 b f + 1in. ]

          Af =RkLaépÞsøabFñwm
        Aw = RkLaépÞRTnugFñwmEdlenAcenøaH fillet

       cMnYnefr Ca CaGnuKmn_EtnwglkçN³rbs;sMPar³ ehIyRtUv)anerobCataragsMrab;cMNat;fñak;
TUeTArbs; structural steel nig b‘ULúgersIusþg;x<s;. taragenHRtUv)anbgðajenAkñúg Table 10-1 enAkñúg
Part 10 én Manual. Table 10-2 eGaynUvtMél A f / Aw sMrab;rUbragFñwmEdlRtUv)aneRbICaTUeTA.

enAeBlEdleKKNnam:Um:g; M eu rYcehIy eKGacdak;vaeGayesμInwg design strength enaHeKnwg
GacrkkMras;bnÞHEdkGtibrma t p pre EdlcaM)ac;. sMrab;muxkat;ctuekaNEkgEdlekageFobnwgG½kStUc
(minor axis) enaH design strength KW
                                          ⎛ b pt 2       ⎞
                                          ⎜      p req   ⎟
          φb M n = φb M p = φb ZF y = 0.90⎜              ⎟ Fy
                                          ⎜     4        ⎟
                                          ⎝              ⎠
edayeGaysmIkarenHesμInwgm:Um:g;emKuN eKTTYl)ankMras;bnÞHEdk
                 ⎛ b pt 2     ⎞
                 ⎜      p pre ⎟
          0.90⎜               ⎟ Fy = M eu
                 ⎜      4     ⎟
                 ⎝            ⎠

dUcenH    t p req =
                           4 M eu
                        0.90b p Fy

        eKGacP¢ab;søabrgkarTajrbs;FñwmeTAnwgbnÞHEdkeday full penetration groove weld b¤k¾
eday filler weld EdlpSarBT§½CMuvijsøabTaMgGs;. kMlaMgenAkñúgsøabTaMgGs;RtUv)anbegáItenAelIEpñk
rgkarTaj. eKKYrpSarRTnugenAépÞsgçagCamYynwg fillet welds EdlmanlT§PaBTb;Tl;nwgRbtikmμFñwm.
eKRtUveKarBnUveKalkarN_ENnaMbEnßmxageRkamedIm,IbMeBjkarsnμt;sMrab;GnuvtþnUvviFIKNnaxagelI.
        !> TaMgbnÞHEdk nigEdkFñwmRtUvman yield stress dUcKñaKw Fy
        @> Ggát;p©itb‘ULúg db minRtUvFMCag 1 12 in. = 38mm
        #> b‘ULúgRtUvEtrgkarTajEdleKarBtam AISC Table J3.1.
        $> cMgayRCugEKmbBaÄrKYrmantMélRbEhl 1 3 4 db b:uEnþminKYrtUcCag 1 1 2 db

                                                350                                    tMNcakp©it
T.chhay


]TahrN_ 8>13³ KNna end plate connection sMrab;Fñwm W18× 35 . tMNenHRtUvmanlT§PaBkñúg
karbBa¢Únm:Um:g;emKuN 173 ft − kips nigkMlaMgkat;TTwgemKuN 34kips . eRbIEdk         A36   / electrode
E70 XX nig slip-critical bolts A325 .

dMeNaHRsay³ kMlaMgsøabKW
                   Mu       173(12)
          Puf =          =             = 120.2kips
                  d − t f 17.7 − 0.425

sakl,gb‘ULúgBIrCYrEdlkñúgmYyCYrmanBIrRKab;enAsøabxagelI nigb‘ULúgBIrRKab;enAsøabxageRka Edl
b‘ULúgTaMgGs;manR)aMmYyRKab;. Design strength rgkMlaMgTajsMrab;b‘ULúgmYyRKab;KW
          φRn = 0.75(90) Ab
ehIyRkLaépÞmuxkat;EdlcaM)ac;sMrab;b‘ULúgmYyKW
                  Required φRn 120.2 / 4
          Ab =                =          = 0.445in.2
                    0.75(90 )   0.75(90)
cMeLIy³ eRbIb‘ULúg A325 Ggát;p©it 7 / 8in. ¬ Ab = 0.6013in.2 ¦
eKGackMNt;kMlaMgkat;GtibrmaEdlRTedaytMNBIkarBicarNa slip-critical               strength    rbs;b‘ULúg
¬EdlnwgmantMéltUcCag shear strength¦. sMrab;b‘ULúgR)aMmYyRKab;
          φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(6)(1) = 87.3kips > 34kips     (OK)
¬eKmindwgkMras;rbs;søabssr ehIyeKminTan;sÁal;kMras;rbs; end plate dUcenHeKminGaceFVIkarGegát
bearing strength enAeBlenH)aneT. b:uEnþ enAeBlEdlRKb;EpñkEdlRtUvtP¢ab;TaMgGs;RtUv)anKNna

enaHeKGacRtYtBinitü bearing strength¦. edaysarvaCa slip-critical connection enaHeKminRtUvkar
RtYtBiniüGnþrkmμénkMlaMgkat; nigkMlaMgTajeT.
cMeLIy³ eRbIbU‘LúgR)aMmYy EdlbYnRtUv)antMerobsIuemRTIKñaeFobnwgsøabrgkarTaj nigBIreTotsßitenA
Rtg;søabrgkarsgát;.
         sMrab; flange weld RbEvgEdlGacpSar)anKW
          L = 2b f + 2t f − t w = 2(6.0 ) + 2(0.425) − 0.30 = 12.55in.

          TMhMTwkbnSarEdlRtUvkarKW
                     Puf                 120.2
          w=                   =                      = 0.4301in.
               0.707 L(φFw )       0.707(12.55)(31.5)
eTaHbICaeKminTan;sÁal;kMras;rbs; end plate k¾eday k¾TMhMTwkbnSarGb,brmaEdl)anBI AISC Table
J2.4 minEdlFMCag 5 / 16in. dUcenH 0.43in. EdlRtUvkarsMrab;ersIusþg;nwgmantMélFMCag.

                                                 351                                        tMNcakp©it
T.chhay


cMeLIy³ eRbI fillet weld 7 /16in.
sMrab; end plate/ yk
                           1
          p f = db +         = 0.875 + 0.500 = 1.375in.
                           2
          pe = p f − 0.25d b − 0.707 w
                                          ⎛7⎞
             = 1.375 − 0.25(0.875) − 0.707⎜ ⎟ = 0.8470in.
                                          ⎝ 16 ⎠
sMrab;TTwgbnÞHEdk/ yk
          bq = b f + 1 = 6.00 + 1 = 7.00in.
                               ⎛ Puf ⎞⎛ pe ⎞ ⎛ 120.2 ⎞⎛ 0.8470 ⎞
bnÞab;mk           M t = F1s = ⎜     ⎟
                               ⎜ 2 ⎟⎜ 2 ⎟ = ⎜ 2 ⎟⎜ 2 ⎟ = 25.45in. − kips
                               ⎝     ⎠⎝ ⎠ ⎝          ⎠⎝        ⎠
                   C a = 1.36     (Table 10-1, Part 10 of the Manula)
                               bf        6.00
                   Cb =              =        = 0.9258
                               bq        7.00
                      Af
                           = 0.504       (Table 10-2, Part 10 of the Manual)
                      Aw
                                            1/ 3        1/ 4
                                ⎛ Af ⎞             ⎛ pe ⎞
                   α m = C a Cb ⎜
                                ⎜A ⎟
                                     ⎟             ⎜ ⎟
                                                   ⎜d ⎟
                                ⎝ w⎠               ⎝ b⎠

                           = 1.36(0.9258)(0.504 )1 / 3 (0.8470 / 0.875)1 / 4 = 0.9939
                   M eu = α m M t = 0.9939(25.45) = 25.29in. − kips
                                      4M eu         4(25.29)
                   t p req =                   =                = 0.668in.
                                    0.90b p Fy   0.90(7.00)(36)

cMeLIy³ ykkMras;bnÞHEdk 3 / 4in.
          TTwgbnÞHEdkRbsiT§PaBGtibrmaEdlENnaMeday Krishnamurthy (1978) KW
                                    ⎛7⎞ 3
          b f + 2 w + t p = 6.00 + 2⎜ ⎟ + = 7.62in. > 7.00             (OK)
                                    ⎝ 16 ⎠ 4
RtYtBinitükMlaMgkat;. kMlaMgkat;enAkñúgbnÞHEdkKW
                 Puf       120.2
          F1 =         =         = 60.1kips
                  2          2
BI AISC J5, ersIusþg;kMlaMgkat;KW (shear strength) KW
          φRn = 0.90(0.60 Ag F y ) = 0.90(0.60)⎜ 7 × ⎟(36) = 102kips > 60.1kips
                                                            ⎛     3⎞
                                                                                        (OK)
                                                            ⎝     4⎠

                                                            352                          tMNcakp©it
T.chhay


edIm,ITTYl)an shear strength rbs;RTnugdUcKña ersIusþg;TwkbnSarEdlcaM)ac; ¬TwkbnSarBIrCYrEdlenA
sgçagRTnug¦ KW
          φvVn       103
                 =        = 5.819kips / in.
            d        17.7
TMhMTwkbnSarEdlRtUvkar
                 5.819 / 2
          w=                = 0.131in.
                0.707(31.5)
kMNt;TMhMTwkbnSarEdlcaM)ac;edIm,ITb;Tl;nwgkarBt;enAkñúgRTnug. enAeBlEdlm:Um:g;Bt;eFVIkardl;m:U
m:g;)øasÞic kugRtaMgenAkñúgRTnugesμInwg yield stress Fy ehIybnÞúkkñúgmYyÉktþaRbEvgrbs;TwkbnSarKW
          φb (Fy × t w × 1) = 0.90(36)(0.300) = 9.720kips / in.

bnÞúkkñúgmYyÉktþarbs;TwkbnSarmYyCYrKW 9.72 / 2 = 4.86kips / in. ehIyTMhMTwkbnSarEdlRtUvkarKW
                   4.860
          w=                = 0.2182in. > 0.131in.
                0.707(31.5)

TMhMTwkbnSarGb,brmaKW 1/ 4in. (AISC Table J2.4, edayQrelIkMras;rbs;bnÞHEdk).
cMeLIy³ eRbI fillet weld 1/ 4in. ¬karKNnaRtUv)ansegçbenAkñúgrUbTI 8>44¦




Column Web Stiffener Consideration
       eKbegáIt AISC Equation K1-2 EdlkarBar web yeilding rbs;ssrenAkñúgtMN beam-to-
column connection enAeBlEdleKeRbI end plates. smIkarenHKWQrelIkarkMNt;kugRtaMgenAelImux

kat;rbs;RTnugEdlbegáIteLIgedaykMras;rbs;va nigRbEvg tb + 5k dUcbgðajenAkñúgrUbTI 8>45 b.
                                                353                                   tMNcakp©it
T.chhay


eKnwgTTYl)anRkLaépÞFMCag enAeBlEdlbnÞúkRtUv)anbBa¢Úntamry³ end plate. RbsinebIeKKitTwk
bnSar beam flange-to-plate nigbnÞúkRtUv)ansnμt;EckedayCMerl 1 : 1 tamry³bnÞHEdk RbEvgRTnug
EdlrgbnÞúknwgesμInwg tb + 2w + 2t p + 5k . edayQrelIkarsikSaRsavRCavedaykarBiesaFn_
(Hendrick and Murray, 1984) tYr 5k GacRtUv)anCMnYseday 6k Edlpþl;lT§plenAkñúgsmIkar

xageRkamsMrab; yielding strength rbs;RTnug³
                  [(
          φRn = φ 6k + tb + 2w + 2t p Fywt w   )]
Edl        TMhMTwkbnSar
          w=

       elIsBIenH eKRtUveFVIkarGegátBI local flange bending ning web stability (web crippling b¤
compression buckling). Part 10 of the Manual maneKalkarN_ENnaMBIkarKit local flange

bending.




8>9> esckþIsnñidæan Concluding Remarks
        enAkñúgeyIgsgát;F¶n;elIkarKNna nigkarviPaKBIb‘ULúg nigTwkbnSareRcInCag connection
fitting dUcCa framing angle nig beam seats. kñúgkrNICaeRcIn karpþl;eGaysMrab; bearing enAkñúg

tMNedayb‘ULúg nig base metal/ nigsMrab;kMlaMgkat;enAkñúgtMNedayTwkbnSar nwgFananUvPaBRKb;
RKan;rbs;ersIusþg;rbs;EpñkTaMgenH. b:uEnþeBlxøH eKRtUvkarGegátkMlaMgkat;bEnßm. enAeBlxøHeTot
eKRtUvEtBicarNaBI direct tensiion nigm:Um:g;Bt;.
        Flexibility rbs;tMNCakarBicarNad¾sMxan;mYyeTot. sMrab; shear connection (simple

framing), EpñkEdlP¢ab;RtUvman flexible RKb;RKan;edIm,IGnuBaØateGaytMNvileRkamGMeBIrbs;kMlaMg.




                                                354                                  tMNcakp©it
T.chhay


b:uEnþ tMNRbePT FR (rigid connections) KYrEtrwgRKb;RKan;EdlmMurgVilrbs;Ggát;EdlRtUv)anP¢ab;Gac
rkSanUvtMélGb,brma.
         CMBUkenHRKan;EtENnaMBIkarKNnatMNenAkñúgeRKOgbgÁúMEdkEtb:ueNÑaH edaymin)anniyaylMGit
Gs;esckþIeT. Blodgett (1966) KWCaRbPBB½t’mand¾manRbeyaCn_EdlniyaylMGitBItMNedaypSar.
eTaHbICavaRtUv)ane)aHBum<yUrbnþicEmn Etvapþl;nUvkaENnaMEdlmanRbeyaCn_CaeRcIn. dUcKña Detaling
for Stell Construction (AISC, 1983) CaRbPaBEdlmanB½t’manEdlmanGtßRbeyaCn_sMrab;Gñk

KNna nigGñklMGitkartP¢ab;.




                                          355                                       tMNcakp©it

8.eccentric connections

  • 1.
    T.chhay VIII. tMNcakp©it Eccentric Connections 8>1> ]TahrN_sMrab;tMNcakp©itExemples of Eccentric Connections tMNcakp©itCatMNmYyEdlkMlaMgpÁÜbminkat;tamTIRbCMuTMgn;rbs;eRKOgP¢ab; b¤TWkbnSar. Rb sinebItMNmanbøg;sIuemRTI eKeRbITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;rbs;eRKOgP¢ab; b¤TwkbnSarCacM nuceKal (reference point) ehIycMgayEkgBIExSskmμrbs;kMlaMgeTATIRbCMuTMgn;RtUv)aneKehAfa cM Nakp©it. eTaHbICatMNCaeRcInGacrgnUvkMlaMgcakp©it EtkñúgkrNICaeRcIncMNakp©itTaMgenaHmantMél tUcEdlGacecal)an. kartP¢ab; framed beam EdlbgðajenAkñúgrUbTI 8>1 a CaRbePTmYyéntMNcakp©it. kart P¢ab;enH eTaHCakñúgTMrg;tP¢ab;edayb‘ULúg b¤edaypSark¾eday vaRtUv)aneKeRbICaTUeTAsMrab;tP¢ab;FñwmeTA ssr. eTaHbICacMNakp©itkñúgtMNRbePTenHGacecal)ank¾eday EtvaRtUv)anykmkbgðajenATIenH. vamankartP¢ab;BIrepSgKñaKW kartP¢ab;BIEdkEkgeTAEdkFñwm nigkartP¢ab;EdkEkgeTAEdkssr. kart P¢ab;TaMgenHbgðajBItMNcakp©iteKalBIrRbePT³ tMNcMNakp©itEdlbegáItEtkMlaMgkat;TTwgenAkñúg eRKOgP¢ab; b¤TwkbnSar nigtMNcMNakp©itEdlbegáItTaMgkMlaMgkat;TTwg nigkMlaMgTaj. RbsinebIeNBicarNaFñwm nigEdkEkgdac;edayELkBIssr dUcEdlbgðajenAkñúgrUbTI 8>1 b enaHvabgðajy:asc,as;fa Rbtikmμ R eFVIGMeBIcMNakp©it e BITIRbCMuTMgn;rbs;RkLaépÞrbs;eRKOgP¢ab;enA 292 tMNcakp©it
  • 2.
    T.chhay kñúgRTnugFñwm. dUcenHeRKOgP¢ab;TaMgenHrgTaMgkMlaMgkat;TTwg nigm:Um:g;KUr(couple) EdlsßitenAelI rbs;tMN ehIybegáItCakugRtaMgkMlaMgkat;rmYl (torsional shearing stress). RbsinebIssr nigEdkEkgRtUv)anpþac;ecjBIFñwm dUcbgðajenAkñúgrUbTI 8>3 c enaHeyIgeXIj y:agc,as;fa eRKOgP¢ab;enAkñúgsøabssrrgnRbtikmμ R EdlmanGMeBIenAcMNakp©it e BIbøg;rbs;eRKOg P¢ab; edaybegáIt couple dUcBImun. b:uEnþ kñúgkrNIenH bnÞúkminsßitenAkñúgbøg;rbs;eRKOgP¢ab; dUcenH couple eFVIeGayEpñkxagelIrbs;tMNrgkugRtaMgTaj ehIyEpñkxageRkamrgkugRtaMgsgát;. dUcenH eRKOgP¢ab;enAEpñkxagelIbMputrbs;tMNrgTaMgkMlaMgkat;TTwg nigkMlaMgTaj. eTaHbICa eyIgeRbIkartP¢ab;edayb‘ULúgenATIenHedIm,Ibgðajk¾eday k¾kartP¢ab;edaykarpSar Gacbgðajy:agsmBaØBIkarrgEtkMlaMgkat;TTwg b¤kMlaMgkat;TTwgrYmTaMgkMlaMgTaj. RbtikmμbnÞúkemKuNGtibrmasMrab;tMN framed beam epSg²RtUv)aneGayenAkñúg Table 9-2 rhUtdl; 9-12 in Part 9 of the Manual, “Simple Shear and PR Moment Connections” (Volume II). cMNap©itEdltUcEmnETnsMrab;tMNenHGacecal)an ehIyeKBicarNaEtkMlaMgkat;TTwgEtb:ueNÑaH. 8>2> tMNcMNakp©itedayb‘ULúg³ EtkMlaMgkat; Eccentric Bolted Connections: Shear only rUbTI 8>2 EdlbgðajBI column bracket connection Ca]TahrN_BItMNedayb‘ULúgEdlrg kMlaMgkat;TTwgcakp©it. eKmanviFIBIrsMrab;edaHRsaybBaðaenH³ traditional elastic analysis ¬viPaK eGLasÞicburaN¦ nigviFIEdlmanlkçN³suRkitCag ¬b:uEnþsμúKsμajCag¦ Ca ultimate strength analsysis ¬viPaKersIusþg;cugeRkay¦. viFITaMgBIrenHnwgRtUv)anbgðaj. 293 tMNcakp©it
  • 3.
    T.chhay Elastic Analysis enAkñúgrUbTI 8>3 a, RkLaépÞkMlaMgkat;TTwgrbs;eRKOgP¢ab; nigbnÞúkRtUv)anbgðajdac;eday ELkBIssr nig bracket plate. eKGacdak;bnÞúkcMNakp©it P CamYynwgbnÞúkdUcKñaEdlmanGMeBIRtg; TIRbCMuTMgn;rYmCamYynwg couple, M = Pe Edl e CacMNakp©it. RbsinebIeyIgeFVIEbbenH bnÞúknwgman GMeBIcMp©it ehIyeKsnμt;faeRKOgP¢ab;nImYy²Tb;Tl;nUvcMENkbnÞúkesμI²Kña KW pc = P / n Edl n CacMnYn eRKOgP¢ab;. kMlaMgeRKOgP¢ab;Edl)anBI couple Gacrk)anedaysnμt;fakugRtaMgkMlaMgkat;TTwgenAkñúg eRKOgP¢ab;CalT§plrbs; torsion énmuxkat;EdlekItBIRkLaépÞmuxkat;rbs;eRKOgP¢ab;. RbsinebI eyIgeFVIkarsnμt;EbbenH kugRtaMgkMMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²GacRtUv)anrkBIrUbmnþkMlaMgrmYl fv = Md J ¬*>!¦ Edl d = cMgayBITIRbCMuTMgn;rbs;RkLaépÞeTAcMnucEdlkugRtaMgkMBugRtUv)ankMNt; J = m:Um:g;niclPaBb:UElrba;RkLaépÞeFobTIRbCMuTMgn; ehIykugRtaMg f v EkgeTAnwg d . eTaHbICarUbmnþkMlaMgrmYlGnuvtþn_)anEtcMeBaHragsIuLaMg EteKeRbIva enATIenHedIm,IsnSMsMéc edaysar yielding stress mantMéLFMCagkugRtaMgBitR)akd. RbsinebIeKeRbIRTwsþIbTGkS½Rsb (parallel-axis theorem) ehIyeKecalm:Um:g;niclPaBb:UElr énRkLaépÞeFobG½kSTIRbCMuTMgn;rbs;va enaHeKGackMNt; J sMrab;RkLaépÞsrubKW 294 tMNcakp©it
  • 4.
    T.chhay J = ∑ Ad 2 = A ∑ d 2 edayRKb;eRKOgP¢ab;manRkLaépÞ A dUcKña. enaHsmIkar *>! GacRtUv)ansresrCa Md fv = A∑ d 2 ehIykMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²EdlekIteLIgeday couple KW Md Md Pm = Af v = A = A∑ d 2 ∑d2 dUcenHbgÁúMkMlaMgkat;TTwgTaMgBIrEdl)ankMNt;RtUv)anbUkbEnßmedaybBaÄredIm,ITTYl)ankMlaMgpÁÜb P dUcbgðajenAkñúgrUbTI 8>3 b EdleyIgykeRKOgP¢ab;enAxagsþaMEpñkxageRkameKbMputmkbgðaj. enA eBlEdleKkMNt;)ankMlaMgpÁÜbFMCageKbMput TMhMeRKOgP¢ab;k¾RtUv)aneRCIserIsedIm,ITb;Tl;kMlaMgenaH. eKminGaceFVIkarGegátedIm,IrkeRKOgP¢ab;EdleRKaHfñak;CaeKeT KWeKRtUveFVIkarKNnaCatMélelx. CaTUeTA vamanlkçN³gayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg. sMrab; eRKOgP¢ab;nImYy² bgÁúMkMlaMgedk nigbgÁúMkMlaMgQrEdl)anBIkMlaMgkat;TTwgedaypÞal;KW pcx = x P n nig pcy = Pny Edl Px nig Py CabgÁúMkMlaMgtamTis x nigTis y rbs;kMlaMgsrub P dUcEdl)anbgðajenAkñúgrUbTI 8>4. eKGacrkbgÁúMkMlaMgedk nigQrEdlekIteLIgedaycMNakp©itdUcxageRkam. cMgayBITIRbCMuTMgn;rbs;tMNeTAeRKOgP¢ab;nImYy² ( ∑ d 2 = ∑ x2 + y2 ) Edl cMnucrYmrbs;RbBn§½kUGredaenKWCaTIRbCMuTMgn;énRkLaépÞkMlaMgkat;rYmrbs;eRKOgP¢ab;. kMlaMgpÁÜb tamTis x rbs; pm KW³ 295 tMNcakp©it
  • 5.
    T.chhay y y Md y Md My p mx = d pm = = ( d ∑ d 2 d ∑ x2 + y2 = ) ( ∑ x2 + y2 ) dUcenH pmy = Mx ( ∑ x2 + y2 ) ehIykMlaMgeRKOgP¢ab;srubKW p= (∑ p x )2 + (∑ p y )2 Edl ∑ p x = pcx + p mx ∑ p y = pcy + p my RbsinebI P ¬bnÞúkEdlGnuvtþeTAelItMN¦ CabnÞúkemKuN enaHkMlaMg p enAelIeRKOgP¢ab;Ca bnÞúkem KuNedIm,ITb;Tl;nwg shear nig bearing EdlCa design strength EdlRtUvkar. ]TahrN_ 8>1³ kMNt;kMlaMgrbs;eRKOgP¢ab;EdleRKaHfñak;enAkñúg bracket connection Edl)anbgðaj enAkñúgrUbTI 8>5. dMeNaHRsay³ TIRbCMurbs;RkumeRKOgP¢ab;GacRtUv)anrkedayeRbIG½kSedkkat;tameRkam nigedayGnuvtþ eKalkarN_m:Um:g; 2(5) + 2(8) + 2(11) y= = 6in. 8 bgÁúMkMlaMgQr nigkMlaMgedkKW 296 tMNcakp©it
  • 6.
    T.chhay Px = 5 1 (50) = 22.63kips ← nig Py = 25 (50) = 44.72kips ↓ edayeyageTAtamrUbTI 8>6 a, eyIgGacKNnam:Um:g;rbs;bnÞúkeFobTIRbCMuTMgn;³ M = 44.72(12 + 2.75) − 22.36(14 − 6 ) = 480.7in. − kips ¬RsbRTnicnaLika¦ rUbTI 8>6 b bgðajBITisedArbs;bgÁúMkMlaMgb‘ULúg nigTMhMénbgÁúMkMlaMgb‘ULúgEdlRtUvKñaEdlekIteLIg edaym:Um:g;KUr (couple). edayeRbITisedATaMgenH nigTMhMEdlRtUvKñaCakarnaMpøÚvEdlkMlaMgTaMgenaH RtUv)anbUktamc,ab;RbeLlURkam. eyIgGacsnñidæan)anfaeRKOgP¢ab;xagsþaMEpñkxageRkameKbMput nwgmankMlaMgpÁÜbFMCageKbMput. bgÁúMkMlaMgedk nigbBaÄrrbs;eRKOgP¢ab;nImYy²Edl)anBIkMlaMgcMp©itKW = 2.795kips ← nig pcy = 22.36 44.72 pcx = = 5.590kips ↓ 8 8 sMrab; couple 297 tMNcakp©it
  • 7.
    T.chhay ( ) [ ] ∑ x 2 + y 2 = 8(2.75)2 + 2 (6)2 + (1)2 + (2)2 + (5)2 = 192.5in 2 My 480.7(6) p mx = ( ∑ x2 + y2 = ) 192.5 = 14.98kips ← Mx 480.7(2.75) ∑ (x 2 + y 2 ) p my = = = 6.867kips ↓ 192.5 ∑ p x = 2.795 + 14.98 = 17.78kips ← ∑ p y = 5.590 + 6.867 = 12.46kips ↓ P= (17.78)2 + (12.46)2 = 21.7 kips ¬emIlrUbTI 8>6 c¦ cMeLIy³ kMlaMgb‘ULúgEdleRKaHfñak;KW 21.7kips . karGegátBITMhM nigTisedArbs;bgÁúMkMlaMgedk nigbBaÄrbBa¢ak;fakarsnñidæanfaeRKOgP¢ab;Edl)aneRCIserIsBitCamaneRKaHfñak;Emn. Ultimate Strength Analysis viFIEdlerobrab;BIxagmuxmanlkçN³gayRsYlkñúgkarGnuvtþn_ b:uEnminsuRkit. kñúgkarviPaK KW)ansnñidæanfaTMnak;TMngbnÞúk-kMhUcRTg;RTayrbs;eRKOgP¢ab;manlkçN³smamaRt ¬CabnÞat;¦ ehIy fa yield stress minRtUvFM. karBiesaFn_bgðajfavaminEmnCakrNI ehIyfaeRKOgP¢ab;nImYy²minman shear yield stress BitR)akdeT. viFIsaRsþEdlBN’naenATIenHkMNt; ultimate strength rbs;tMN edayeRbITMnak;TMngminsmamaRtbnÞúk-kMhUcRTg;RTayEdlkMNt;edaykarBiesaFn_ sMrab;eRKOgP¢ab; nImYy². karsikSaedaykarBiesaFn_EdlraykarN_enAkñúg Crawford and Kulak (1971) edayeRbI b‘ULúgRbePT bearing A325 Ggát;p©it 3 / 4in. nigEdkbnÞH A36 b:uEnþlT§plGaceRbIsMrab;b‘ULúg A325 EdlmanTMhMepSg²CamYynwgEdkRbePTepSg²CamYynwglT§pllMeGogtictYc. viFIenHnwgpþl; nUvlT§pllMeGogenAeBleRbICamYyb‘ULúg slip-critical nigCamYyb‘ULúg A490 (AISC, 1994). kMlaMgb‘ULúgEdlRtUvnwgkMhUcRTg;RTay Δ KW ( R = Rult 1 + e − μΔ )λ ( = 74 1 − e10Δ )0.55 ¬*>@¦ Edl Rult = kMlaMgkat;TTwgrbs;b‘ULúgenAeBldac; = 74kips = 330MPa e = eKalrbs;elakenEB = 2.718 μ = emKuNkat;bnßy = 10 298 tMNcakp©it
  • 8.
    T.chhay μ= emKuNkat;bnßy = 0.55 Ultimate strength rbs;tMNKWQrelIkarsnμt;dUcxageRkam³ !> enAeBldac; RkumeRKOgP¢ab;vilCMuvij instantaneous center (IC). @> kMhUcRTg;RTayrbs;ERKOgP¢ab;mYy²smamaRteTAnwgcMgayBI IC nwgeFVIGMeBIEkgeTAkaMén rgVil. #> eKGacTTYl)anlT§PaBrbs;tMNenAeBlEdl ultimate strength rbs;eRKOgP¢ab;enAq¶aybM putBI IC. ¬rUbTI 7>8 bgðajBIkMlaMgb‘ULúgCakMlaMgTb;Tl;EdleFVIGMeBIRbqaMgnwgkMlaMg Gnuvtþn_¦. $> EpñkEdlRtUvP¢ab;RtUvEtrwg. Cavi)akénkarsnμt;TIBIr kMhUcRTg;RTayrbs;eRKOgP¢ab;nImYy²KW Δ= r Δ max = r (0.34) rmax rmax Edl cMgayBI IC eTAeKOgP¢ab; r= rmax = cMgayeTAeRKOgP¢ab;EdlenAq¶aybMput Δ max = kMhUcRTg;RTayrbs;eRKOgP¢ab;q¶aybMputenA ultimate = 0.34in. ¬EdlkMNt;eday karBiesaFn_¦ CamYynwg elastic analysis, vamanPaBgayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg b¤ Ry = R x r b¤ Rx = ry R 299 tMNcakp©it
  • 9.
    T.chhay Edl x nigy CacMgayedk nigcMgaybBaÄrBI instantaneous center eTAeRKOgP¢ab;. enAxN³eBl dac; lMnwgRtUv)anrkSa ehIysmIkarlMnwgbIxageRkamRtUv)anGnuvtþeTAelIRkumeRKOgP¢ab; ¬eyageTAelI rUbTI 8>7¦³ m ∑ Fx = ∑ (R x )n − Px = 0 ¬*>#¦ n =1 m M IC = P(ro + e ) − ∑ (rn × Rn ) = 0 ¬*>$¦ n =1 ehIy ∑ Fy = ∑(R y )n − Py = 0 m ¬*>%¦ Edl Gnu)at n kMNt;nUveRKOgP¢ab;mYy² nig m CacMnYnsrubrbs;eRKOgP¢ab;. viFIsaRsþTUeTAKWsnμt;TI taMg instantaneous center bnÞab;mkkMNt;tMélRtUvKñarbs; P EdlbMeBjsmIkarlMnwg. RbsinebI GBa©wgEmn TItaMgenHKWRtwmRtUv ehIy P CalT§PaBrbs;tMN. viFIsaRsþCak;lak;KWdUcxageRkam³ !> snμt;tMélsMrab; ro . @> edaHRsayrk P BIsmIkar *>$. #> CMnYs ro nig P eTAkñúgsmIkar *># nig *>%. $> RbsinebIsmIkarTaMgenaHRtUv)anbMeBjCamYynwgkMrwtlMeGogEdlGacTTYlyk)an karviPaK enHRtUv)anbBa©b;. EtebImindUecñaHeT eKRtUveFVIkareRCIserIstMélsakl,g ro fμI ehIyeKRtUveFVIkarKNnaeLIgvij. sMrab;krNITUeTAénbnÞúkbBaÄr smIkar *># nwgRtUv)anbMeBjedaysVy½Rbvtþ. edIm,IPaBgay RsYl nigkMueGay)at;bg;»PasPaB eyIgBicarNaEtkrNIenH. Et eTaHbICamYykarsnμt;enH karKNna sMrab; trial problem CaeRcInmanlkçN³lM)ak EdlRtUvkarCMnYykMuBüÚT½rCacaM)ac;. Epñk (B) rbs;]Ta- hrN_ 8>2 RtUv)aneFVIkarCamYynwgCMnYyBI standard spreadsheet program sMrab; personal computers. ]TahrN_ 8>2³ Bracket connection EdlbgðajenAkñúgrUbTI 8>8 RtUvRTkMlaMgemKuNcakp©it 53kips . tMNRtUv)anKNnaedayeGaymanb‘ULúgBIrCYrQr EdlkñúgmYyCYr²manb‘ULúg 4 RKab; Etb‘ULúgmYyRKab; RtUv)andkecaledayKμanectna. RbsinebIeKeRbIb‘ULúg bearing-type A325 EdlmanGgát;p©it 7 / 8in. etItMNenHmanlkçN³RKb;RKan;b¤Gt;? snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. eRbIEdk A36 nigGnuvtþ nUvkarviPaKxageRkam³ (a) elastic analysis; (b) ultimate strength analysis. 300 tMNcakp©it
  • 10.
    T.chhay dMeNaHRsay³ a. Elasticanalysis. sMrab;RbBn§½kUGredaenEdlmanKl;enARtg;p©itrbs;b‘ULúgxag eRkamEpñkxageqVg ¬rUbTI 8>9¦ 2(3) + 2(6 ) + 1(9) y= = 3.857in. 7 3(3) x= = 1.286in. 7 ( ) ∑ x 2 + y 2 = 4(1.286)2 + 3(1.714)2 + 2(3.857 )2 + 2(0.857 )2 + 2(2.143)2 + 1(5.143)2 = 82.29in.2 e = 3 + 5 − 1.286 = 6.714in. M = Pe = 53(6.714 ) = 355.8in. − kips ¬RsbRTnicnaLika¦ 53 pcy = = 7.571kips ↓ pcx = 0 7 BITisedA nigTMhMEdlRtUvKñaEdlbgðajenAkñúgrUbTI 8>9 b‘ULúgeRkameKEpñkxagsþaMRtUv)ancat;TukfaCa b‘ULúgEdlmaneRKaHfñak;CageK My 355.8(3.857 ) p mx = (∑ x2 + y2 ) = 82.29 = 16.68kips ← Mx 355.8(1.714 ) ∑ (x 2 + y 2 ) Pmy = = = 7.411kips ↓ 82.29 ∑ p x = 16.68kips ∑ p y = 7.571 + 7.411 = 14.98kips p= (16.68)2 + (14.98)2 = 22.4kips 301 tMNcakp©it
  • 11.
    T.chhay edIm,IkMNt; design strengthrbs;b‘ULúgrg bearing eRbIGgát;p©itrn§ 1 7 1 15 h=d+ = + = in. 16 8 16 16 sMrab;rn§EdlenAEk,rRCugEKmCageK eRbI Le = 2in. enaH h 15 / 16 Lc = Le − = 2− = 1.513in. 2 2 ⎛7⎞ 2d = 2⎜ ⎟ = 1.75in. ⎝8⎠ eday Lc < 2d bearing strength KW φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.531)(0.455)(58) = 36.4kips / bolt sMrab;rn§epSgeTot eRbI s = 3in. enaH 15 Lc = s − h = 3 − = 2.062in. > 2d 16 ⎛7⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟(0.455)(58) = 41.56kips / bolt ⎝8⎠ tMél bearing TaMgBIrFMCagkMlaMgkñúgmYyb‘ULúg dUcenH bearing strength KWRKb;RKan;. sMrab; shear π (7 / 8)2 Ab = = 0.6013in.2 4 φRn = φFv Ab = 0.75(48)(0.6013) = 21.6kips < 22.4kips (N.G.) cMeLIy³ tMNminbMeBjlkçxNÐeday elastic analysis. 302 tMNcakp©it
  • 12.
    T.chhay b.eyIgedaHRsaytamviFI ultimate strengthanalysis CamYynwgCMnYyrbs; standard spreadsheet software. lT§plrbs;tMélsakl,gcugeRkayrbs; ro = 1.57104in. RtUv)aneGayenAkñúgtarag 8>1. RbBn§½kUGredaen nigelxerogb‘ULúgRtUv)anbgðajenAkñúgtarag 8>10. tarag 8>1 eKalenARtg; eKalenARtg; eRKOg b‘ULúgelx ! IC Δ Ry P¢ab; r R rR x' y' x y 1 0.000 0.000 0.285 -3.857 3.868 0.255 70.774 273.731 5.221 2 3.000 0.000 3.285 -3.857 5.067 0.334 72.553 367.598 47.045 3 0.000 3.000 0.285 -0.857 0.903 0.060 47.649 43.046 15.050 4 3.000 3.000 3.285 -0.857 3.395 0.224 69.563 236.188 67.310 5 0.000 6.000 0.285 2.143 2.162 0.143 63.631 137.555 8.398 6 3.000 6.000 3.285 2.143 3.922 0.259 70.891 278.061 59.377 7 0.000 9.000 0.285 5.143 5.151 0.340 72.631 374.107 4.023 srub 1710.287 206.424 303 tMNcakp©it
  • 13.
    T.chhay BIsmIkar *>$ P(ro + e ) = ∑ rR ∑ rR 1710.29 P= = = 206.424kips ro + e 1.57104 + 6.71429 Edl e RtUv)anyk 5 xÞg;eRkayex,ósedIm,IsuRkitPaBx<s;. BIsmIkar *>% ∑ F y = ∑ R y − P = 206.424 − 206.424 = 0.00 bnÞúkEdlGnuvtþminmnabgÁúMkMlaMgedk dUcenHsmIkar *># RtUv)anbMeBjedaysV½yRbvtþ. bnÞúk 206.424kips EdleTIbnwg)ankMNt;Ca failure load sMrab;kartP¢ab; ehIyRtUv)anQr enAelIeKalkarN_EdleRKOgP¢ab;EdleRKaHfñak;eTAdl; ultimate load capacity. RbsinebIbnÞúkdac; rbs;tMNRtUv)anKuNedaypleFob fasterner design strength elI fasterner ultimate strength 74kips (Crawford nig Kulak, 1971), eyIgnwgTTYl)anlT§PaBrbs;tMN. BI a. design strength rbs;b‘ULúgmYy ¬EdlQrelI shear¦ KW 21.6kips . bnÞúkemKuNGtibrma = 206(21.6 / 74) = 60.1kips > 53kips (OK) cMeLIy³ kartP¢ab;manlkçN³RKb;RKan;eday ultimate strength analysis. Table 8-18 dl; 8-25 enAkñúg Part 8 of the Manual (Volume II) pþl;eGayemKuNsMrab; viPaK b¤KNnaKMrUFmμtaénRkumb‘ULúgEdlrgnUvbnÞúkcakp©it. sMrab;kartMeobb‘ULúgnImYy²Edl)an BicarNa taragTaMgenaHpþl;nUvtMél C EdlCapleFob connection failure load elI fasterner ultimate strength. edImI,TTYl)anbnÞúktMNEdlmansuvtßiPaB tMélefrenHRtUv)anKuNeday design strength rbs;eRKOgP¢ab;EdleRbI. sMrab;bnÞúkcakp©itminRtUv)anbBa©ÚleTAkñúgtaragTaMgenHeT dUcenH eKGaceRbI elastic method EdlCaviFImansuvtßiPaB. BitNas; kmμviFIkMuBüÚT½r b¤ spreadsheet software k¾RtUv)aneRbIedIm,IKNna ultimate strength anlysis. ]TahrN_ 8>3³ eRbItaragenAkñúg Part 8 of the Manual edIm,IkMNt; factored load capacity Pu Edl QrelI bolt shear sMrab;tMNEdlbgðajenAkñúgrUbTI 8>11. b‘ULúg bearing-type A325 Ggát;p©it 3 / 4in. edayeFμjsßitenAkñúgbøg;kat;. b‘ULúgrgnUv single shear. 304 tMNcakp©it
  • 14.
    T.chhay design strength rbs;b‘ULúgGgát;p©it 3 / 4in. Edlrg single shear KW φrn = φ (48)Ab = 0.75(48)(0.4418) = 15.90kips eday C = Pu / φrn / Pu = Cφrn = 1.53(15.90) = 24.3kips cMeLIy³ lT§PaBbnÞúkemKuNGtibrma (maximum factored load capacity) rbs;tMNKW 24.3kips . 8>3> tMNcMNakp©itedayb‘ULúg³ kMlaMgkat;bUknwgkMlaMgTaj Eccentric Bolted Connections: Shear Plus Tension sMrab;kartP¢ab;EdleKeRbI tee stub bracket dUckñúgrUbTI 8>12 bnÞúkcMNakp©itbegáIt couple EdlGacbegáInkMlaMgTajenAkñúgCYrxagelIrbs;eRKOgP¢ab; ehIykat;bnßykugRtaMgTajenAkñúgCYrxag eRkam. RbsinebIeRKOgP¢ab;Cab‘ULúgEdlKμankugRtaMgTajedIm b‘ULúgxagelInwgRtUv)andak;eGayrgkug RtaMgTaj ehIyb‘ULúgxageRkamnwgminrgT§iBl. edayminKitBIRbePTrbs;eRKOgP¢ab; b‘ULúgnImYy² nwgrgnUvcMENkkMlaMgkat;esμI²Kña. 305 tMNcakp©it
  • 15.
    T.chhay RbsinebIeRKOgP¢ab;Cab‘ULúgersIusþg;x<s;EdlrgeRbkugRtaMg épÞb:Hrvagsøabssr nigsøab bracket nwgrgkarsgát;esμI munnwgkMlaMgxageRkAGnuvtþmk. Bearing pressure nwgesμInwgkMlaMgTaj b‘ULúgsrubEdlEckedayépÞb:H. edaysarbnÞúk P Gnuvtþbnþicmþg² kMlaMgsgát;enAxagelInwgRtUv)an kat;bnßy ehIykMlaMgsgát;enAxageRkamnwgekIneLIg dUcbgðajenAkñúgrUbTI 8>13 a. enAeBlEdlkM laMgsgát;enAxagelIRtUv)anrMsayGs;rlIg bgÁúMkMlaMgnwgRtUv)anbMEbk ehIy couple Pe nwgRtUv)an Tb;Tl;edaykMlaMgb‘ULúgTaj ehIykMlaMgsgát;enAelIépÞb:HEdlenAsl; dUcEdlbgðajenAkñúgrUbTI 8>13 b. enAeBlEdlkMlaMgxiteTArk ultimate load kMlaMgenAkñúgb‘ULúgnwgxiteTACit ultimate tensile strength rbs;va. viFIEdlsamBaØ nigmansuvtßiPaBRtUv)aneRbIenATIenH. eKsnμt;G½kSNWtrbs;tMNkat;tamTIRbCMu TMgn;rbs;RkLaépÞb‘ULúg. bU‘LúgEdlsßitenABIxagelIG½kSenHrgkMlaMgTaj ehIyb‘ULúgEdlenABIxag eRkamG½kSenHRtUv)ansnμt;fargkMlaMgsgát; dUcbgðajenAkñúgrUbTI 8>13 c. b‘ULúgnImYy²RtUv)ansnμt; faTTYl)antMél ultimate rut . edaysarEtmanb‘ULúgBIrRKab;enARKb;nIv:U ¬rUbTI 8>13 c¦ kMlaMgnI- mYy²RtUv)anbgðaj 2rut . kMlaMgpÁÜbénkMlaMgTaj nigkMlaMgsgát;Ca couple EdlesμInwgm:Um:g;Tb;rbs; tMN. m:Um:g; couple GacRtUv)anrkedayeFVIplbUkm:Um:g;énkMlaMgb‘ULúgeFobG½kSNamYyEdlgayRsYl dUcCaG½kSNWt. enAeBlEdlm:Um:g;Tb;RtUv)andak;eGayesμIm:Um:g;Gnuvtþn_ eKGacrkkMlaMgTajb‘ULúg rut EdlminsÁal;BIsmIkarEdlTTYl)an. ¬viFIenHRsedogKñanwg Case II in Part 8 of the Manual, Volume II). 306 tMNcakp©it
  • 16.
    T.chhay ]TahrN_ 8>4³ tMNbeam-to-column RtUv)anbegáIteLIgeday structural tee dUcbgðajenAkñúgrUbTI 8>14. eKeRbIb‘ULúg fully tightened bearing-type A325 Ggát;p©it 3 / 4in. cMnYn 8 RKab;edIm,IP¢ab; søabrbs; tee eTAnwgsøabssr. cUrGegátPaBRKb;RKan;rbs;tMN ¬tee-to-column connecvtion¦ Rb sinebIvargbnÞúkemKuN 88kips enAcMNakp©it 3in. . snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. EdkTaMg Gs;Ca A36 . dMeNaHRsay³ shear/bearing load sMrab;b‘ULúgmYyKW 88 / 8 = 11kips . sMrab; bearing design strength eRbIGgát;p©itRbehag 1 3 1 13 h=d+ = + = in. 16 4 16 16 sMrab;RCugEdlenAEk,rRCugEKmCageKbMput yk Le = 1.5in. . enaH h 13 / 16 Lc = Le − = 1.5 − = 1.094in. 2 2 ⎛3⎞ 2d = 2⎜ ⎟ = 1.5in. ⎝4⎠ edaysar Lc < 2d / φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)(0.560)(58) = 31.98kips > 11kips (OK) sMrab;RbehagepSgeTotyk s = 3in. . enaH 13 Lc = s − h = 3 − = 2.188in. > 2d 16 ⎛3⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.560)(58) = 43.85kips > 11kips ⎝4⎠ (OK) 307 tMNcakp©it
  • 17.
    T.chhay tMNmanlkçN³RKb;RKan;sMrab; bearing. sMrab; sheardesign strength π (3 / 4)2 Ab = = 0.4418in 2 4 φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips KNnakMlaMgTajsMrab;b‘ULúgmYy nwgbnÞab;mkRtYtBinitü tension-shear interaction. edaysarPaB sIuemRTI TIRbCMuTMgn;sßitenAkMBs;Bak;kNþal. rUbTI 8>15 bgðajRkLaépÞb‘ULúg nigkarEbgEckkMlaMg Tajb‘ULúg. m:Um:g;rbs; resisting couple RtUv)anrkedayeFVIplbUkm:Um:g;eFobG½kSNWt³ ∑ M NA = 2rut (4.5 + 1.5 + 1.5 + 4.5) = 24rut m:Um:g;EdlGnuvtþKW M u = Pu e = 88(3) = 264in. − kips dak;m:Um:g;Tb; nigm:Um:g;Gnuvtþn_eGayesμIKña eyIg)an 24rut = 264 b¤ rut = 11kips Tensile design strength KW φRn = φFt Ab = 0.75(90)(0.4418) = 29.82kips RtYtBinitü RCSC Equation LRFD 4.2 BI bolt specification (RCSC, 1994) CamYynwg Pu = rut = 11kips nig Vu = bolt shear force = 11kips 2 2 ⎡ Pu ⎤ ⎡ V ⎤ ⎛ 11 ⎞ 2 ⎛ 11 ⎞ 2 ⎢ ⎥ +⎢ u ⎥ =⎜ ⎟ +⎜ ⎟ = 0.615 < 1.0 (OK) ⎢ (φRn )t ⎥ ⎣ ⎦ ⎢ (φRn )v ⎥ ⎣ ⎦ ⎝ 29.82 ⎠ ⎝ 15.9 ⎠ cMeLIy³ tMNKWRKb;RKan; 308 tMNcakp©it
  • 18.
    T.chhay enAeBlEdlb‘ULúgenAkñúgtMN slip-critical rgkarTaj slip-critical strength CaFmμtaRtUv)an kat;bnßyedayemKuNEdlpþl;eGayeday AISC Equation A-J3-2 ¬emIl Epñk 7>9¦. mUlehtuKWfa clamping effect nigkMlaMgkkitRtUv)ankat;bnßy. b:uEnþenAkñúgtMNEdleTIbnwgBicarNa vamankMlaMg sgát;bEnßmenAkñúgEpñkxageRkamrbs;tMNEdlbegáInkMlaMgkkit EdlvaTUTat;nwgkarkat;bnßyenAkñúg EpñkxageRkamrbs;tMN. sMrab;mUlehtuenH slip-critical strength minKYrRtUv)ankat;bnßyenAkñúgRb ePTtMNenHeT. 8>4> tMNcMNakp©itedaypSar³ EtkMlaMgkat; Eccentric Welded Connections: Shear only eKviPaKtMNcMNakp©itedaypSartamviFIdUcKñasMrab;tMNedayb‘ULúg elIkElgRtg;kMlaMgkñúg eRKOgP¢ab;mYy²RtUv)anCMnYsedaykMlaMgkñúgRbEvgTwkbnSarÉktþa. dUckñúgkrNIEdltMNcMNakp©it edayb‘ULúgrgkMlaMgkat; tMNedaypSarrgkMlaMgkat;GacRtUv)anGegátedayviFI elastic method b¤ ultimate strength method. Elastic method bnÞúkenAelI bracket EdlbgðajenAkñúgrUbTI 8>16 a GacnwgRtUv)anBicarNaeGayeGVIGMeBIenA kñúgbøg;énTwkbnSar EdlCabøg;rbs; throat. RbsinebIeyIgsnμt;EbbenH bnÞúknwgRtUv)anTb;edayRkLa épÞTwkbnSarEdlbgðajenAkñúgrUb 8>16 b. b:uEnþ karKNnamanlkçN³samBaØ RbsinebIeKeRbI throat mYyÉktþa. bnÞab;mkbnÞúkEdlKNna)anRtUvKuNnwg 0.707 CamYynwgTMhMrbs;TwkbnSaedIm,ITTYl)an bnÞúkBitR)akd. bnÞúkcMNap©itenAkñúgbøg;TwkbnSarEdleFVIeGayTwkbnSarrgTaMgkMlaMgkat;pÞal; (direct shear) nigkMlaMgkat;edayrmYl (torsional shear). edaysarFatunImYy²rbs;TwkbnSarTb;Tl;nwgcMENk esμIrbs; direct shear enaH direct shear stress KW 309 tMNcakp©it
  • 19.
    T.chhay P f1 = L Edl L CaRbEvgsrubrbs;TwkbnSar ehIyesμInwgRkLaépÞkMlaMgkat;edayKitCaelx edaysareKsnμt; TMhM throat esμInwgmYyÉktþa. RbsinebIeKeRbIkMub:Usg;Ekg f1x = x P L nig f1y = PLy Edl Px nig Py CabgÁúMkMlaMgtamTis x nig y . kugRtaMgkMlaMgkat;EdlekIteLIgedaysar couple RtUv)aneKrkCamYynwgrUbmnþkMlaMgrmYl Md f2 = J Edl d= cMgayBITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;eTAcMnucEdlkugRtaMgkMBugRtUv)anKNna J = m:Um:g;niclPaBb:UElrrbs;RkLaépÞenaH rUbTI 8>17 bgðajBIkugRtaMgTaMgenHenARtg;kac;RCugxagelIEpñkxageRkamrbs;TwkbnSar. tamkMub:Usg; Ekg f 2x = My J nig f 2 y = MxJ Edl J = ∫A r 2 dA = ∫A (x 2 + y 2 )dA = ∫A x 2 dA + ∫A y 2 dA = I y + I x Edl I x nig I y Cam:Um:g;niclPaBrbs;RkLaépÞkMlaMgkat;. enAeBlEdlbgÁúMkMlaMgTaMgGs;RtUv)ankM Nt; eyIgGacbUkbgÁúMkMlaMgedIm,ITTYl)ankugRtaMgkMlaMgkat;srubenARtg;cMnucEdleyIgcg;dwg b¤ fv = (∑ f x )2 + (∑ f y )2 dUcKñanwgtMNedayb‘ULúg CaTUeTATItaMgeRKaHfñak;sMrab;kugRtaMgpÁÜbGacRtUv)ankMNt;BIkarsegátelItMél nigTisedArbs;bgÁúM direct shear nig torsional shearing stress. edaysareKeRbITwkbnSarkñúgmYyÉktþa karKNnaTIRbCMuTMgn; nigm:Um:g;niclPaBKWmanlkçN³Ca ExSbnÞat;. enAkñúgesovePAenH eyIgKitGgát;TwkbnSarCaGgát;ExSEdleyIgsnμt;eTARbEvgdUcKñanwgRCug 310 tMNcakp©it
  • 20.
    T.chhay EKmrbs;EpñkEdlRtUvP¢ab;EdlenAEk,rva. elIsBIenH eyIgecalm:Um:g;niclPaBrbs;Ggát;ExSeFobeTA nwgG½kSEdlRtYtKñaCamYynwgExS. ]TahrN_8>5³ kMNt;TMhMrbs;TwkbnSarEdlRtUvkarsMrab;tMN bracket enAkñúgrUbTI 8>18. bnÞúk 60kips CabnÞúkemKuN. eKeRbIEdk A36 sMrab;ssr nig bracket. dMeNaHRsay³ eKGacCMnYsbnÞúkcakp©itedaybnÞúkcMp©it nig couple dUcbgðajenAkñúgrUbTI 8>18. Direct shearing stress KitCa kips / in. KWdUcKñasMrab;RKb;Ggát;TwkbnSar ehIyesμInwg 60 60 f1 y = = = 2.143kips / in. 8 + 12 + 8 28 munnwgKNnabgÁúMkMlaMgrmYlrbs; shearing stress, eKRtUvkMNt;TItaMgrbs;TIRbCMuTMgn;rbs;RkLaépÞ kMlaMgkat;. BIeKalkarN_m:Um:g;CamYynwgplbUkm:Um:g;eFobG½kS y / x(28) = 8(4)(2) b¤ x = 2.286in. 311 tMNcakp©it
  • 21.
    T.chhay cMNakp©it e KW10 + 8 − 2.286 = 15.71in. ehIym:Um:g;rmYlKW M = Pe = 60(15.71) = 942.6in. − kips RbsinebIeKecalm:Um:g;niclPaBrbs;TwkbnSartamTisedknImYy²eFobG½kSTIRbCMuTMgn;rbs;va enaH m:Um:g;niclPaBénRkLaépÞsrubeFobnwgG½kSTIRbCMuTMgn;tamTisedkKW Ix = 1 (1)(12)3 + 2(8)(6)2 = 720.0in.4 12 ⎡1 ⎤ dUcKña I y = 2 ⎢ (1)(8)3 + 8(4 − 2.286)2 ⎥ + 12(2.286)2 = 195.0in.4 ⎣12 ⎦ ehIy J = I x + I y = 720.0 + 195.0 = 915.0in 4 rUbTI 8>18 bgðajTisedArbs;bgÁúMkugRtaMgTaMgBIrenAkac;RCugrbs;tMNnImYy². tamkarsegát/ kac; RCugxagelIEpñkxagsþaM b¤kac;RCugxageRkamEpñkxagsþaMGacRtUv)anKitCaTItaMgEdlmaneRKaHfñak;. Rb sinebIeKeRCIserIskac;RCugxageRkamEpñkxagsþaM enaH My 942.6(6) f2x = = = 6.181kips / in. J 915.0 M 942.6(8 − 2.286 ) f2y = x = = 5.886kips / in. J 915.0 fv = (6.181)2 + (2.143 + 5.886)2 = 10.13kips / in. RtYtBinitüersIusþg;rbs; base metal. BIsmIkar &>@! φRn = φFBM × area subject to shear ⎛9⎞ = φFBM × t = 0.54 F y t = 0.54(36)⎜ ⎟ ⎝ 16 ⎠ = 10.94kips / in. > 10.13kips / in. (OK) BIsmIkar &>@0 weld strength KW φRn = 0.707 × w × L × φFW Electrode EdlRtUvKñasMrab;Edk A36 KW E 70 / CamYynwg φFW = 31.5ksi . dUcenHTMhMTwkbnSarEdl RtUvkarKW φRn 10.13 w= = = 0.455in. 0.707 LφFW 0.707(1.0 )(31.5) cMeLIy³ eRbI fillet weld 1 / 2in. CamYynwg electrode E 70 . 312 tMNcakp©it
  • 22.
    T.chhay Ultimate Strength Analysis eKGacKNna Eccentric welded shear connection edayeRbI elastic method y:agsuvtßiPaB b:uEnþemKuNsuvtßiPaBGacFMCagGVIEdlRtUvkar ehIyGacERbRbYlBItMNmYyeTAtMNmYy (Bultler, Pal, and Kulak, 1920). karviPaKRbePTenHmanKuNvibtþixøHdUc elastic method sMrab; eccentric bolted connections, edayrYbbBa©ÚlTaMgkarsnμt;faTMnak;TMngrvag bnÞúk-kMhUcRTg;RTay sMrab;karpSar. Rb PBepSgeTotrbs;kMhusKWkarsnμt;faersIusþg;rbs;TwkbnSarminGaRs½ynwgTisedArbs;bnÞúkEdlGnuvtþ. Ultimat strength procedure RtUv)anbgðajenAkñúg Part 8 of the Manual (Volume II) ehIyRtUv)an segçbenATIenH. vaQrelIkarsikSaRsavRCavrbs; Butler et al. (1972) nig Timler (1984) ehIyviFI EdlesÞIrEtdUcKñaEdlbegáIteLIgsMrab; eccentric bolted connections eday Crawford and Kulak (1971). CMnYseGaykarBicarNaelIeRKOgP¢ab;mYy² eyIgKitTwkbnSarEdlCab;CaGgát;TwkbnSardac;² EdlpÁúMP¢ab;Kña. enAeBldac; bnÞúkEdlGnuvtþmkelItNRtUv)anTb;edaykMlaMgenAkñúgFatunImYy² CamYy M nwgkMlaMgEdleFVIGMeBIEkgeTAnwgkaMEdlbegáIteLIgBI instantaneous center of rotation eTATIRbCMuTMgn; rbs;Ggát;TwkbnSar dUcbgðajenAkñúgrUbTI 8>19. KMnitkñúgkarKNnaenHKWRsedogKñanwgKMnitEdl eRbIsM rab;eRKOgP¢ab;. b:uEnþ karkMNt;kMhUcRTg;RTayGtibrmarbs;Ggát;TwkbnSar nigkarkMNt;kMlaMgkñúgén Ggát;TwkbnSarnImYy²enAeBlEdldac;KWBi)ak. edIm,IkMNt;FatuEdlmaneRKaHfñak; eKRtUvkMNt;pl eFob Δ max / r sMrab;FatunImYy²/ Edl Δ max = 1.087 w(θ + 6)−0.65 ≤ 0.17 w θ= mMurvagkMlaMgTb; nigG½kSrbs;Ggát;TwkbnSar ¬emIlrUbTI 8>19¦ w = TMhMTwkbnSar r = cMgayBI IC eTATIRbCMuTMgn;rbs;Ggát;TwkbnSar 313 tMNcakp©it
  • 23.
    T.chhay FatuEdlmanpleFobtUcCageKKWCaFatuEdleTAdl; ultimate capacitymuneK. bnÞab;mkkMhUcRTg; RTayrbs;Fatud¾éTeTotRtUv)ankMNt;eday r Δ= Δ max rmax Edl kaMsMrab;Fatu r= Δ max Δ = sMrab;FatuEdleRKaHfñak; rmax r eKGackMNt;kMlaMgTb;sMrab;FatunImYy²BI ( ) R = 0.60 FEXX 1.0 + 0.50 sin1.5 θ [ p(1.9 − 0.9 p )]0.3 Edl FEXX = weld electrode tensil strength Δ p= Δ max ¬mindUckrNItMNedayb‘ULúgEdl R CaGnuKmn_eTAnwg θ ¦. karKNnaBImunKWQrelIkarsnμt;TItaMg rbs; instantaneous center of rotation. RbsinebIvaCaTItaMgBitR)akd smIkarlMnwgnwgRtUv)anbMeBj. karKNnabnþeTotKWRsedogKñanwgtMNedayb‘ULúg. !> KNna load capacity BIsmIkar ∑ M IC = 0 Ed;lIC Ca instantaneous center. @> RbsinebIsmIkarlMnwgkMlaMgBIrRtUv)anbMeBj enaHTItaMg instantaneous center Edl)an snμt; nigbnÞúkEdl)anrkenAkñúgCMhanmYyBitCaRtwmRtUv EtebImindUecñaHeT eKRtUvsnμt;TI taMgfμI ehIyeFVIkarKNnasareLIgvij. vabgðajy:agc,as;nUv)aBcaM)ac;kñúgkareRbIR)as;kmμviFIkMuBüÚT½r. dMeNaHRsayedaykMuBüÚT½rsM rab;TMrg;FmμtaCaeRcInsMrab; eccentric welded shear connection RtUv)aneGayenAkñúgtaragEdlman enAkñúg Part 8 og the Manual. Table 8-38 rhUtdl; 8-45 eGaylT§PaBbnÞúkemKuN (factored load capacity) sMrab;karbnSMGgát;TwkbnSartamTisedk nigTisbBaÄrFmμtaCaeRcInedayQrelI ultimate strength analysis. taragTaMgenHGacRtUv)aneRbIsMrab;karKNna b¤karviPaK nwgerobrab;nUvsßanPaBCa eRcInEdlvisVkrGacnwgCYbRbTH. sMrab;tMNTaMgLayNaEdlmin)anerobrab;enAkñúgtarageKGaceRbI elastic methoid. 314 tMNcakp©it
  • 24.
    T.chhay ]TahrN_ 8>6³ kMNt;TMhMTwkbnSarEdlcaM)ac;sMrab;kartP¢ab;enAkñúg]TahrN_8>5 edayQrelIkar BicarNa ultimate strength. cUreRbItaragsMrab; eccentrically load weld group EdleGayenAkñúg Part 8 of the Manual. dMeNaHRsay³ TwkbnSarrbs;]TahrN_ 8>5 CaRbePTdUcKñaeTAnwgrUbEdlbgðajenAkñúg Tabl;e 8-42 (angle = 0 o )/ ehIykardak;bnÞúkk¾dUcKña. eKRtUvkartMélefrxageRkamsMrab;bBa©ÚleTAkñúgtarag³ al e 15.7 a= = = = 1.3 l l 12 kl 8 k= = = 0.67 l 12 edayeFVI interpolation enAkñúg Table 8-42 sMrab; a = 1.3 C = 1.14 sMrab; k = 0.6 ehIy C = 1.30 sMrab; k = 0 .7 enaHsMrab; k = 0.67 eyIgTTYl)an C = 1.25 sMrab; electrode E 70 XX / C1 = 1.0 tMél D EdlcaM)ac;KW Pu 60 D= = = 4 .0 CC1l 1.25(1.0 )(12 ) dUcenHTMhMTwkbnSarEdlcaM)ac;KW 1 16 (4.0) = 0.25 ¬TMhMTwkbnSarEdlRtUvkarenAkñúg]TahrN_ 8>5 KW 0.455 cMeLIy³ eRbI electrode E 70 / fillet weld 1 / 4in. karpþl;eGayCaBiesssMrab;Ggát;rgbnÞúktamG½kS Special Provision for Axially Loaded Members enAeBlEdlGgát;eRKOgbgÁúMrgbnÞúktamG½kS kugRtaMgRtUv)anBRgayesμIenAelImuxkat; ehIykM laMgpÁÜbRtUv)anBicarNafaeFVIGMeBItamG½kSTIRbCMuTMgn; EdlvaCaG½kSEvgkat;tamTIRbCMuTMgn;. sMrab;Ggát; EdlrgbnÞúkcMp©itenAxagcugrbs;va kMlaMgTb;pÁÜbEdlpþl;eGayedaytMNk¾RtUveFVIGMeBItamG½kSenHEdr. RbsinebIGgát;enHmanmuxkat;sIuemRTI lT§plGacRtUv)ansMercedaykarpSar b¤P¢ab;b‘ULúgedaysIuemRTI. RbsinebIGgát;manmuxkat;minsIuemRTI dUcCamuxkat;EdkEkgDub (double-angle section) enAkñúgrUbTI 8>20 karpSar b¤karP¢ab;b‘ULúgedaysIuemRTIeFVIeGaytMNenaHCatMNrgbnÞúkcakp©it CamYynwg couple Te dUcbgðajenAkñúgrUbTI 8>20 b. 315 tMNcakp©it
  • 25.
    T.chhay AISC J1.8GnuBaØateGayecalcMNakp©itenHsMrab;Ggát;rgkMlaMgsþaTic. enAeBlEdlGgát;rg fatigue EdlbNþalmkBIPaBRcMdEdlénkardak;bnÞúk b¤PaBmanGt;rbs;kugRtaMg cMNakp©itRtUvEtyk mkBicarNa b¤k¾minykmkBicarNaedaysarkartP¢ab;edaykarpSar b¤edayb‘ULúgEdlmanlkçN³sm Rsb . ¬CakarBit eTaHbIdMeNaHRsayGacRtUv)aneKeRbIsMrab;EtGgát;EdlrgEtkMlaMgsþaTick¾eday¦. eKGackMNt;karP¢ab;enHedayGnuvtþsmIkarlMnwgkMlaMg nigm:Um:g;. sMrab;tMNEdlpSarEdlbgðajenA kñúgrUbTI 8>21 smIkardMbUgGacRtUv)anTTYledayplbUkm:Um:g;eFobTwkbnSartamTisedkxageRkam³ L ∑ M L2 = Tc − P3 3 − P L3 = 0 1 2 eKedaHRsaysmIkarenHedIm,Irk P1 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTisedkxagelI. bnÞab;mkeKGacCMnYstMélenHeTAkñúgsmIkarlMnwgkMlaMgxageRkam³ 316 tMNcakp©it
  • 26.
    T.chhay ∑ F = T − P − P2 − P3 = 0 1 eKGacedaHRsaysmIkarenHedIm,IrktMél P2 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTis edkxageRkam. sMrab;RKb;TMhMrbs;TwkbnSar eKGacedaHRsayrkRbEvg L1 nig L2 . dMeNIrkaredaH RsayRtUv)anbgðajenAkñúg]TahrN_ 8>7 EdleKsÁal;Ca balancing the weld. ]TahrN_ 8>7³ Ggát;rgkarTajEdlpSMeLIgeday double-angle section, 2L5 × 3 × 1 / 2 EdleKdak; eCIgEvgrbs;vaTl;xñgKña. EdkEkgRtUv)anP¢ab;eTAnwg gusset plate kMras; 3 / 8in. . EdkTaMgGs;Ca A36 . KNnatMNedaykarpSar edayeFVIkarkat;bnßycMNakp©itedIm,ITb;nwg tensil capacity eBj rbs;Ggát;. dMeNaHRsay³ Load capacity rbs;Ggát;edayQrelI gross section KW φt Pn = 0.90 F y Ag = 0.90(36 )(7.5) = 243.0kips Load capacity EdlQrelI net seactionRtUvkartMélrbs; U . eKminsÁal;RbEvgTwkbnSar dUcenHeKminGacKNna U BI AISC Equation B3-2 )aneT. edayeRbI tMélmFüm 0.85 eKTTYl)an³ Ae = UAg = 085(7.5) = 6.375in.2 φt Pn = 0.75Fu Ae = 0.75(58)(6.375) = 277.3kips > 243.0kips Yeildingrbs; gross section CasßanPaBkMNt;EdlykmksikSa dUcenH φt Pn = 243.0kips . sMrab; EdkEkgmYy bnÞúkEdlRtUvTb;KW 243.0 = 121.5kips 2 Electrode EdlRtUvKñanwgEdk A36 KW E70 XX / ehIy TMhMTwkbnSarGb,brma = 16 in. (AISC Table J2.4) 3 TMhMGtibrma = 1 − 16 = 16 in. (AISC J2.2b) 2 1 7 sakl,g electrode E 70 fillet weld 5 / 16in. ³ lT§PaBenAkñúgRbEvg 1in. = 0.707w(φFW ) ⎛5⎞ = 0.707⎜ ⎟(31.5) ⎝ 16 ⎠ = 6.960kips / in. 317 tMNcakp©it
  • 27.
    T.chhay lT§PaBrbs; base metal rgkMlaMgkat; = t (φFBM ) = t (0.54Fy ) ⎛ 3⎞ = ⎜ ⎟(0.54)(36 ) ⎝8⎠ = 7.29kips / in. edayersIusþg;rbs;TwkbnSartUcCageK dUcenHeRbIersIusþg;rbs;TwkbnSar 6.960kips / in. . eyagtamrUbTI 8>22. lT§PaBrbs;TwkbnSarenAxagcugrbs;EdkEkgKW P3 = 6.960(5) = 34.80kips ⎛5⎞ ∑ M L2 = 121.5(3.25) − 34.80⎜ ⎟ − P (5) = 0 1 ⎝2⎠ P = 61.58kips 1 ∑ F = 121.5 − 61.58 − 34.80 − P2 = 0 / P2 = 25.12kips L1 = P1 = 61.58 = 8.85in. 6.960 6.960 yk 9in. L2 = 25.12 6.960 = 3.61in.yk 4in. cMeLIy³ eRbIkarpSaredUcbgðajenAkñúgrUbTI 8>23 318 tMNcakp©it
  • 28.
    T.chhay 8>5> tMNcMNakp©itedaypSar³ kMlaMgkat;nigkMlaMgTaj Eccentric Welded Connections: Shear and Tension tMNcMNakp©itCaeRcIn CaBiesskartP¢ab; beam-to-column TwkbnSarrgkMlaMgTaj nigkMlaMg kat;. tMNEbbenHBIrRbePTRtUv)anbgðajenAkñúgrUbTI 8>24. Seated beam connection pSMeLIgedayEdkEkgEdlmanRbEvgxøIRtUv)aneRbICaeFñIr (shelf) edIm,I RTFñwm. TwkbnSarEdlP¢ab;EdkEkgenHeTAssrRtUvTb;nwgm:Um:g;EdlekIteLIgedayRbtikmμcakp©it k¾dUc direct shear Edl)anBIRbtikmμrbs;Fñwm. EdkEkgEdlP¢ab;enAxagelIrbs;søabFñwmpþl;nUv torsional stability eTAeGayFñwm Etvamin)anCYyRTRbtikmμeT. eKGacP¢ab;vaeTAnwgRTnugrbs;FñwmCMnYseGaykar P¢ab;eTAnwgsøabrbs;Fñwm)an. beam-to-angle connection GacRtUv)aneFVIeLIgedaykarpSar b¤b‘ULúg ehIyvaminRTnUvbnÞúkKNnaNaeT. Framed beam connection ¬manlkçN³FmμtaCageK¦ EdlmanEdkEkgbBaÄrpSarP¢ab;eTAnwg ssr ehIyrgnUvRbePTbnÞúkdUckrNI seated beam connection. Epñkrbs;kartP¢ab; beam-to-angle k¾CaRbePTcakp©it b:uEnþbnÞúkenAkñúgbøg;énkMlaMgkat;TTwg dUcenHvaminmankMlaMgTajeT. TaMg seated connection nig framed connection GacRtUv)anP¢ab;edayb‘ULúg. 319 tMNcakp©it
  • 29.
    T.chhay enAkñúgRbePTnImYy²Edl)anerobrab;xagelI TWkbnSarbBaÄrenAelIsøabssrrgbnÞúkdUcbgðajenA kñúgrUbTI 8>25. dUcKñaCamYynwgtMNedayb‘ULúgenAkñúgrUbTI 8>3 bnÞúkcakp©it P nig couple M = Pe . kugRtaMgkMlaMgkat;KW P fv = A Edl A CaRkLaépÞ throat srubrbs;TwkbnSar. eKGacKNnakugRtaMgkMlaMgTajGtibrmaBI flexure formula Mc ft = I Edl I Cam:Um:g;niclPaBeFobG½kSTIRbCMuTMgn;rbs;RkLaépÞEdlpSMeLIgedayRkLaépÞ throat srubrbs;TwkbnSar nig c CacMgayBIG½kSTIRbCMuTMgn;eTAcMnucq¶abMputrbs;RCugEdlrgkarTaj. eKGac rkkugRtaMgkMlaMgpÁÜbGtibrmaedayeFVIplbUkviuTr½kMub:Usg;TaMgBIrenH enaHeK)an fr = f v2 + f t2 sMrab;xñat kips nig in. / kugRtaMgenHnwgRtUv)anKitCa kips / in 2 . RbsinebIkñúgkarKNnaenH eK eRbITMhM throat Éktþa enaHeKGacsMEdgtMélenAHCa kips / in. . RbsinebI f r RtUv)ankMNt;BIbnÞúkem KuN eKGaceRbobeFobvaCamYynwg design strength rbs;TwkbnSarénRbEvgÉktþa. eTAHbICaviFIKNna RtUv)ansnμt;eFVIkarCalkçN³eGLasÞick¾eday k¾vamanlkçN³suvtßiPaBCamYynwg LRFD context Edr. ]TahrN_ 8>8³ eKeRbI L6 × 4 × 1 / 2 enAkñúg seated beam connection dUcbgðajenAkñúgrUbTI 8>26. vaRtUvRTnUvbnÞúkemKuNRbtikmμ 22kips . EdkTaMgGs;Ca A36 ehIyeKeRbI electrode E 70 XX . etI eKRtUvkarTMhMTwkbnSar fillet weld b:unμansMrab;tP¢ab;eTAnwgsøabssr? 320 tMNcakp©it
  • 30.
    T.chhay dMeNaHRsay³ dUckñúg]TahrN_KNnaBImun/ eKeRbITMhMthroat ÉktþasMrab;KNna. eTaHbICakarpSar enHRtUvkar end return k¾eday edIm,IsMrYlkñúgkarKNna eKnwgecalvasMrab;karKNnaxageRkam. enARKb;krNI eKGac)a:n;sμanRbEvgrbs;vaenARtg;cMnucenH edaysareKminTan;)ankMNt;TMhMTwkbnSar. edaysarmanKMlatBIssr 3 / 4in. FñwmRtUv)anRTeday 3.25in. elIRbEvg 4in. éneCIgrbs; EdkEkg. RbsinebIeKsnμt;eGaykMlaMgRbtikmμeFVIGMeBIRtg;cMnuckNþalrbs;RbEvgEdlb:H enaHcMNak p©iteFobnwgTwkbnSarKW 3.25 e = 0.75 + = 2.375in. 2 ehIym:Um:g;Kw M = Pe = 22(2.375) = 52.25in. − kips 321 tMNcakp©it
  • 31.
    T.chhay sMrab;rUbragénkarpSarEdlsnμt;enAkñúgrUbTI 8>27 2(1)(6 )3 = 36in.4 / 6 I= c = = 3in. 12 2 Mc 52.25(3) ft = = = 4.354kips / in. I 36 P 22 fv = = = 1.833kips / in. A 2(1)(6 ) fr = f t2 + f v2 = (4.354)2 + (1.833)2 = 4.724kips / in. eKGacrkTMhMTwkbnSarEdlcaM)ac; w edayeGay f r esμIeTAnwglT§PaBTwkbnSarkñúgmYyÉktþaRbEvg f r = 0.707 w(φFW ) 4.724 = 0.707 w(31.5) / w = 0.212in. BI AISC Table J2.4, TMhMTwkbnSarGb,brma = 1 in. ¬edayQrelITMhMsøabrbs;ssr 5 / 8in. 4 BI AISC J2.2b, TMhMGtibrma = 1 − 16 = 16 in. 2 1 7 RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal: Applied direct shear = f v = 1.833kips / in. ( Shear capacity of angle leg = t (φFBM ) = t 0.54 F y = ) 1 2 (0.54)(36) = 9.72kips / in. > 1.833kips / in. (OK) cMeLIy³ eRbI electrode E70 XX / fillet weld 1 / 4in. . eyIgecalnUv end returns enAkñúg]TahrN_ 8>8 b:uEnþeKGacbBa©ÚlvaedaykareFVIkarKNna elIkTIBIrCamYynwg end return EdlmanRbEvgBIrdgTMhMTwkbnSarEdl)anrkeXIjenAkñúgkarKNna elIkTImYy. ¬CMhanbENßmenHminRtUv)anGnuvtþenAkñúg]TahrN_enHeTedaysarTMhMTwkbnSarGb,- brmaRKb; RKan;sMrab;karKNna¦. End return RtUv)anykmkniyayenAkñúg]TahrN_ 8>9. 322 tMNcakp©it
  • 32.
    T.chhay ]TahrN_ 8>9³ rUbTI8>28 bgðajBI framed beam connection edaypSar. Edk framing angle Ca ehIyssrCa W 12 × 72 . EdkTaMgGs;CaRbePT A36 ehIyeKeRbI electrode L4 × 3 × 1 / 2 E70 XX edIm,IbegáIt fillet weld 3 / 8in. . kMNt;kMlaMgRbtikmμemKuNrbs;FñwmEdlkMNt;edayTwk bnSarenAelIsøabssr. dMeNaHRsay³ eKsnμt;kMlaMgRbtikmμrbs;FñwmeFVIGMeBIkat;tamTIRbCMuTMgn;rbs;TwkbnSarén framing angle . dUcenH cMNakp©itrbs;kMlaMgeFobnwgTwkbnSarenARtg;søabssrCacMgayBITIRbCMuTMgn;eTAsøab ssr. sMrab;TMhM throat mYyÉktþa nigTwkbnSarEdlbgðajenAkñúgrUbTI 8>29 a 2(2.5)(1.25) x= = 0.1689in. nig e = 3 − 0.1689 = 2.831in. 32 + 2(2.5) m:Um:g;enAelITwkbnSarEdlenAelIsøabssrKW M = Re = R 2.831in. − kips Edl R CaRbtikmμrbs;FñwmKitCa kips BITMhMEdleGayenAkñúgrUbTI 8>29 b/ lkçN³rbs;TwkbnSarenAelIsøabssr 32(16 ) y= = 15.63in. 32 + 0.75 1(32 )3 I= + 32(16 − 15.63)2 + 0.75(15.63)2 = 2918in.4 12 sMrab;TwkbnSarTaMgBIr I = 2(2918) = 5836in.4 Mc 2.831R(15.63) ft = = = 0.007582 Rkips / in. I 5836 R R fv = = = 0.01527 Rkips / in. A 2(32 + 0.75) 323 tMNcakp©it
  • 33.
    T.chhay fr = (0.007582 R )2 + (0.01527 R )2 = 0.01705Rkips / in. yk 0.01705R = 0.707w(φFW ) ykKNnarktMél R ⎛ 3⎞ 0.0175R = 0.707⎜ ⎟(31.5) / R = 489.8kips ⎝8⎠ RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal ¬kMras;rbs;EdkEkglub¦ ( ) t (φFBM ) = t 0.54 F y = 0.5(0.54 )(36 ) = 9.72kips / in. Direct shear RtUv)anTb;Kw 489.8 = 7.48kips / in. < 9.72kips / in. (OK) 2(32.75) cMeLIy³ kMlaMgRbtikmμFñwmemKuNGtibrma = 490kips 8>6> tMNTb;m:Um:g; Moment-Resisting Connection enARKb; beam-to-column connection nig beam-to-beam connection TaMgGs; vaEtgman karTb;m:Um:g;xøH eTaHbICakarKNnatMNenaHCatMNsamBaØ b¤k¾tMNEdlKμanm:Um:g;k¾eday. müa:gvijeTot eKBi)akkñúgkareFVIeGayman perfectly frictionless pin or hinge ehIytMNCaeRcInEdlRtUv)anKNna CatMNEdldac;edayKμanm:Um:g;. dUcKña eKk¾Bi)akkñúgkareFVIeGayman perfectly rigid joint EdlGac manlT§PaBepÞr moment capacity rbs;Ggát;mYyeTAGgát;mYyeTotEdr. dUcenH eTaHbICa framed nig seated beam connections EdlbgðajkñúgrUbTI 8>24 k¾GacCatMNrwgxøH EdlvaGacbBa¢Únm:Um:g;tictYc 324 tMNcakp©it
  • 34.
    T.chhay RbsinebI connecting angleman flexible RKb;RKan;. dUcEdl)ankt;cMNaMBIxagelI bnÞúkcakp©iteFob eTAnwgb‘ULúg b¤TwkbnSarKWtUcNas; ehIyEdlCaTUeTARtUv)anecal. AISC Specification kMNt;kartP¢ab;enHCaBIrRbePT enAkñúg Section A2.2, “Types of Comstruction.” Type FR – Fully Restrained (Rigid, or Continuous, Framing). eRKOgbgÁúMEdlman moment-resistingg joint GacepÞrm:Um:g;EdlGgát;GacTb;)an edaymineFVIeGayGgát;enaHmanmMurgVil enARtg;tMNenaH. RbsinebIeRKagRtUv)anKNnaCa rigid frame dUcenHtMNRtUv)anKNnaCa moment connection. Type PR – Partially Restrained (semirigid Framing). eRKagRbePTenHCa eRKagEdl RtUv)anKNnaedayQrelIkarsÁal;brimaNTb; (restraint) cenøaHrvagtMNsamBaØ nigtMNrwg. CaTUeTA moment restraint sßitenAcenøaH 20% eTA 90% rbs; member moment capacity. bBaðacMbgrbs; eRKagEdlmantMNRbePTenHKWTamTarnUvkarviPaKeRKagd¾saMjauMedaysarvtþmanrbs; partial joint restraint. tMrUvkarcaM)ac; sMrab;tMNRbePTenHKWExSekag m:Um:g;-mMurgVil. RbsinebIeKecal partial restraint eKGaccat;TukFñwmCaFñwmTMrsamBaØEdlminman moment restraint enARtg;tMN. Framed and seated beam connections sßitenAkñúgRbePTenH. CaTUeTAtMN EdlepÞr member capacity ticCag 20% RtUv)ancat;TukCatMNsamBaØ. TMrFñwmEdlRtUv)anKNnaenA kñúgkrNIenH eBlxøHRtUv)aneKehAfa shear connection EdlmanEtkMlaMgRbtikmμ b¤kMlaMgkat;enAxag cugEdlRtUv)anbBa¢Ún. eRKagEdlman shear connection RtUv)anBRgwgenAkñúgbøg;rbs;eRKagedaysarvaKμan “frame action”edIm,IeFVIeGayman lateral stability. cMrwg (bracing) TaMgenHmaneRcInTMrg; GacCa diagonal bracing members, shear wall, or lateral support BIeRKagEdlenACab;. m:Um:g;EdlekItBIbnÞúkxag ¬CaTUeTAKW xül; nigrBa¢ÜydI¦ RtUv)anykmkKitkñúgkarKNnasMrab;kareRCIserIs beam-to-column connections. sMrab;viFIenH eKsnμt;tMNeGayeFVIkarCatMNsamBaØedIm,ITb;Tl;nwgbnÞúkefr nigbnÞúk Gefr ¬bnÞúkTMnaj gravity load¦ nigCa moment connection CamYynwglT§PaBEdlmankMNt;kñúgkar Tb;Tl;m:Um:g;xül;. RbsinebIeKKNnaFñwmCaRbePTTMrsamBaØ m:Um:g;bnÞúkTMnajGtibrmaGac overestimated ehIyFñwmGac overdesigned. b:uEnþkñúgkrNICaeRcIn m:Um:g;xül;GacmantMéltUc. RbsinebIeKeRbItMNsamBaØ Specification TamTareGayeKarBnUvlkçxNÐxageRkam³ 325 tMNcakp©it
  • 35.
    T.chhay !> eTaHbICaFñwm ¬rt¦ minRtUv)anRTedayTMrsamBaØk¾eday k¾vaRtUvEtRTbnÞúkTMnajtamEtvaGac eFVI)an. @> tMN nigGgát;EdlRtUv)anP¢ab; ¬Fñwm nigssr¦ RtUvmanlT§PaBGacTb;m:Um:g;xül;)an. #> tMNRtUvman inelastic rotational capacity RKb;RKan;EdleRKOgP¢ab; b¤TwkbnSarnwgmin RtUv)an overload eRkambnSMénbnÞúkTMnaj nigbnÞúkxül;. enAkñúgsovePAenH eyIgBicarNaEttMNBIrRbePTKW³ tMNsamBaØ (simple connection) Edl KNnasMrab;bnÞúkTMnaj ¬CamYynwg lateral frame stability Edlpþl;eGayeday positive bracing system¦ nigtMNrwg (rigid connection) EdlKNnasMrab; moment capacity rbs;FñwmFMCag 90% . eyIg)anBicarNa simple connection enAkñúg framed nig seated beam connections rYcehIy dUcenH eyIgnwgRtUvkarykcitþTukdak;eTAelI rigid connectionsvijmþg. ]TahrN_FmμtaCaeRcInEdleRbI moment connection RtUv)anbgðajenAkñúgrUbTI 8>30. Ca TUeTA karepÞrm:Um:g;PaKeRcInRtUv)anbBa¢ÚntamsøabFñwm ehIy moment capacity k¾RtUv)aneLIg. tMN enAkñúgrUbTI 8>30 a bgðajBIKMnitenH. EdkbnÞHEdlP¢ab;RTnugFñwmeTAssrKWRtUv)anpSarP¢ab;eTAnwg ssrenAeragCag nigRtUv)ancab;b‘ULúgeTAnwgFñwmenAkardæan. CamYynwgkarerobcMEbbenH FñwmRtUv)an Gacdak;enAelITItaMgy:agRsYledayeGaysøabGacRtUv)anpSarP¢ab;eTAnwgssrenAkardæan. Plate connection RtUv)anKNnaedIm,ITb;Tl;EtkMlaMgkat; nigTTYlRbtikmμrbs;Fñwm. Complete penetra- tion groove welds P¢ab;søabFñwmeTAssr nigGacepÞrm:Um:g;esμInwg moment capacity rbs;søab Fñwm. vanwgrYmKñaCamYy moment capacity rbs;FñwmPaKeRcIn b:uEnþbrimaNrbs;karTb;RtUv)anpþl;eGay eday plate connection. ¬edaysar strain harderning full plastic moment capacity rbs;FñwmGac RtUv)anbegáIteLIgtamry³søab¦. kareFVIkartP¢ab;søabTamTarfaEpñkd¾tUcrbs;RTnugFñwmRtUv)andk ecjehIy “backing bar” RtUv)aneRbIenAelI søabmYyedIm,IGnuBaØateGaykarpSarTaMgGs;eFVIeLIgBIelI. enAeBlEdlkarpSarBIxagelIRtCak; vanwg rYjCaTUeTARbEhl 1 / 8in. . bMlas;TItamTisbeNþayEdl TTYl)anRtUv)anykmkKitsMrab;eRbIR)as; slotted bolt hole nigedayrwtbNþwgb‘ULúgeRkayeBlTwk bnSarRtUv)anRtCak;.tMNRbePTenH eRbI column stiffenders EdlminRtUvkarCaTUeTAeT ¬emIlEpñk 8>7¦. 326 tMNcakp©it
  • 36.
    T.chhay Moment connection rbs;rUbTI 8>30 a k¾RtUv)anbgðaj recommended connection design practice: RKb;eBlTaMgGs; karpSarKYrEtRtUv)aneFVIenAkñúgeragCag ehIykarcab;b‘ULúgKYreFVIenAkardæan. karpSarenAeragCagmantMélefakCag niggayRsYlkñúgkarRtYtBinitü. sMrab; beam-to-column moment connections Ggát;CaEpñkrbs; plane frame ehIyRtUv)an dak;dUcbgðajenAkñúgrUbTI 8>30 a EdlRTnugenAkñúgbøg;rbs;eRKagEdlkarBt;rbs;Ggát;nimYy²eFobeTA nwgG½kSemrbs;va. enAeBlEdlFñwmRtUv)anP¢ab;eTAnwgRTnugrbs;ssrCaCagsøabrbs;ssr ¬Ca- ]TahrN_ enAkñúgeRKaglMhr¦ eKeRbItMNdUcEdlbgðajenAkñúgrUbTI 8>30 b. tMNenHRsedogKñaeTA nwgGVIEdlbgðajenAkñúgrUbTI 8>30 a b:uEnþTamTarnUvkareRbI column stiffener edIm,IeFVIkartP¢ab;eTAnwg søabFñwm. eTaHbICatMNEdlbgðajenAkñúgrUbTI 8>30 a CatMNsamBaØk¾eday k¾kartMeLIgrbs;faTamTar nUvkMritlMeGantUcEdr. RbsinebIFñwmtUcCagkarrMBwgTukcenøaHrvagssr nigsøabFñwmGacbgáPaBlM)ak kñúgkarpSar enAeBlxøHeKeRbI backing bar. Three-plate connection EdlbgðajenAkñúgrUbTI 8>30 c minman handicap eT ehIyvamanGtßRbeyaCn_bEnßmEdlRtUv)anP¢ab;edayb‘ULúgy:agl¥enAkardæan. Flange plate nig web plate RtUv)anpSarenAkñúgeragCageTAnwgsøabssr nigcab;b‘ULúgeTAFñwmRtUv)an eFVIenAkardæan. edIm,Ipþl;eGaysMrab;karERbRbYlenAkñúgkMBs;Fñwm cMgayrvag flange plates RtUv)aneFVI 327 tMNcakp©it
  • 37.
    T.chhay eLIgFMCagkMBs; Fmμtarbs;Fñwm b:uEnþRbEhl3 / 8in. . KMlatenHRtUv)anbMeBjenAsøabxagelIkñúgeBl dMeLIgCamYy shims/ Edl thin strip rbs;EdkedayRtUv)aneRbIsMrab;EktMrUvkarP¢ab;enARtg;tMN. Shim GacCaRbePTmYykñúgcMeNamBIrRbePTKW conventional shim nig finger shim EdlGacs‘k eRkayeBlb‘ULúgRtUv)anP¢ab; dUcbgðajenAkñúgrUbTI 8>30 d. enAkñúgtMbn;EdlmantMbn;rBa¢ÜyFM tMN EdlbgðajenAkñúgrUbTI 8>30 a RtUvkarkarKNnaBiess (FEMA, 1995). ]TahrN_ 8>10 bgðajBIkarKNnarbs; three-plate moment connect edayrYmbBa©ÚlTaMg tMrUvkarsMrab;kartP¢ab;Ggát; Edlmanerobrab;eday AISC J5. ]TahrN_ 8>10³ KNna three-plate moment connection rbs;RbePTEdl)anbgðajrUbTI 8>31 sM rab;kartP¢ab;Fñwm W 21× 50 eTAsøabrbs;ssr W 14 × 99 . snμt;Fñwm set-back 1 / 2in. . karviPaK eRKagbgðajfatMNRtUvEtepÞrm:Um:g;bnÞúkemKuN 210 ft. − kips nigkMlaMgkat;emKuN 33kips . RKb;bnÞH EdkEdlpSareTAnwgssrCamYynwg electrode E70 XX nigkarP¢ab;b‘ULúgeTAFñwmCamYynwg bearing- type bolts A325 . EdkTaMgGs;CaRbePTEdk A36 . dMeNaHRsay³ sMrab; web plate ¬edayecalcMNakp©it¦ sakl,gb‘ULúgGgát;p©it 3 / 4in. . snμt;fa eFμjsßitenAkñúgbøg;kMlaMgkat;. lT§PaBkMlaMgkat;TTwgrbs;b‘ULúgKW φFv Ab = 0.75(48)(0.4418) = 15.90kips cMnYnb‘ULúgEdlRtUvkar = 1533 = 2.08 .90 sakl,gb‘ULúg 3 RKab; nigkMNt;kMras;bnÞHEdlTamTarsMrab; bearing. eRbIKMlat nigcMgayeTARCug EKmenAkñúgrUbTI 8>32 a ehIyGgát;p©itrn§KW 1 3 1 13 h=d+ = + = in. 16 4 16 16 328 tMNcakp©it
  • 38.
    T.chhay sMrab;RbehagEdlenAEk,rRCugEKmbMput h 13 / 16 Lc = Le − = 1.5 − = 1.094in. 2 2 ⎛3⎞ 2d = 2⎜ ⎟ = 1.5in. ⎝4⎠ edaysar Lc < 2d / bearing strength KW φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)t (58) = 57.11tkips / bolt sMrab;Rbehagd¾éT 13 Lc = s − h = 3 − = 2.188in. > 2d 16 ⎛3⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.03tkips / bolt ⎝4⎠ edIm,IrkkMras;EdlRtUvkardak; total bearing strength esμInwg applied load: 57.11t + 2(78.30t ) = 33 b¤ t = 0.154in. sMrab;RTnugFñwm (beam web) t w = 0.380in. > 0.154in. edIm,IkMNt;kMras;bnÞHEdkEdlRtUvkarsMrab;kMlaMgkat; cUrBicarNamuxkat;bBaÄrkat;tambnÞHEdk. BI AISC J5, “Connecting Elements,” φRn = 0.90[0.60 Ag F y ] (AISC Equation J5-3) 33 = 0.90[0.60(9t )(36 )] t = 0.189in. ¬lub¦ dUcenHyk t = 1 / 4in. 329 tMNcakp©it
  • 39.
    T.chhay sMrab;kartP¢ab; shear plateeTAnwgsøabssr TMhM fillet weld Gb,brmaKW 1 / 4in. . ¬edayQrelI EpñkEdlRtUvP¢ab;EdlmankMras;Rkas;Cag TMhMfillet weld Gb,brmaKW 5 / 16in. b:uEnþvaminRtUvkarFM CagkMras;rbs;EpñkEdlRtUvP¢ab;EdlesþIgCageT¦. enaH lT§PaBkñúgmYyÉktþaRbEvg = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5) ⎜ ⎟ ⎝4⎠ = 5.568kips / in. lT§PaBkMlaMgkat;TTwgrbs; base metal KW ( tφFBM = t 0.54 F y = ) 1 4 (0.54)(36) = 4.86kips / in. ¬lub¦ dUcenHRbEvgEdlcaM)ac;rbs; fillet weld 1 / 4in. KW 33 = 6.79in. 4.86 karpSarCab;KñaenAelIRCugmçagrbs;bnÞHGacRKb;RKan; b:uEnþCaTUeTAeKRtUvpSarsgxag ehIyRtUv)anGnuvtþ enATIenH. TTwgGb,brmarbs;bnÞHEdkGacRtUv)ankMNt;BIkarBicarNacMgayeTARCugEKm. bnÞúkEdl RtUv)anRT ¬RbtikmμFñwm¦ KWmanTisbBaÄr dUcenHcMgayeTARCugEKmcaM)ac;eKarBtamtMrUvkarrbs; AISC Table J3.4. RbsinebIeyIgsnμt;RCugEKmCa sheared edge cMgayeTARCugEKmGb,brmaKW 1 1 4 in. . CamYynwg beam setback 1 / 2in. nigcMgayeTARCugEKm 1 12 in. dUcEdl)anbgðajenAkñúgrUbTI 8>32 b TTwgrbs;bnÞHEdkKW 0.5 + 2(1.5) = 3.5in. ykbnÞHEdkTMhM 3 1 2 × 1 4 sMrab; flange plates, rkkMlaMgRtg;épÞb:HrvagsøabFñwm nigbnÞHEdk. BIrUbTI 8>33 M 210(12) M = Hd nig H= d = 20.83 = 121.0kips 330 tMNcakp©it
  • 40.
    T.chhay sakl,gb‘ULúg A325 Ggát;p©it3 / 4in. . ¬edaysarb‘ULúgGgát;p©it 3 / 4in. RtUv)aneRCIserIssMrab; shear connection dUcenHeyIgsakl,gTMhMb‘ULúgdUcKña¦. RbsinebIkMlaMgkat;TTwgb‘ULúglub cMnYnb‘U LúgEdlRtUvkarKW 1 3 1 13 h=d+ = + = in. 16 4 16 16 sMrab;RbehagEdlenAEk,rRCugEKmCageK h 13 / 16 Lc = Le − = 1.5 − = 1.094in. 2 2 2d = 2(3 / 4 ) = 1.5in. edaysar Lc < 2d / bearing strength KW φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094 )t (58) = 57.11tkips / bolt sMrab;RbehagepSgeTot 13 Lc = s − h = 3 − = 2.188in. > 2d 16 ⎛3⎞ dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.30tkips / bolt ⎝4⎠ edIm,IrkkMras;EdlRtUvkar dak; total bearing strength eGayesμI applied load: 2(57.11t ) + 6(78.30t ) = 121.0 b¤ t = 0.207in. Flange plate TaMgBIrnwgRtUv)anKNnaCa tension connecting elements. ¬ebIeTaHbICabnÞHEdkmYyrgkMlaMgsgát;k¾eday kartP¢ab;lMGitecalnUvbBaðaesßrPaBTaMgGs;¦. eKnwgkMNt;muxkat;Gb,brmaEdlRtUvkarsMrab;kugRtaMgTajenAelI gross nig net area. BI AISC Equation J5-1, ( φRn = 0.90 Ag F y ) Ag EdlRtUvkar = 0.φRnF 90 = H = 121.0 0.90 F y 0.90(36) = 3.735in.2 y BI AISC Equation J5-2, φRn = 0.75 An Fu EdlRtUvkar = 0.φ75nF = 0.75F = 0121(.58) = 0.782in.2 An R H .75 0 u u sakl,gTTwgrbs;bnÞHEdk wg = 6.5in. ¬esμIeTAnwgTTwgsøabrbs;Fñwm¦. kMNt;kMras;caM)ac;edIm,I bMeBjtMrUvkar requirement. 331 tMNcakp©it
  • 41.
    T.chhay b¤ t = 0.575in. Ag = 6.5t = 3.735in.2 KNnakMras;EdlcaM)ac;edIm,IbMeBjtMrUvkar net area ( ) ⎡ ⎛ 7 ⎞⎤ An = twn = t wg − ∑ d hole = t ⎢6.5 − 2⎜ ⎟⎥ = 4.750t ⎣ ⎝ 8 ⎠⎦ yk 4.750t = 2.782in.2 b¤ t = 0.586in. ¬lub¦ kMras;k¾RtUvFMCagGVIEdlTamTarsMrab; bearing dUcenHvaRtUvCakMras;Gb,brmaEdlGacTTYlyk)an. sakl,gbnÞH 6 12 × 5 8 . bnÞHenHCa tension connecting element dUcenH net area rbs;vaminGac elIsBI 0.85 Ag enAkñúgkarKNna (AISC J5.2): 5⎡ ⎛ 7 ⎞⎤ An = ⎢6.5 − 2⎜ ⎟⎥ = 2.969in.2 8⎣ ⎝ 8 ⎠⎦ 0.85 Ag = 0.85(0.625)(6.5) = 3.453in.2 > 2.969in.2 (OK) ykbnÞH 6 12 × 5 8 Epñkrbs;RkLaépÞsøabrbs;FñwmnwgRtUv)an)at;bg;edaysarRbehagrbs;b‘ULúg nig moment capacity RtUv)ankat;bnßy. AISC B10 GnuBaØatkarkat;bnßyenHedIm,IeGayecalenAeBl 0.75 Fu A fn ≥ 0.90 F y A fg (AISC Equation B10-1) Edl A fg = gross flange area = b f ⋅ t f = 6.530(0.535) = 3.494in.2 A fn = net flange area ( ) ⎡ ⎛ 7 ⎞⎤ = t f b f − ∑ d h = 0.535⎢6.530 − 2⎜ ⎟⎥ = 2.557in.2 ⎣ ⎝ 8 ⎠⎦ edayeRbI AISC Equation B10-1 eyIgTTYl)an 0.75 Fu A fn = 0.75(58)(2.557 ) = 111.2kips 0.9 F y A fg = 0.9(36 )(3.494) = 113.2kips > 111.2kips edaysar AISC Equation B10-1 minRKb;RKan; flexural KYrRtUvQrelIRkLaépÞsøabRbsiT§PaB (effective flange area) 5 Fu A fe = A fn 6 Fy 5 ⎛ 58 ⎞ = ⎜ ⎟(2.557 ) = 3.433in.2 (AISC Equation B10-3) 6 ⎝ 36 ⎠ 332 tMNcakp©it
  • 42.
    T.chhay RkLaépÞenHminxusKñay:agxøaMgBI actual grossflange are 3.494in.2 dUcenH flexural strength eday minRtUvEkERb. cMeLIy³ eRbItMNEdlbgðajenAkñúgrUbTI 8>34 ¬tMrUvkar column stiffener nwgRtUv)anBicarNaenAkñúg Epñk 8>7¦* 8>7> Column Stiffeners and other Reinforcement m:Um:g;PaKeRcInEdl)anepÞrBIFñwmeTAssrenAkñúgtMNrwgmanTMrg;Ca couple EdlpSMeLIgedaykM laMgTaj nigkMlaMgsgát;EdlmanenAkñúgsøabrbs;Fñwm. karGnuvtþn_kMlaMgcMnucEdlmantMélFMGacTam TarkarBRgwgssr. sMrab;m:Um:g;GviC¢manEdldUckrNICamYybnÞúkTMnaj kMlaMgTaMgenHmanTisedAdUc bgðajenAkñúgrUbTI 8>35 CamYynwgsøabxagelIbMputrbs;FñwmEdlbBa¢ÚnkMlaMgTajeTAssr ehIysøab xageRkamEdlbBa¢ÚnkMlaMgsgát;. kMlaMgTaMgBIrRtUvbBa¢ÚneTARTnugssrCamYynwgkMlaMgsgát;EdlmaneRKaHfñak;Cagedaysar stability problem. kMlaMgTajenAxagelIGacrMxansøabssr ¬rUbTI 8>35 c¦ EdlbegáItbnÞúkbEnßm eTAelIkartP¢ab;edaypSarénsøabssreTAsøabFñwm. RbePTeRKOgBRgwg (stiffener) Edl)an bgðaj)anBRgwgsøabssr. dUc)aneXIjy:agc,as; stiffener RtUv)anpSarP¢ab;eTAnwgRTnug nigsøab. * rUbTI 8>34 k¾bgðajBInimitþsBaØasMrab; bevel groove weld, edayeRbIenATIenHsMrab; beam flange plate-to-column connection 333 tMNcakp©it
  • 43.
    T.chhay RbsinebIm:Um:g;EdlGnuvtþminpøas;bþÚrTisedA stiffener EdlTb;Tl;nwgkMlaMgsgát;¬stiffener xag eRkam¦ minRtUvkarkarpSareT. AISC Specification Requirements tMrUvkarrbs; AISC sMrab;karBRgwgRTnugssrRtUv)anerobrab;enAkñúg Chapter K, “strength Design Considerations.”. sMrab;EpñkCaeRcIn karpþl;eGayenHQrenAelIkarviPaKedayRTwsþIEdl RtUv)anEkERbedIm,IeGayRtUvnwglT§plrbs;karBiesaFn_. RbsinebIbnÞúkemKuNGnuvtþn_EdlRtUv)an epÞredaysøabFñwm b¤ flange plate FMCag design strength φRn sMrab;RKb;sßanPaBkMNt;Edl)an BicarNaTaMgGs; enaHeKRtUvEteRbI stiffener. edIm,IeCosvag local bending failure rbs;søabssr kMlaMgTajBIsøabFñwmdac;xatminRtUv FMCag ( φRn = φ 6.25t 2 F yf f ) (AISC Equation K1-1) Edl φ = 0.90 tf =kMras;rbs;søabssr F yf = yield stress rbs;søabssr sMrab;sßanPaBkMNt;rbs; local web yielding rgkugRtaMgsgát; φRn = φ [(5k + N )Fywt w ] (AISC Equaton K1-2) b¤ enAeBlEdlbnÞúkRtUv)anGnuvtþedaycMgayBIcugrbs;Ggát;EdlesμIkMBs;rbs;Ggát; φRn = φ [(2.5k + N )Fywt w ] (AISC Equation K1-3) Edl φ = 1.0 k = cMgayBIépÞsøabxageRkArbs;ssreTAeCIgrbs; fillet EdlenAelIRTnug N = RbEvgrbs;bnÞúkGnuvtþn_ = kMras;rbs;søabFñwm b¤ flange plate F yw = yield stress rbs;RTnugssr t w = kMras;rbs;RTnugssr eyIgk¾eRbI AISC Eqution K1-2 nig K1-3 in Section 5.13 edIm,IGegát web yielding enAkñúgFñwmEdl rgbnÞúkcMcMnuc. 334 tMNcakp©it
  • 44.
    T.chhay edIm,IkarBar web crippling enAeBlEdlbnÞúksgát;RtUv)anbBa¢ÚneTAEtsøabmYy dUckñúgkrNI ssrxageRkAEdlmanP¢ab;CamYyFñwmEtmçag enaHbnÞúkGnuvtþn_minRtUvFMCag design strength EdleGay daysmIkarmYykñúgcMeNamsmIkarxageRkam. ¬eyIgk¾Føab;)anerobrab;BI web crippling enAkñúg web crippling enAkñúgEpñkTI 5>13¦ enAeBlEdlbnÞúkRtUv)anGnuvtþenAcMgayy:agtic d / 2 BIcugrbs;ssr ⎡ 1.5 ⎤ ⎛N ⎞⎛ t w ⎞ ⎥ Fywt f φRn = φ135t w ⎢1 + 3⎜ 2 ⎟⎜ ⎟ (AISC Equation K1-4) ⎢ ⎝ d ⎠⎜ t f ⎟ ⎝ ⎠ ⎥ tw ⎢ ⎣ ⎥ ⎦ Edl φ = 0.75 d=kMBs;srubrbs;ssr RbsinebIbnÞúkRtUv)anGnuvtþenAcugrbs;ssr ⎡ 1.5 ⎤ ⎛N ⎞⎛ t w ⎞⎥ Fywt f φRn = φ 68t w ⎢1 + 3⎜ 2 ⎢ ⎝ ⎟⎜ ⎟ d ⎠⎜ t f ⎟⎥ tw sMrab; N d ≤ 0.2 (AISC Equation K1-5b) ⎢ ⎣ ⎝ ⎠ ⎥ ⎦ ⎡ 1.5 ⎤ 2⎢ ⎛ N ⎞⎛ t w ⎞ ⎥ Fywt f b¤ φRn = φ 68t w 1 + ⎜ 4 − 0.2 ⎟ ⎢ ⎝ d ⎜ ⎟ ⎠⎜ t f ⎟ ⎥ tw sMrab; N d > 0.2 ⎢ ⎣ ⎝ ⎠ ⎥ ⎦ (AISC Equation K1-5b) kMlaMgsgát; backling rbs;RTnugRtUv)anGegátenAeBlEdlbnÞúkRtUv)anbBa¢ÚneTAsøabssr TaMgBIr. bnÞúkEbbenHnwgekItmanenAssrxagkñμúgCamYynwgFñwmEdlP¢ab;eTAssrTaMgsgxag. Design strength sMrab;sßanPaBkMNt;enHKW ⎡ 4100t w Fyw ⎤ 3 φRn = φ ⎢ ⎥ (AISC Equation K1-8) ⎢ h ⎥ ⎣ ⎦ Edl φ = 0.90 h=kMBs;RTnugssrBIeCIgrbs; fillet eTAeCIgrbs; fillet ¬rUbTI 8>36¦ RbsinebIkartP¢ab;enAEk,rcugrbs;ssr ¬EdlRbsinebIbnÞúkRtUv)anGnuvtþenAcMgay d / 2 BI cug¦ ersIsþg;EdleGayeday AISC Equation K1-8 KYrRtUv)ankat;bnßyBak;kNþal. niyayedaysegçb edIm,IGegátPaBcaM)ac;sMrab; column stiffener eKRtUvRtYtBinitüsßanPaBkM Nt;bIdUcxageRkam³ !> Local flang bending (AISC Equation K1-1) 335 tMNcakp©it
  • 45.
    T.chhay @> Loacl web yielding (AISC Equation K1-2 or K1-3) #> Web crippling b¤kMlaMgsgát; buckling rbs;RTnug. ¬RbsinebIkMlaMgsgát;RtUv)anGnuvtþ eTAelIsøabEtmYy eKRtUvRtYtBinitü web crippling [AISC Equation K1-4 b¤ K1-5]. RbsinebIkMlaMg sgát;RtUv)anGnuvtþeTAelIsøabTaMgBIr eKRtUvRtYtBinitü compressive buckling rbs;RTnug [AISC Equation K1-8]¦. RbsinebI stiffener EdlRtUvkareday AISC Equation K1-2 sMrab; local web yielding, eKGac rkRkLaépÞmuxkat;EdlRtUvkarsMrab; stiffener dUcxageRkam. snμt;faeKGacTTYl)an design strength bEnßmBIRkLaépÞrbs; stiffener Ast Edl yield. dUcenHBI AISC Equation K1-2. φRn = φ [(5k + N )Fywt w + Ast Fyst ] Edl Fyst Ca yield stress rbs; stiffener. dak;eGayGgÁxagsþaMrbs;smIkarenHesμInwgbnÞúkGnuvtþn_ EdlsMKal;eday Pbf nigedaHRsaysMrab; Ast eKTTYl)an Pbf / φ − (5k + N )Fywt w Ast = Fyst Pbf − (5k + tb )Fywt w = Fyst ¬*>^¦ Edl φ = 1.0 nig tb KWkMras;rbs;søabssr b¤ flange plate. smIkar 8>6 k¾GacRtUv)aneRbIedIm,IRtYt Binitü local buckling yielding strength rbs;ssr. edaHRsayrk Ast RbsinebITTYl)anlT§pl GviC¢man eKnwgminRtUvkar stiffener sMrab;sßanPaBenHeT. RbsinebIeKRtUvkar stifferner AISC K1-9 eGaynUvTMhMsmamaRtrbs;vadUcxageRkam³ 336 tMNcakp©it
  • 46.
    T.chhay TTwgrbs; stiffener bUknwgkMras;Bak;kNþalrbs;RTnugssrRtUvFMCagb¤esμInwgmYyPaKbIén TTwgrbs;søabFñwm b¤ flange plate EdlbBa¢ÚnkMlaMgeTAssr b¤BIrUbTI 8>37 t b+ w ≥ b 2 b 3 dUcenH b ≥ b3b − t2 w kMras;rbs; stiffener dac;xatRtUvEtFMCagb¤esμInwgBak;kNþalkMras;rbs;søabFñwm b¤ flange plate b¤ t t st ≥ b 2 pleFobTTwgelIkMras;RtUvEt t b ≤ 250 F ¬xñat IS¦ b t st ≤ 95 Fy ¬xñat US¦ st y eKRtUvkar Full-depth stiffener sMrab;krNI compression buckling b:uEnþeKGnuBaØateGayeRbI half-depth stiffener sMrab;sßanPaBkMNt;epSgeTot. dUcenHeKRtUvkar full-depth stiffener EtenA eBlEdlFñwmRtUv)anP¢ab;eTAnwgssrTaMgsgxag. sMrab;RKb;sßanPaBkMNt;TaMgGs; karsMerckñúgkarpSar stiffener P¢ab;eTAsøabKWQrelIlkçxNÐ xageRkam³ enAelIxagEdlrgkMlaMgTaj eKRtUvpSar stiffener P¢ab;eTAnwgRTnug nigsøab. enAelIxagEdlrgkMlaMgsgát; stiffener RKan;EtRtUvkardak;EGbnwgsøabEtb:ueNÑaH EteKk¾Gac pSarvaP¢ab;eTAnwgsøab. Part 3 of the Manual, “Column Design,” mantMélefrEdlRtUv)anerobCataragEdlGaceFVI karkMNt;karcaM)ac;sMrab; stiffener. kareRbIR)as;rbs;vaRtUv)anbgðajenAkñúg]TahrN_EdlmanenAkñúg “General Notes” EtminRtUv)anbgðajenATIenHeT. 337 tMNcakp©it
  • 47.
    T.chhay kMlaMgkat;enAkñúgRTnugssr Shear in the Column Web karepÞrm:Um:g;EdlmantMélFMeTAssrGacbegáItkugRtaMgkMlaMgkat;FMenAkñúgRTnugssr enAkñúgRBMEdn rbs;tMN. ]TahrN_ tMbn; ABCD enAkñúgrUbTI 3>38. eBlxøH eKehAtMbn;enHCa panel zone. Net moment RtUv)anKit dUcenHRbsinebIFñwmRtUv)antP¢ab;eTARCugTaMgsgxagrbs;ssr plbUkBiCKNiténm:U m:g;begáIt web shear enH. RbsinebIkMlaMgsøabFñwmRtUv)ansnμt;eGayeFVIGMeBIenAcMgay 0.95db BIKña Edl db CakMBs;Fñwm enaHkMlaMgsøabnImYy²GacRtUv)anykCa M1 + M 2 H= 0.95d b RbsinebIkMlaMgkat;ssrenAEk,r panel Ca Vu ehIymanTisedAdUcbgðaj kMlaMgkat;TTwgsrub enAkñúg panel KW M + M2 P = H − Vu = 1 0.95d b − Vu ¬*>&¦ Web shear strength RtUv)aneGayenAkñúg AISC K1.7 Ca φRv Edl φ = 0.90 ehIy Rv Ca GnuKmn_ eTAnwgbnÞúktamG½kSenAkñúgssr. enAeBlEdl Pu ≤ 0.4Py Rv = 0.60 F y d c t w (AISC Equation K1-9) enAeBlEdl Pu > 0.4Py / 338 tMNcakp©it
  • 48.
    T.chhay ⎡ ⎛P ⎞⎤ Rv = 0.60 F y d c t w ⎢1.4 − ⎜ u ⎟⎥ (ASIC Equation K1-10) ⎢ ⎜ Py ⎟⎥ ⎣ ⎝ ⎠⎦ Edl Pu = bnÞúktamG½kSenAkñúgssr Py = axial yield strength rbs;ssr = AF y A = RkLaépÞmuxkat;rbs;ssr edayrYmbBa©ÚlTaMgeRKOgBRgwg ¬]TahrN_/ doubler plates¦ d c = TMhMssrtamTisFñwmsrub t w = kMras;RTnugssr edayrYmbBa©ÚlTaMgbnÞHEdkEdlBRgwg Fy = yield stress rbs;RTnugssr RbsinebIRTnugssrman shear strength minRKb;RKan; eKRtUvBRgwgva. eKGaceRbI double plate EdlmankMras;RKb;RKan;edIm,IpSarP¢ab;eTAnwgRTnug b¤ diagonal stiffener mYyKUr. kñúgkarGnuvtþeKeRcIn eRbI stiffener Cag. AISC K1.7 k¾)anpþl;nUvsmIkaredIm,IenAeBlEdleKBicarNaBI frame stabality EdlrYmbBa©Úl TaMgkMhUcRTg;RTayrbs; panel zone. vaminRtUv)anerobrab;enATIenHeT. ]TahrN_ 8>11³ kMNt;faetItMNén]TahrN_ 8>10 RtUvkar stiffener b¤k¾ column web . snμt;fa Vu = 0 nig Pu / Py = 0.4 . reinforcement dMeNaHRsay³ BI]TahrN_ 8>10 flange force RtUv)anykesμInwg Pbf = H = 121.0kips RtYtBinitü local flange bending CamYynwg AISC Equation K1-1: ( φRn = φ 6.25t 2 F yf f ) [ ] = 0.90 6.25(0.780)2 (36) = 123kips > 121kips (OK) RtYtBinitü local web yielding CamYynwg AISC Equation K1-2: [ φRn = φ (5k + N )Fywt w ] ⎡ 5⎤ = 1.0⎢5(1.438) + ⎥ (36)(0.485) = 136kips > 121kips (OK) ⎣ 8⎦ RtYtBinitü web crippling CamYynwg AISC Equation K1-4: ⎡ 1.5 ⎤ ⎛N ⎞⎛ t w ⎞ ⎥ Fywt f φRn = φ135t w ⎢1 + 3⎜ 2 ⎟⎜ ⎟ ⎢ ⎝ d ⎠⎜ t f ⎟ ⎝ ⎠ ⎥ tw ⎢ ⎣ ⎥ ⎦ 339 tMNcakp©it
  • 49.
    T.chhay ⎡ ⎛ 5 / 8 ⎞⎛ 0.485 ⎞ ⎤ 36(0.780 ) 1.5 = 0.75(135)(0.485)2 ⎢1 + 3⎜ ⎟⎜ ⎟ ⎥ ⎢ ⎣ ⎝ 14.16 ⎠⎝ 0.780 ⎠ ⎥ ⎦ 0.485 = 193kips > 121kips (OK) cMeLIy³ eKminRtUvkar column stiffener eT. sMrab;kMlaMgkat;TTwgeNAkñúgRTnugssr BIsmIkar *>& nigedayecalkMras;rbs; shim enAkñúg karKNnark db kMlaMgkat;TTwgemKuNenAkñúg column web panel zone KW P= (M 1 + M 2 ) − V u 0.95d b 210(12) = − 0 = 120kips 0.95[20.83 + 2(5 / 8)] edaysar Pu = 0.4Py eRbI AISC Equation K1-9: Rv = 0.60 F y d c t w = 0.60(36 )(14.16 )(0.485) = 148.3kips Design strength KW φRv = 0.90(148.3) = 134kips > 120kips (OK) cMeLIy³ eKminRtUvkar column web reinforcement eT. ]TarhrN_ 8>12³ rUbTI 8>39 bgðajBI beam-to-column connection EdlepÞrm:Um:g;emKuN 142 ft − kips. m:Um:g;enHekIteLIgedaysarbnÞúkTMnagefr nigGefr. eKeRbIEdkRbePT A36 nig electrode E 70 . cUreFVIkarGegát colum stiffener nigtMrUvkar web panel-zone reinforcement. snμt;fa Vu = 0 nig Pu < 0.4Py . dMeNaHRsay³ flange force KW M 142(12) Pbf = = = 98.07kips d b − tb 17.90 − 0.525 edIm,IRtYtBinitü flange bending eKeRbI AISC Equation K1-1: ( φRn = φ 6.25t 2 Fyf f ) [ ] = 0.90 6.25(0.560)2 (36) = 63.50kips < 98.07kips (N.G.) dUcenH eKRtUvkar stiffener edIm,IkarBar loacla flange bending. edIm,IRtYtBinitü local web yielding eKeRbIsmIkar 8>6 CMnYseGaykareRbI AISC Equation K1-2: Pbf − (5k + tb )Fywt w Ast = Fyst 340 tMNcakp©it
  • 50.
    T.chhay 98.07 − [5(1.062) + 0.525](36)(0.36 ) = = 0.6236in.2 36 edaysar Ast viC¢man dUcenHeKRtUvkar stiffener mYyKUrEdlman combined cross-sectional area y:agtic 0.623in.2 . RtYtBinitü web crippling strength edayeRbI AISC Equation K1-4: ⎡ 1.5 ⎤ ⎛ N ⎞⎛ t w ⎞ ⎥ Fywt f φRn = φ135t w ⎢1 + 3⎜ ⎟⎜ ⎟ 2 ⎢ ⎝ d ⎠⎜ t f ⎟ ⎥ ⎝ ⎠ ⎥ tw ⎢ ⎣ ⎦ ⎡ ⎛ 0.525 ⎞⎛ 0.360 ⎞ ⎤ 36(0.560 ) = 0.75(135)(0.36)2 ⎢1 + 3⎜ ⎟⎜ ⎟1.5⎥ ⎣ ⎝ 8.25 ⎠⎝ 0.560 ⎠ ⎦ 0.360 = 107.9kips > 98.07kips (OK) eKeRCIserIsTMhM stiffener edayQrelIlkçxNÐEdlpþl;eGayeday AISC Section K1-9, ehIybnÞab; mkeKRtUvRtYtBinitüRkLaépÞmuxkat;EdlTTYl)an. TTwgGb,brmaKW bf t 6.015 0.360 b≥ − w = − = 1.825in. 3 2 3 2 341 tMNcakp©it
  • 51.
    T.chhay RbsinebIeKminGnuBaØateGaybnøay stuffene eTAhYsRCugrbs;søabssrTTwgGtibrmaKW 8.07 − 0.360 b≤ = 3.855in. 2 kMras;Gb,brmaKW tb 0.525 = = 0.2625in. 2 2 sakl,g 3× 5 /16 ³ ⎛5⎞ Ast = 3⎜ ⎟ × 2stiffeners = 1.875in.2 > 0.6236in 2 (OK) ⎝ 16 ⎠ RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratio) b 3 = = 9.6 t st 5 / 16 95 95 = = 15.8 > 9.6 (OK) Fy 36 edaysarEtkartP¢ab;enHmanEtmçag dUcenHeKminRtUvkar full-depth stiffeners eT. dUcenH = 4.125in. yk 4 1 2 in. d 8.25 = 2 2 cMeLIy³ eRbIEdkTMhM 3 × 5 /16 × 4 12 cMnYn 2 bnÞH. ¬kat;RcwbRCugEkgxagkñúgrbs;bnÞHEdkedIm,IeCos vag fillet enARtg;kEnøgEdlsøab nigRTnugrbs;ssrCYbKña. kat;RcwbedaymMu 45o sMrab;TMhM 5 / 8in. ¦. KNnaTwkbnSarsMrab;P¢ab; stiffener eTARTnugssr TMhMGb,brma = 16 in. (AISC Table J2.4, edayQrelIkMras;RTnug) 3 TMhMcaM)ac;sMrab;ersIusþg;KW force resisted by stiffener w= 0.707 L(φFW ) BIsmIkar *>^ kMlaMgEdlRtUvTb;eday stiffener KW Ast Fyst = Pbf − (5k + tb )Fywt w = 98.07 − [5(1.062 ) + 0.525](36 )(0.360 ) = 22.45kips RbEvgEdlGacpSarP¢ab; stiffener eTAnwgRTnugssrKW ⎛ 5⎞ L = ⎜ 4.5 − ⎟ × 2sids × 2stiffeners = 15.5in. ⎝ 8⎠ ¬emIlrUbTI 8>40¦ 342 tMNcakp©it
  • 52.
    T.chhay w= 22.45 0.707(15.5)(31.5) 3 = 0.0650in. < in. 16 TMhMGb,brma ersIusþg;kMlaMgkat;rbs; base metal KW ⎛5⎞ φRn = φFBM t = 0.54 Fy t st = 0.54(36)⎜ ⎟ = 6.075kips / in. ⎝ 16 ⎠ nig ersIusþg;TwkbnSarcaM)ac; ¬sMrab; stiffener mYy¦ = 0.0650(0.707)(31.5)(2) = 2.09kips / in. < 6.075kips / in. (OK) cMeLIy³ yk filler weld 3 /16in. . KNnaTwkbnSarsMrba;P¢ab; stiffener eTAnwgsøabssr TMhMGb,brma = 1 in. (AISC Table J2.4, edayQrelIkMras;søab) 4 lT§PaBTwkbnSarkñúg 1in. = 0.707⎛ 1 ⎞(31.5) = 5.538kips / in. ⎜ ⎟ ⎝4⎠ < 0.54 Fy t st = 0.6075kips / in. (OK) RbEvgEdlmansMrab; = ⎛ 3 − 8 ⎞(2)(2) = 9.5in. ⎜ ⎝ 5 ⎟ ⎠ TMhMcaM)ac;sMrab;ersIusþg;KW force resisted by stiffener 22.45 1 w= = = 0.106in. < in. 0.707 L(φFW ) 0.707(9.5)(31.5) 4 cMeLIy³ yk fillet weld 1/ 4in. . ¬m:Um:g;Gnuvtþn_EdlekIteLIgedaybnÞúkTMnaj ehIyEdlminGac bþÚrTisedAGnuvtþn_)an dUcenHeKGacdak; stiffener Pa¢b;eTAnwgsøabssr Edl stiffener enHTb;søabrg karsgát;rbs;FñwmedaymincaM)ac;pSar b:uEnþkrNIenHmin)anniyayenATIenHeT¦. RtYtBinitüRTnugssrsMrab;kMlaMgkat;TTwg. BIsmIkar *>& P= (M 1 + M 2 ) − V 142(12) u = − 0 = 100.2kips 0.95d b 0.95(17.90) 343 tMNcakp©it
  • 53.
    T.chhay BI AISC Equation K1-9 Rv = 0.60 Fy d c t w = 0.60(36 )(8.25)(0.360 ) = 64.15kips Design strength KW φRv = 0.90(64.15) = 57.74kips < 100.5kips (N.G.) eRbI AISC Equation edIm,IrkkMras;RTnugEdlRtUvakar. edaHRsayrk t w edayKuNPaKyk nigPaKEbgeday φ t w = required doubler plate thickness = 0.625 − 0.360 = 0.265in. sakl,g td = 5 /16in. . TwkbnSarRtUvmanTMhMeGayRtUvKñanwgersIusþg;kMlaMgkat;énkMras; caM)ac;rbs; doubler plate. yk φFBM t d = 0.707 w(φFW ) φFBM t d 0.54(36 )(0.265) b¤ w= 0.707(φFW ) = 0.707(31.5) = 0.231in. yk w = 1/ 4in. BI AISC J2.2b, TMhMTwkbnSarGtibrmaKW 1 5 1 1 td − = − = in. (OK) 16 16 6 4 cMelIy³ double plate 5 /16in. nig fillet weld 1/ 4in eRbI diagonal stiffener eRbI full-depth horizontal stiffeners dUcbgðajenAkñúgrUbTI 8>41 ¬RKan;EtCaCMerIs¦. 344 tMNcakp©it
  • 54.
    T.chhay kMlaMgkat;TTwgEdlTb;eday web reinforcementKW 100.2 − 57.74 = 42.46kips . RbsinebIkMlaMg enHRtUv)anKitCakMub:Usg;kMlaMgtamG½kSedk P enAkñúg stiffener P cosθ = 42.46kips ⎛ db ⎞ ⎟ = tan −1 ⎛ 17.90 ⎞ Edl θ = tan −1 ⎜ ⎜ ⎟ ⎜ ⎝ 8.25 ⎠ ⎟ = 65.26 o ⎝ dc ⎠ 42.46 P= ( tan 65.26 o ) = 101.5kips yk φRn = φAst Fy = 0.9 Ast (36) = 101.5kips bnÞab;mk Ast = 101.5 0.9(36) = 3.13in.2 eRbI stiffener BIr/ 3× 9 /16 enAsgxagRTnug ⎛9⎞ Ast Edlpþl;eGay = 2(3)⎜ ⎟ = 3.38in.2 > 3.13in.2 EdlRtUvkar (OK) ⎝ 16 ⎠ RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratrio): b 3 95 = = 5.3 < = 15.8 (OK) t st 9 / 16 36 KNnaTwkbnSar. RbEvgrbs; diagonal stiffener nImYy²KW dc 8.25 = ( cosθ cos 65.26 o ) = 19.7in. RbsinebIeKpSarenAelIépÞTaMgsgxagrbs; stiffener enaHRbEvgTwkbnSarKW L = 19.7(4 ) = 78.8in. TMhMTwkbnSarEdlcaM)ac;sMrab;ersIusþg;KW P 101.5 w= = = 0.058in. 0.707 L(φFW ) 0.707(78.8)(31.5) eRbITMhMGb,brma 1/ 4in. (AISC Table J2.4) edaysarTMhMEdlcaM)ac;sMrab;ersIusþg;mantMéltUc eyIgnwgGegátemIllT§PaBkñúgkareRbITwknSarEdl minCab;Kña. BI AISC J2.2b RbEvgGb,brma = 4w = 4⎛ 1 ⎞ = 1.0in. b:uEnþvaminRtUvtUcCag 1.5in. ¬1.5in. lub¦ ⎜ ⎟ ⎝ 4⎠ lT§PaB nigKMlatrbs;RkuménTwkbnSarbYnKW ⎛1⎞ 4(0.707 )wL(φFw ) = 4(0.707 )⎜ ⎟(1.5)(31.5) = 33.41kips ⎝4⎠ 345 tMNcakp©it
  • 55.
    T.chhay lT§PaBEdlcaM)ac;kñúg 1in. = 101.75 = 5.152kips / in. 19 . KMlatEdlcaM)ac;rbs;TwkbnSar = 5.152 = 6.48in. 33.41 shear capacity of base metal = 0.54 Fy t w = 0.54(36 )(0.360 ) = 7.00kips / in. lT§PaBrbs;TwkbnSar = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5) ⎜ ⎟ ⎝4⎠ = 5.57 kips / in. < 7.00kips / in. (OK) cMeLIy³ eRbITwkbnSarminCab;Kña 1/ 4in.×1 12 in. EdlmanKMlatBImYyeTAmYy 6in. KitBIG½kS enAelIépÞ nImYy²rbs; diagonal stiffener. dUcEdl)anbgðajBImun eKniymeRbI diagonal stiffener Cag doubler plate b:uEnþsMrab;lkçN³ esdækic©eKKYrEteRbIvaCamYynwgmuxkat;ssrFM. tMélBlkmμCamYynwg doubler plate nig stiffener TaMgGs;GacnwgbEnßmtMéleRcIneTAelIsMPar³sMrab;ssrmuxkat;FM. 8>8> End Plate Connection End plate connection Ca beam-to-column nig beam-to-beam connection Edlmankar eBjniym ehIyRtUv)aneKeRbIcab;taMgBIBak;kNþalTsvtSr_qñaM 1950 mkemøH. rUbTI 8>42 bgðajBI end plate connection BIrRbePTKW³ tMNsamBaØ b¤tMNrgEtkMlaMgkat; (Type PR construction) nig tMNrwg b¤tMNTb;m:Um:g; (Type FR construction). Rigid connection k¾RtUv)anehA mü:ageTotfa extended end plate connection. eKalkarN_rbs;RbePTTaMgBIrKW bnÞHEdkEdlRtUv)anpSarP¢ab;enA xagcugrbs;FñwmRtUv)ancab;P¢ab;eTAnwgssr b¤Fñwmedayb‘ULúg. tMNenHRtUvkarb‘ULúgticCagkartP¢ab; epSgeTotEdlGaceFVIeGaykartMeLIgelOn. sMrab;tMNsamBaØ eKRtUvykcitþTukdak;kñúgkareFVIeGaymanlkçN³ flexible RKb;RKan;edIm,IeFVI eGayFñwmmanmMurgVilenAxagcug. eKGacTTYl)an flexibility enH RbsinebIbnÞHEdkmanTMhMtUc nigesþIg ebIeRbobeFobCamYynwg tMNRbePT fully restrained. Manual of Steel Construction, in Part 9, “Simple Shear Connections,” )anENnaMfa kMras;RtUvsßitenAcenøaH 1 / 4in. nig 3 / 8in. edIm,ITTYl)an flexibility. EpñkenHrbs; Manual k¾bgðajBIeKalkarN_ENnaM nig]TaheN_EdlrYmman reaction capacities sMrab;bnSMCaeRcInénbnÞHEdk nigb‘ULúg. 346 tMNcakp©it
  • 56.
    T.chhay karKNna moment-resisting end plate connections RtUvkarkarkMNt;kMras;bnÞH TMhMTwk bnSar nigkarlMGitBIb‘ULúgCaedIm. karKNnaBITwkbnSar nigb‘ULúgCakarGnuvtþn_nUv traditional analysis procedures. b:uEnþ karKNna kMras;bnÞHKWQrelIlT§plrbs;karBiesaFn_ nig statistical research (Krishnamuthy, 1978). EpñkrgkarTajrbs;tMNKWmaneRKaHfñak; Éb‘ULúgenAEpñkrgkar sgát;mannaTICaGñkrkSatMNeGayenARtg;G½kS. RbsinebImanm:Um:g;sgxag eKRtUvKNnaEpñkrgkar TajTaMgsgxag. viFITUeTAKWxageRkam³ !> kMNt;kMlaMgenAkñúgsøabrgkarTajrbs;Fñwm @> eRCIserIsb‘ULúgEdlcaM)ac;edIm,ITb;Tl;nwgkMlaMgenH nigtMerobvaeGaymanlkçN³sIuemRTIeFobnwgsøabrgkarTaj. RbsinebIm:Um:g;sßitenAsgxag eKRtUveFVIkartMerobdUcKñaenAelIEpñkrgkarsgát;Edr. b‘ULúgRtUvEtmancMnYnRKb;RKan;edIm,ITb;Tl;nwgkMlaMgkat;TTwgEdl)anmkBIRbtikmμFñwm. #> cat;TukEpñkrbs;søabFñwm nigbnÞHEdkEdlenAek,reFVIkarCa tee-shape EdlrgbnÞúkTajEdlGnuvtþeTAelIRTnugrbs;va dUcbgðajenAkñúgrUbTI 8>43. 347 tMNcakp©it
  • 57.
    T.chhay $> eRCIserIsTTwg nigkMras;rbs;søab tee enHedIm,IbMeBjtMrUvkar flexural dUcKñanwgviFIKNna tee hanger ¬emIlEpñk 7>8¦. %> RtYtBinitükMlaMgkat;enAkñúgbnÞHEdk. ^> KNnaTwkbnSar. Manual of Steel Construction (Volume II), bgðajbIviFIsaRsþKNnalMGitCamYynwg]Ta- hrN_enAkñúg Part 10, “Fully Restrained (FR) Moment Connection”. viFIsaRsþkñúgkarKNnarbs; vaRsedogKñanwgGVIEdl)anerobrab;xagelIedaymankarEkrsMrYlxøH eBlxøHeKehAvafa Split-tee method (Krishnamurthy, 1978). GVIEdlxusKña KWCMhanTI $ sMrab;karKNnam:Um:g;Bt;enAkñúgbnÞHEdk. Traditional analysis KitbBa©ÚlTaMg prying forces EdlmanniyayenAkñúgEpñkTI 7>8. sMrab;viFI KNnanaeBlbc©úb,nñ kareRCIserIsb‘ULúg nigkMras;bnÞHEdkminGaRs½ynwgkarBIcarNaBI prying action 348 tMNcakp©it
  • 58.
    T.chhay eT. karKNnam:Um:g;KWQrelIkarsikSa stitisticalanalysis of finite element EdlmankarbBa¢ak;eday kareFVIBiesaFn_. CMhandMbUgenAkñúgviFIsaRsþKNnaKW KNnakMlaMgenAkñúgsøabrgkarTajrbs;Fñwm. Mu Puf = d −t f bnÞab;mk eKeRCIserIsb‘ULúgedIm,ITb;nwgkMlaMgTajenH ehIyeKtMerobvaCaBIrCYreGayman lkçN³sIuemRTIeFobnwgsøabrgkarTajrbs;Fñwm. eKRtUvbEnßmb‘ULúgy:agticBIrenARtg;søabrgkarsgát; sMrab;tMrUvkarrbs;RbtikmμFñwm. cMnYnb‘ULúgEdlRtUvkaredIm,ITb;Tl;nwgRbtikmμFñwmnwgQrelI shear capacity b¤k¾ slip-critical capacity rbs;b‘ULúg EdlGaRs½ynwgRbePTrbs;tMN. RbsinebItMNCa bearing-type eKRtUvRtYtBinitüGnþrkmμénkMlaMgkat; nigkMlaMgTajenAkñúgb‘ULúg. eKmincaM)ac;eFVIkar GegátenH sMrab; clip-critcal connection. m:Um:g;GtibrmaenAkñúg split –tee nwgekItmanenARtg; “load line”, muxkat; 1-1 EdlbgðajenA kñúgrUbTI 8>43 KW M t = F1s Edl F1 = kMlaMgkat;TTwg = P2 uf s = cMgayBI load line eTAcMnucrbt; = e p 2 pe = p f − 0.25d b − 0.707 w BIrUbTI 8>43/ p f CacMgayBIG½kSb‘ULúgeTAsøabFñwm EdlCaTUeTAesμnwgGgát;p©itb‘ULúg db + 1/ 2in. ehIy w CaTMhMTwkbnSar. eKehA p f CacMgayb‘ULúg (bolt distance) ehIy pe CacMgayb‘ULúg RbsiT§PaB (effective bolt distance b¤ effective span). m:Um:g; M t EdlRtUv)anbMElgedayemKuN α m edIm,ITTYl)anm:Um:g;RbsiT§PaB M eu M eu = α m M t Edl α m = C a Cb (A f / Aw )1 / 3 ( pe / d b )1 / 4 Ca = cMnYnefrEdlTak;TgeTAnwglkçN³rbs;sMPar³rbs;b‘ULúg nigbnÞHEdk. Cb = b f / b p bf = TTwgrbs;søabFñwm 349 tMNcakp©it
  • 59.
    T.chhay bp = TTwgrbs; end plate [Krishnamurthy (1978) )anENnaMnUvTTwgRbsiT§PaBGtibrma b f + 2 w + t p Edl t p CakMras;rbs; end plate. Manual ENnaMTTwgCak;EsþgGtibrma b f + 1in. ] Af =RkLaépÞsøabFñwm Aw = RkLaépÞRTnugFñwmEdlenAcenøaH fillet cMnYnefr Ca CaGnuKmn_EtnwglkçN³rbs;sMPar³ ehIyRtUv)anerobCataragsMrab;cMNat;fñak; TUeTArbs; structural steel nig b‘ULúgersIusþg;x<s;. taragenHRtUv)anbgðajenAkñúg Table 10-1 enAkñúg Part 10 én Manual. Table 10-2 eGaynUvtMél A f / Aw sMrab;rUbragFñwmEdlRtUv)aneRbICaTUeTA. enAeBlEdleKKNnam:Um:g; M eu rYcehIy eKGacdak;vaeGayesμInwg design strength enaHeKnwg GacrkkMras;bnÞHEdkGtibrma t p pre EdlcaM)ac;. sMrab;muxkat;ctuekaNEkgEdlekageFobnwgG½kStUc (minor axis) enaH design strength KW ⎛ b pt 2 ⎞ ⎜ p req ⎟ φb M n = φb M p = φb ZF y = 0.90⎜ ⎟ Fy ⎜ 4 ⎟ ⎝ ⎠ edayeGaysmIkarenHesμInwgm:Um:g;emKuN eKTTYl)ankMras;bnÞHEdk ⎛ b pt 2 ⎞ ⎜ p pre ⎟ 0.90⎜ ⎟ Fy = M eu ⎜ 4 ⎟ ⎝ ⎠ dUcenH t p req = 4 M eu 0.90b p Fy eKGacP¢ab;søabrgkarTajrbs;FñwmeTAnwgbnÞHEdkeday full penetration groove weld b¤k¾ eday filler weld EdlpSarBT§½CMuvijsøabTaMgGs;. kMlaMgenAkñúgsøabTaMgGs;RtUv)anbegáItenAelIEpñk rgkarTaj. eKKYrpSarRTnugenAépÞsgçagCamYynwg fillet welds EdlmanlT§PaBTb;Tl;nwgRbtikmμFñwm. eKRtUveKarBnUveKalkarN_ENnaMbEnßmxageRkamedIm,IbMeBjkarsnμt;sMrab;GnuvtþnUvviFIKNnaxagelI. !> TaMgbnÞHEdk nigEdkFñwmRtUvman yield stress dUcKñaKw Fy @> Ggát;p©itb‘ULúg db minRtUvFMCag 1 12 in. = 38mm #> b‘ULúgRtUvEtrgkarTajEdleKarBtam AISC Table J3.1. $> cMgayRCugEKmbBaÄrKYrmantMélRbEhl 1 3 4 db b:uEnþminKYrtUcCag 1 1 2 db 350 tMNcakp©it
  • 60.
    T.chhay ]TahrN_ 8>13³ KNnaend plate connection sMrab;Fñwm W18× 35 . tMNenHRtUvmanlT§PaBkñúg karbBa¢Únm:Um:g;emKuN 173 ft − kips nigkMlaMgkat;TTwgemKuN 34kips . eRbIEdk A36 / electrode E70 XX nig slip-critical bolts A325 . dMeNaHRsay³ kMlaMgsøabKW Mu 173(12) Puf = = = 120.2kips d − t f 17.7 − 0.425 sakl,gb‘ULúgBIrCYrEdlkñúgmYyCYrmanBIrRKab;enAsøabxagelI nigb‘ULúgBIrRKab;enAsøabxageRka Edl b‘ULúgTaMgGs;manR)aMmYyRKab;. Design strength rgkMlaMgTajsMrab;b‘ULúgmYyRKab;KW φRn = 0.75(90) Ab ehIyRkLaépÞmuxkat;EdlcaM)ac;sMrab;b‘ULúgmYyKW Required φRn 120.2 / 4 Ab = = = 0.445in.2 0.75(90 ) 0.75(90) cMeLIy³ eRbIb‘ULúg A325 Ggát;p©it 7 / 8in. ¬ Ab = 0.6013in.2 ¦ eKGackMNt;kMlaMgkat;GtibrmaEdlRTedaytMNBIkarBicarNa slip-critical strength rbs;b‘ULúg ¬EdlnwgmantMéltUcCag shear strength¦. sMrab;b‘ULúgR)aMmYyRKab; φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(6)(1) = 87.3kips > 34kips (OK) ¬eKmindwgkMras;rbs;søabssr ehIyeKminTan;sÁal;kMras;rbs; end plate dUcenHeKminGaceFVIkarGegát bearing strength enAeBlenH)aneT. b:uEnþ enAeBlEdlRKb;EpñkEdlRtUvtP¢ab;TaMgGs;RtUv)anKNna enaHeKGacRtYtBinitü bearing strength¦. edaysarvaCa slip-critical connection enaHeKminRtUvkar RtYtBiniüGnþrkmμénkMlaMgkat; nigkMlaMgTajeT. cMeLIy³ eRbIbU‘LúgR)aMmYy EdlbYnRtUv)antMerobsIuemRTIKñaeFobnwgsøabrgkarTaj nigBIreTotsßitenA Rtg;søabrgkarsgát;. sMrab; flange weld RbEvgEdlGacpSar)anKW L = 2b f + 2t f − t w = 2(6.0 ) + 2(0.425) − 0.30 = 12.55in. TMhMTwkbnSarEdlRtUvkarKW Puf 120.2 w= = = 0.4301in. 0.707 L(φFw ) 0.707(12.55)(31.5) eTaHbICaeKminTan;sÁal;kMras;rbs; end plate k¾eday k¾TMhMTwkbnSarGb,brmaEdl)anBI AISC Table J2.4 minEdlFMCag 5 / 16in. dUcenH 0.43in. EdlRtUvkarsMrab;ersIusþg;nwgmantMélFMCag. 351 tMNcakp©it
  • 61.
    T.chhay cMeLIy³ eRbI filletweld 7 /16in. sMrab; end plate/ yk 1 p f = db + = 0.875 + 0.500 = 1.375in. 2 pe = p f − 0.25d b − 0.707 w ⎛7⎞ = 1.375 − 0.25(0.875) − 0.707⎜ ⎟ = 0.8470in. ⎝ 16 ⎠ sMrab;TTwgbnÞHEdk/ yk bq = b f + 1 = 6.00 + 1 = 7.00in. ⎛ Puf ⎞⎛ pe ⎞ ⎛ 120.2 ⎞⎛ 0.8470 ⎞ bnÞab;mk M t = F1s = ⎜ ⎟ ⎜ 2 ⎟⎜ 2 ⎟ = ⎜ 2 ⎟⎜ 2 ⎟ = 25.45in. − kips ⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠ C a = 1.36 (Table 10-1, Part 10 of the Manula) bf 6.00 Cb = = = 0.9258 bq 7.00 Af = 0.504 (Table 10-2, Part 10 of the Manual) Aw 1/ 3 1/ 4 ⎛ Af ⎞ ⎛ pe ⎞ α m = C a Cb ⎜ ⎜A ⎟ ⎟ ⎜ ⎟ ⎜d ⎟ ⎝ w⎠ ⎝ b⎠ = 1.36(0.9258)(0.504 )1 / 3 (0.8470 / 0.875)1 / 4 = 0.9939 M eu = α m M t = 0.9939(25.45) = 25.29in. − kips 4M eu 4(25.29) t p req = = = 0.668in. 0.90b p Fy 0.90(7.00)(36) cMeLIy³ ykkMras;bnÞHEdk 3 / 4in. TTwgbnÞHEdkRbsiT§PaBGtibrmaEdlENnaMeday Krishnamurthy (1978) KW ⎛7⎞ 3 b f + 2 w + t p = 6.00 + 2⎜ ⎟ + = 7.62in. > 7.00 (OK) ⎝ 16 ⎠ 4 RtYtBinitükMlaMgkat;. kMlaMgkat;enAkñúgbnÞHEdkKW Puf 120.2 F1 = = = 60.1kips 2 2 BI AISC J5, ersIusþg;kMlaMgkat;KW (shear strength) KW φRn = 0.90(0.60 Ag F y ) = 0.90(0.60)⎜ 7 × ⎟(36) = 102kips > 60.1kips ⎛ 3⎞ (OK) ⎝ 4⎠ 352 tMNcakp©it
  • 62.
    T.chhay edIm,ITTYl)an shear strengthrbs;RTnugdUcKña ersIusþg;TwkbnSarEdlcaM)ac; ¬TwkbnSarBIrCYrEdlenA sgçagRTnug¦ KW φvVn 103 = = 5.819kips / in. d 17.7 TMhMTwkbnSarEdlRtUvkar 5.819 / 2 w= = 0.131in. 0.707(31.5) kMNt;TMhMTwkbnSarEdlcaM)ac;edIm,ITb;Tl;nwgkarBt;enAkñúgRTnug. enAeBlEdlm:Um:g;Bt;eFVIkardl;m:U m:g;)øasÞic kugRtaMgenAkñúgRTnugesμInwg yield stress Fy ehIybnÞúkkñúgmYyÉktþaRbEvgrbs;TwkbnSarKW φb (Fy × t w × 1) = 0.90(36)(0.300) = 9.720kips / in. bnÞúkkñúgmYyÉktþarbs;TwkbnSarmYyCYrKW 9.72 / 2 = 4.86kips / in. ehIyTMhMTwkbnSarEdlRtUvkarKW 4.860 w= = 0.2182in. > 0.131in. 0.707(31.5) TMhMTwkbnSarGb,brmaKW 1/ 4in. (AISC Table J2.4, edayQrelIkMras;rbs;bnÞHEdk). cMeLIy³ eRbI fillet weld 1/ 4in. ¬karKNnaRtUv)ansegçbenAkñúgrUbTI 8>44¦ Column Web Stiffener Consideration eKbegáIt AISC Equation K1-2 EdlkarBar web yeilding rbs;ssrenAkñúgtMN beam-to- column connection enAeBlEdleKeRbI end plates. smIkarenHKWQrelIkarkMNt;kugRtaMgenAelImux kat;rbs;RTnugEdlbegáIteLIgedaykMras;rbs;va nigRbEvg tb + 5k dUcbgðajenAkñúgrUbTI 8>45 b. 353 tMNcakp©it
  • 63.
    T.chhay eKnwgTTYl)anRkLaépÞFMCag enAeBlEdlbnÞúkRtUv)anbBa¢Úntamry³ endplate. RbsinebIeKKitTwk bnSar beam flange-to-plate nigbnÞúkRtUv)ansnμt;EckedayCMerl 1 : 1 tamry³bnÞHEdk RbEvgRTnug EdlrgbnÞúknwgesμInwg tb + 2w + 2t p + 5k . edayQrelIkarsikSaRsavRCavedaykarBiesaFn_ (Hendrick and Murray, 1984) tYr 5k GacRtUv)anCMnYseday 6k Edlpþl;lT§plenAkñúgsmIkar xageRkamsMrab; yielding strength rbs;RTnug³ [( φRn = φ 6k + tb + 2w + 2t p Fywt w )] Edl TMhMTwkbnSar w= elIsBIenH eKRtUveFVIkarGegátBI local flange bending ning web stability (web crippling b¤ compression buckling). Part 10 of the Manual maneKalkarN_ENnaMBIkarKit local flange bending. 8>9> esckþIsnñidæan Concluding Remarks enAkñúgeyIgsgát;F¶n;elIkarKNna nigkarviPaKBIb‘ULúg nigTwkbnSareRcInCag connection fitting dUcCa framing angle nig beam seats. kñúgkrNICaeRcIn karpþl;eGaysMrab; bearing enAkñúg tMNedayb‘ULúg nig base metal/ nigsMrab;kMlaMgkat;enAkñúgtMNedayTwkbnSar nwgFananUvPaBRKb; RKan;rbs;ersIusþg;rbs;EpñkTaMgenH. b:uEnþeBlxøH eKRtUvkarGegátkMlaMgkat;bEnßm. enAeBlxøHeTot eKRtUvEtBicarNaBI direct tensiion nigm:Um:g;Bt;. Flexibility rbs;tMNCakarBicarNad¾sMxan;mYyeTot. sMrab; shear connection (simple framing), EpñkEdlP¢ab;RtUvman flexible RKb;RKan;edIm,IGnuBaØateGaytMNvileRkamGMeBIrbs;kMlaMg. 354 tMNcakp©it
  • 64.
    T.chhay b:uEnþ tMNRbePT FR(rigid connections) KYrEtrwgRKb;RKan;EdlmMurgVilrbs;Ggát;EdlRtUv)anP¢ab;Gac rkSanUvtMélGb,brma. CMBUkenHRKan;EtENnaMBIkarKNnatMNenAkñúgeRKOgbgÁúMEdkEtb:ueNÑaH edaymin)anniyaylMGit Gs;esckþIeT. Blodgett (1966) KWCaRbPBB½t’mand¾manRbeyaCn_EdlniyaylMGitBItMNedaypSar. eTaHbICavaRtUv)ane)aHBum<yUrbnþicEmn Etvapþl;nUvkaENnaMEdlmanRbeyaCn_CaeRcIn. dUcKña Detaling for Stell Construction (AISC, 1983) CaRbPaBEdlmanB½t’manEdlmanGtßRbeyaCn_sMrab;Gñk KNna nigGñklMGitkartP¢ab;. 355 tMNcakp©it