More Related Content
PDF
Xix introduction to prestressed concrete PDF
Iii.partial loss of prestress PDF
PDF
Viii. prestressed compression and tension member PDF
Appendix b structural steel design based on allowable stress PDF
Vii development length of reinfocing bars PDF
V. shear and torsional strength design PDF
V alternative design methods Viewers also liked
PDF
Xi members in compression and bending PDF
12. displacement method of analysis moment distribution PDF
9. deflection using energy method PDF
Vi. indeterminate prestressed concrete structures PDF
PDF
10. analysis of statically indeterminate structures by the force method PDF
PDF
PDF
Construction design drawing practice PDF
Xii.lrfd and stan dard aastho design of concrete bridge PDF
PDF
X. connections for prestressed concrete element PDF
PDF
PDF
PDF
PDF
PDF
PDF
Computer aided achitecture design PDF
More from Chhay Teng
PDF
Rebar arrangement and construction carryout PDF
PDF
Advance section properties_for_students PDF
PDF
Composition of mix design PDF
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines PDF
1 dimension and properties table of w shapes PDF
Technical standard specification auto content PDF
PDF
8 dimension and properties table of equal leg angle PDF
5 dimension and properties table l shape PDF
4 dimension and properties table c shape PDF
9 dimension and properties table of upe PDF
2 dimension and properties table of s shape PDF
10 dimension and properties table upn PDF
7 dimension and properties table ipn PDF
3 dimension and properties table of hp shape PDF
6 dimension and properties table of ipe shape PDF
Representative flower of asian countries PDF
Available steel-section-list-in-cam 8.eccentric connections
- 1.
T.chhay
VIII. tMNcakp©it
Eccentric Connections
8>1> ]TahrN_sMrab;tMNcakp©itExemples of Eccentric Connections
tMNcakp©itCatMNmYyEdlkMlaMgpÁÜbminkat;tamTIRbCMuTMgn;rbs;eRKOgP¢ab; b¤TWkbnSar. Rb
sinebItMNmanbøg;sIuemRTI eKeRbITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;rbs;eRKOgP¢ab; b¤TwkbnSarCacM
nuceKal (reference point) ehIycMgayEkgBIExSskmμrbs;kMlaMgeTATIRbCMuTMgn;RtUv)aneKehAfa cM
Nakp©it. eTaHbICatMNCaeRcInGacrgnUvkMlaMgcakp©it EtkñúgkrNICaeRcIncMNakp©itTaMgenaHmantMél
tUcEdlGacecal)an.
kartP¢ab; framed beam EdlbgðajenAkñúgrUbTI 8>1 a CaRbePTmYyéntMNcakp©it. kart
P¢ab;enH eTaHCakñúgTMrg;tP¢ab;edayb‘ULúg b¤edaypSark¾eday vaRtUv)aneKeRbICaTUeTAsMrab;tP¢ab;FñwmeTA
ssr. eTaHbICacMNakp©itkñúgtMNRbePTenHGacecal)ank¾eday EtvaRtUv)anykmkbgðajenATIenH.
vamankartP¢ab;BIrepSgKñaKW kartP¢ab;BIEdkEkgeTAEdkFñwm nigkartP¢ab;EdkEkgeTAEdkssr. kart
P¢ab;TaMgenHbgðajBItMNcakp©iteKalBIrRbePT³ tMNcMNakp©itEdlbegáItEtkMlaMgkat;TTwgenAkñúg
eRKOgP¢ab; b¤TwkbnSar nigtMNcMNakp©itEdlbegáItTaMgkMlaMgkat;TTwg nigkMlaMgTaj.
RbsinebIeNBicarNaFñwm nigEdkEkgdac;edayELkBIssr dUcEdlbgðajenAkñúgrUbTI 8>1 b
enaHvabgðajy:asc,as;fa Rbtikmμ R eFVIGMeBIcMNakp©it e BITIRbCMuTMgn;rbs;RkLaépÞrbs;eRKOgP¢ab;enA
292 tMNcakp©it
- 2.
T.chhay
kñúgRTnugFñwm. dUcenHeRKOgP¢ab;TaMgenHrgTaMgkMlaMgkat;TTwg nigm:Um:g;KUr(couple) EdlsßitenAelI
rbs;tMN ehIybegáItCakugRtaMgkMlaMgkat;rmYl (torsional shearing stress).
RbsinebIssr nigEdkEkgRtUv)anpþac;ecjBIFñwm dUcbgðajenAkñúgrUbTI 8>3 c enaHeyIgeXIj
y:agc,as;fa eRKOgP¢ab;enAkñúgsøabssrrgnRbtikmμ R EdlmanGMeBIenAcMNakp©it e BIbøg;rbs;eRKOg
P¢ab; edaybegáIt couple dUcBImun. b:uEnþ kñúgkrNIenH bnÞúkminsßitenAkñúgbøg;rbs;eRKOgP¢ab; dUcenH
couple eFVIeGayEpñkxagelIrbs;tMNrgkugRtaMgTaj ehIyEpñkxageRkamrgkugRtaMgsgát;. dUcenH
eRKOgP¢ab;enAEpñkxagelIbMputrbs;tMNrgTaMgkMlaMgkat;TTwg nigkMlaMgTaj.
eTaHbICa eyIgeRbIkartP¢ab;edayb‘ULúgenATIenHedIm,Ibgðajk¾eday k¾kartP¢ab;edaykarpSar
Gacbgðajy:agsmBaØBIkarrgEtkMlaMgkat;TTwg b¤kMlaMgkat;TTwgrYmTaMgkMlaMgTaj.
RbtikmμbnÞúkemKuNGtibrmasMrab;tMN framed beam epSg²RtUv)aneGayenAkñúg Table 9-2
rhUtdl; 9-12 in Part 9 of the Manual, “Simple Shear and PR Moment Connections” (Volume
II). cMNap©itEdltUcEmnETnsMrab;tMNenHGacecal)an ehIyeKBicarNaEtkMlaMgkat;TTwgEtb:ueNÑaH.
8>2> tMNcMNakp©itedayb‘ULúg³ EtkMlaMgkat;
Eccentric Bolted Connections: Shear only
rUbTI 8>2 EdlbgðajBI column bracket connection Ca]TahrN_BItMNedayb‘ULúgEdlrg
kMlaMgkat;TTwgcakp©it. eKmanviFIBIrsMrab;edaHRsaybBaðaenH³ traditional elastic analysis ¬viPaK
eGLasÞicburaN¦ nigviFIEdlmanlkçN³suRkitCag ¬b:uEnþsμúKsμajCag¦ Ca ultimate strength
analsysis ¬viPaKersIusþg;cugeRkay¦. viFITaMgBIrenHnwgRtUv)anbgðaj.
293 tMNcakp©it
- 3.
T.chhay
Elastic Analysis
enAkñúgrUbTI 8>3 a, RkLaépÞkMlaMgkat;TTwgrbs;eRKOgP¢ab; nigbnÞúkRtUv)anbgðajdac;eday
ELkBIssr nig bracket plate. eKGacdak;bnÞúkcMNakp©it P CamYynwgbnÞúkdUcKñaEdlmanGMeBIRtg;
TIRbCMuTMgn;rYmCamYynwg couple, M = Pe Edl e CacMNakp©it. RbsinebIeyIgeFVIEbbenH bnÞúknwgman
GMeBIcMp©it ehIyeKsnμt;faeRKOgP¢ab;nImYy²Tb;Tl;nUvcMENkbnÞúkesμI²Kña KW pc = P / n Edl n CacMnYn
eRKOgP¢ab;. kMlaMgeRKOgP¢ab;Edl)anBI couple Gacrk)anedaysnμt;fakugRtaMgkMlaMgkat;TTwgenAkñúg
eRKOgP¢ab;CalT§plrbs; torsion énmuxkat;EdlekItBIRkLaépÞmuxkat;rbs;eRKOgP¢ab;. RbsinebI
eyIgeFVIkarsnμt;EbbenH kugRtaMgkMMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²GacRtUv)anrkBIrUbmnþkMlaMgrmYl
fv =
Md
J
¬*>!¦
Edl d = cMgayBITIRbCMuTMgn;rbs;RkLaépÞeTAcMnucEdlkugRtaMgkMBugRtUv)ankMNt;
J = m:Um:g;niclPaBb:UElrba;RkLaépÞeFobTIRbCMuTMgn;
ehIykugRtaMg f v EkgeTAnwg d . eTaHbICarUbmnþkMlaMgrmYlGnuvtþn_)anEtcMeBaHragsIuLaMg EteKeRbIva
enATIenHedIm,IsnSMsMéc edaysar yielding stress mantMéLFMCagkugRtaMgBitR)akd.
RbsinebIeKeRbIRTwsþIbTGkS½Rsb (parallel-axis theorem) ehIyeKecalm:Um:g;niclPaBb:UElr
énRkLaépÞeFobG½kSTIRbCMuTMgn;rbs;va enaHeKGackMNt; J sMrab;RkLaépÞsrubKW
294 tMNcakp©it
- 4.
T.chhay
J = ∑ Ad 2 = A ∑ d 2
edayRKb;eRKOgP¢ab;manRkLaépÞ A dUcKña. enaHsmIkar *>! GacRtUv)ansresrCa
Md
fv =
A∑ d 2
ehIykMlaMgkat;enAkñúgeRKOgP¢ab;nImYy²EdlekIteLIgeday couple KW
Md Md
Pm = Af v = A =
A∑ d 2 ∑d2
dUcenHbgÁúMkMlaMgkat;TTwgTaMgBIrEdl)ankMNt;RtUv)anbUkbEnßmedaybBaÄredIm,ITTYl)ankMlaMgpÁÜb P
dUcbgðajenAkñúgrUbTI 8>3 b EdleyIgykeRKOgP¢ab;enAxagsþaMEpñkxageRkameKbMputmkbgðaj. enA
eBlEdleKkMNt;)ankMlaMgpÁÜbFMCageKbMput TMhMeRKOgP¢ab;k¾RtUv)aneRCIserIsedIm,ITb;Tl;kMlaMgenaH.
eKminGaceFVIkarGegátedIm,IrkeRKOgP¢ab;EdleRKaHfñak;CaeKeT KWeKRtUveFVIkarKNnaCatMélelx.
CaTUeTA vamanlkçN³gayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg. sMrab;
eRKOgP¢ab;nImYy² bgÁúMkMlaMgedk nigbgÁúMkMlaMgQrEdl)anBIkMlaMgkat;TTwgedaypÞal;KW
pcx = x
P
n
nig pcy = Pny
Edl Px nig Py CabgÁúMkMlaMgtamTis x nigTis y rbs;kMlaMgsrub P dUcEdl)anbgðajenAkñúgrUbTI
8>4. eKGacrkbgÁúMkMlaMgedk nigQrEdlekIteLIgedaycMNakp©itdUcxageRkam.
cMgayBITIRbCMuTMgn;rbs;tMNeTAeRKOgP¢ab;nImYy²
(
∑ d 2 = ∑ x2 + y2 )
Edl cMnucrYmrbs;RbBn§½kUGredaenKWCaTIRbCMuTMgn;énRkLaépÞkMlaMgkat;rYmrbs;eRKOgP¢ab;. kMlaMgpÁÜb
tamTis x rbs; pm KW³
295 tMNcakp©it
- 5.
T.chhay
y y Md y Md My
p mx =
d
pm = =
(
d ∑ d 2 d ∑ x2 + y2
=
) (
∑ x2 + y2 )
dUcenH pmy = Mx
(
∑ x2 + y2 )
ehIykMlaMgeRKOgP¢ab;srubKW
p= (∑ p x )2 + (∑ p y )2
Edl ∑ p x = pcx + p mx
∑ p y = pcy + p my
RbsinebI P ¬bnÞúkEdlGnuvtþeTAelItMN¦ CabnÞúkemKuN enaHkMlaMg p enAelIeRKOgP¢ab;Ca bnÞúkem
KuNedIm,ITb;Tl;nwg shear nig bearing EdlCa design strength EdlRtUvkar.
]TahrN_ 8>1³ kMNt;kMlaMgrbs;eRKOgP¢ab;EdleRKaHfñak;enAkñúg bracket connection Edl)anbgðaj
enAkñúgrUbTI 8>5.
dMeNaHRsay³ TIRbCMurbs;RkumeRKOgP¢ab;GacRtUv)anrkedayeRbIG½kSedkkat;tameRkam nigedayGnuvtþ
eKalkarN_m:Um:g;
2(5) + 2(8) + 2(11)
y= = 6in.
8
bgÁúMkMlaMgQr nigkMlaMgedkKW
296 tMNcakp©it
- 6.
T.chhay
Px =
5
1
(50) = 22.63kips ← nig Py = 25 (50) = 44.72kips ↓
edayeyageTAtamrUbTI 8>6 a, eyIgGacKNnam:Um:g;rbs;bnÞúkeFobTIRbCMuTMgn;³
M = 44.72(12 + 2.75) − 22.36(14 − 6 ) = 480.7in. − kips ¬RsbRTnicnaLika¦
rUbTI 8>6 b bgðajBITisedArbs;bgÁúMkMlaMgb‘ULúg nigTMhMénbgÁúMkMlaMgb‘ULúgEdlRtUvKñaEdlekIteLIg
edaym:Um:g;KUr (couple). edayeRbITisedATaMgenH nigTMhMEdlRtUvKñaCakarnaMpøÚvEdlkMlaMgTaMgenaH
RtUv)anbUktamc,ab;RbeLlURkam. eyIgGacsnñidæan)anfaeRKOgP¢ab;xagsþaMEpñkxageRkameKbMput
nwgmankMlaMgpÁÜbFMCageKbMput.
bgÁúMkMlaMgedk nigbBaÄrrbs;eRKOgP¢ab;nImYy²Edl)anBIkMlaMgcMp©itKW
= 2.795kips ← nig pcy =
22.36 44.72
pcx = = 5.590kips ↓
8 8
sMrab; couple
297 tMNcakp©it
- 7.
T.chhay
( ) [ ]
∑ x 2 + y 2 = 8(2.75)2 + 2 (6)2 + (1)2 + (2)2 + (5)2 = 192.5in 2
My 480.7(6)
p mx =
(
∑ x2 + y2
=
) 192.5
= 14.98kips ←
Mx 480.7(2.75)
∑ (x 2 + y 2 )
p my = = = 6.867kips ↓
192.5
∑ p x = 2.795 + 14.98 = 17.78kips ←
∑ p y = 5.590 + 6.867 = 12.46kips ↓
P= (17.78)2 + (12.46)2 = 21.7 kips ¬emIlrUbTI 8>6 c¦
cMeLIy³ kMlaMgb‘ULúgEdleRKaHfñak;KW 21.7kips . karGegátBITMhM nigTisedArbs;bgÁúMkMlaMgedk
nigbBaÄrbBa¢ak;fakarsnñidæanfaeRKOgP¢ab;Edl)aneRCIserIsBitCamaneRKaHfñak;Emn.
Ultimate Strength Analysis
viFIEdlerobrab;BIxagmuxmanlkçN³gayRsYlkñúgkarGnuvtþn_ b:uEnminsuRkit. kñúgkarviPaK
KW)ansnñidæanfaTMnak;TMngbnÞúk-kMhUcRTg;RTayrbs;eRKOgP¢ab;manlkçN³smamaRt ¬CabnÞat;¦ ehIy
fa yield stress minRtUvFM. karBiesaFn_bgðajfavaminEmnCakrNI ehIyfaeRKOgP¢ab;nImYy²minman
shear yield stress BitR)akdeT. viFIsaRsþEdlBN’naenATIenHkMNt; ultimate strength rbs;tMN
edayeRbITMnak;TMngminsmamaRtbnÞúk-kMhUcRTg;RTayEdlkMNt;edaykarBiesaFn_ sMrab;eRKOgP¢ab;
nImYy².
karsikSaedaykarBiesaFn_EdlraykarN_enAkñúg Crawford and Kulak (1971) edayeRbI
b‘ULúgRbePT bearing A325 Ggát;p©it 3 / 4in. nigEdkbnÞH A36 b:uEnþlT§plGaceRbIsMrab;b‘ULúg
A325 EdlmanTMhMepSg²CamYynwgEdkRbePTepSg²CamYynwglT§pllMeGogtictYc. viFIenHnwgpþl;
nUvlT§pllMeGogenAeBleRbICamYyb‘ULúg slip-critical nigCamYyb‘ULúg A490 (AISC, 1994).
kMlaMgb‘ULúgEdlRtUvnwgkMhUcRTg;RTay Δ KW
(
R = Rult 1 + e − μΔ )λ
(
= 74 1 − e10Δ )0.55 ¬*>@¦
Edl Rult = kMlaMgkat;TTwgrbs;b‘ULúgenAeBldac; = 74kips = 330MPa
e = eKalrbs;elakenEB = 2.718
μ = emKuNkat;bnßy = 10
298 tMNcakp©it
- 8.
T.chhay
μ= emKuNkat;bnßy = 0.55
Ultimate strength rbs;tMNKWQrelIkarsnμt;dUcxageRkam³
!> enAeBldac; RkumeRKOgP¢ab;vilCMuvij instantaneous center (IC).
@> kMhUcRTg;RTayrbs;ERKOgP¢ab;mYy²smamaRteTAnwgcMgayBI IC nwgeFVIGMeBIEkgeTAkaMén
rgVil.
#> eKGacTTYl)anlT§PaBrbs;tMNenAeBlEdl ultimate strength rbs;eRKOgP¢ab;enAq¶aybM
putBI IC. ¬rUbTI 7>8 bgðajBIkMlaMgb‘ULúgCakMlaMgTb;Tl;EdleFVIGMeBIRbqaMgnwgkMlaMg
Gnuvtþn_¦.
$> EpñkEdlRtUvP¢ab;RtUvEtrwg.
Cavi)akénkarsnμt;TIBIr kMhUcRTg;RTayrbs;eRKOgP¢ab;nImYy²KW
Δ=
r
Δ max =
r
(0.34)
rmax rmax
Edl cMgayBI IC eTAeKOgP¢ab;
r=
rmax = cMgayeTAeRKOgP¢ab;EdlenAq¶aybMput
Δ max = kMhUcRTg;RTayrbs;eRKOgP¢ab;q¶aybMputenA ultimate = 0.34in. ¬EdlkMNt;eday
karBiesaFn_¦
CamYynwg elastic analysis, vamanPaBgayRsYlCagkñúgkareFVIkarCamYynwgbgÁúMkMlaMgctuekaNEkg b¤
Ry = R
x
r
b¤ Rx = ry R
299 tMNcakp©it
- 9.
T.chhay
Edl x nigy CacMgayedk nigcMgaybBaÄrBI instantaneous center eTAeRKOgP¢ab;. enAxN³eBl
dac; lMnwgRtUv)anrkSa ehIysmIkarlMnwgbIxageRkamRtUv)anGnuvtþeTAelIRkumeRKOgP¢ab; ¬eyageTAelI
rUbTI 8>7¦³
m
∑ Fx = ∑ (R x )n − Px = 0 ¬*>#¦
n =1
m
M IC = P(ro + e ) − ∑ (rn × Rn ) = 0 ¬*>$¦
n =1
ehIy ∑ Fy = ∑(R y )n − Py = 0
m
¬*>%¦
Edl Gnu)at n kMNt;nUveRKOgP¢ab;mYy² nig m CacMnYnsrubrbs;eRKOgP¢ab;. viFIsaRsþTUeTAKWsnμt;TI
taMg instantaneous center bnÞab;mkkMNt;tMélRtUvKñarbs; P EdlbMeBjsmIkarlMnwg. RbsinebI
GBa©wgEmn TItaMgenHKWRtwmRtUv ehIy P CalT§PaBrbs;tMN. viFIsaRsþCak;lak;KWdUcxageRkam³
!> snμt;tMélsMrab; ro .
@> edaHRsayrk P BIsmIkar *>$.
#> CMnYs ro nig P eTAkñúgsmIkar *># nig *>%.
$> RbsinebIsmIkarTaMgenaHRtUv)anbMeBjCamYynwgkMrwtlMeGogEdlGacTTYlyk)an karviPaK
enHRtUv)anbBa©b;. EtebImindUecñaHeT eKRtUveFVIkareRCIserIstMélsakl,g ro fμI
ehIyeKRtUveFVIkarKNnaeLIgvij.
sMrab;krNITUeTAénbnÞúkbBaÄr smIkar *># nwgRtUv)anbMeBjedaysVy½Rbvtþ. edIm,IPaBgay
RsYl nigkMueGay)at;bg;»PasPaB eyIgBicarNaEtkrNIenH. Et eTaHbICamYykarsnμt;enH karKNna
sMrab; trial problem CaeRcInmanlkçN³lM)ak EdlRtUvkarCMnYykMuBüÚT½rCacaM)ac;. Epñk (B) rbs;]Ta-
hrN_ 8>2 RtUv)aneFVIkarCamYynwgCMnYyBI standard spreadsheet program sMrab; personal
computers.
]TahrN_ 8>2³ Bracket connection EdlbgðajenAkñúgrUbTI 8>8 RtUvRTkMlaMgemKuNcakp©it 53kips .
tMNRtUv)anKNnaedayeGaymanb‘ULúgBIrCYrQr EdlkñúgmYyCYr²manb‘ULúg 4 RKab; Etb‘ULúgmYyRKab;
RtUv)andkecaledayKμanectna. RbsinebIeKeRbIb‘ULúg bearing-type A325 EdlmanGgát;p©it 7 / 8in.
etItMNenHmanlkçN³RKb;RKan;b¤Gt;? snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. eRbIEdk A36 nigGnuvtþ
nUvkarviPaKxageRkam³ (a) elastic analysis; (b) ultimate strength analysis.
300 tMNcakp©it
- 10.
T.chhay
dMeNaHRsay³ a. Elasticanalysis. sMrab;RbBn§½kUGredaenEdlmanKl;enARtg;p©itrbs;b‘ULúgxag
eRkamEpñkxageqVg ¬rUbTI 8>9¦
2(3) + 2(6 ) + 1(9)
y= = 3.857in.
7
3(3)
x= = 1.286in.
7
( )
∑ x 2 + y 2 = 4(1.286)2 + 3(1.714)2 + 2(3.857 )2 + 2(0.857 )2 + 2(2.143)2 + 1(5.143)2 = 82.29in.2
e = 3 + 5 − 1.286 = 6.714in.
M = Pe = 53(6.714 ) = 355.8in. − kips ¬RsbRTnicnaLika¦
53
pcy = = 7.571kips ↓ pcx = 0
7
BITisedA nigTMhMEdlRtUvKñaEdlbgðajenAkñúgrUbTI 8>9 b‘ULúgeRkameKEpñkxagsþaMRtUv)ancat;TukfaCa
b‘ULúgEdlmaneRKaHfñak;CageK
My 355.8(3.857 )
p mx =
(∑ x2 + y2 ) =
82.29
= 16.68kips ←
Mx 355.8(1.714 )
∑ (x 2 + y 2 )
Pmy = = = 7.411kips ↓
82.29
∑ p x = 16.68kips
∑ p y = 7.571 + 7.411 = 14.98kips
p= (16.68)2 + (14.98)2 = 22.4kips
301 tMNcakp©it
- 11.
T.chhay
edIm,IkMNt; design strengthrbs;b‘ULúgrg bearing eRbIGgát;p©itrn§
1 7 1 15
h=d+ = + = in.
16 8 16 16
sMrab;rn§EdlenAEk,rRCugEKmCageK eRbI Le = 2in. enaH
h 15 / 16
Lc = Le − = 2− = 1.513in.
2 2
⎛7⎞
2d = 2⎜ ⎟ = 1.75in.
⎝8⎠
eday Lc < 2d bearing strength KW
φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.531)(0.455)(58) = 36.4kips / bolt
sMrab;rn§epSgeTot eRbI s = 3in. enaH
15
Lc = s − h = 3 − = 2.062in. > 2d
16
⎛7⎞
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4 )⎜ ⎟(0.455)(58) = 41.56kips / bolt
⎝8⎠
tMél bearing TaMgBIrFMCagkMlaMgkñúgmYyb‘ULúg dUcenH bearing strength KWRKb;RKan;.
sMrab; shear
π (7 / 8)2
Ab = = 0.6013in.2
4
φRn = φFv Ab = 0.75(48)(0.6013) = 21.6kips < 22.4kips (N.G.)
cMeLIy³ tMNminbMeBjlkçxNÐeday elastic analysis.
302 tMNcakp©it
- 12.
T.chhay
b.eyIgedaHRsaytamviFI ultimate strengthanalysis CamYynwgCMnYyrbs; standard spreadsheet
software. lT§plrbs;tMélsakl,gcugeRkayrbs; ro = 1.57104in. RtUv)aneGayenAkñúgtarag 8>1.
RbBn§½kUGredaen nigelxerogb‘ULúgRtUv)anbgðajenAkñúgtarag 8>10.
tarag 8>1
eKalenARtg; eKalenARtg;
eRKOg
b‘ULúgelx ! IC
Δ Ry
P¢ab; r R rR
x' y' x y
1 0.000 0.000 0.285 -3.857 3.868 0.255 70.774 273.731 5.221
2 3.000 0.000 3.285 -3.857 5.067 0.334 72.553 367.598 47.045
3 0.000 3.000 0.285 -0.857 0.903 0.060 47.649 43.046 15.050
4 3.000 3.000 3.285 -0.857 3.395 0.224 69.563 236.188 67.310
5 0.000 6.000 0.285 2.143 2.162 0.143 63.631 137.555 8.398
6 3.000 6.000 3.285 2.143 3.922 0.259 70.891 278.061 59.377
7 0.000 9.000 0.285 5.143 5.151 0.340 72.631 374.107 4.023
srub 1710.287 206.424
303 tMNcakp©it
- 13.
T.chhay
BIsmIkar *>$
P(ro + e ) = ∑ rR
∑ rR 1710.29
P= = = 206.424kips
ro + e 1.57104 + 6.71429
Edl e RtUv)anyk 5 xÞg;eRkayex,ósedIm,IsuRkitPaBx<s;.
BIsmIkar *>%
∑ F y = ∑ R y − P = 206.424 − 206.424 = 0.00
bnÞúkEdlGnuvtþminmnabgÁúMkMlaMgedk dUcenHsmIkar *># RtUv)anbMeBjedaysV½yRbvtþ.
bnÞúk 206.424kips EdleTIbnwg)ankMNt;Ca failure load sMrab;kartP¢ab; ehIyRtUv)anQr
enAelIeKalkarN_EdleRKOgP¢ab;EdleRKaHfñak;eTAdl; ultimate load capacity. RbsinebIbnÞúkdac;
rbs;tMNRtUv)anKuNedaypleFob fasterner design strength elI fasterner ultimate strength
74kips (Crawford nig Kulak, 1971), eyIgnwgTTYl)anlT§PaBrbs;tMN.
BI a. design strength rbs;b‘ULúgmYy ¬EdlQrelI shear¦ KW 21.6kips .
bnÞúkemKuNGtibrma = 206(21.6 / 74) = 60.1kips > 53kips (OK)
cMeLIy³ kartP¢ab;manlkçN³RKb;RKan;eday ultimate strength analysis.
Table 8-18 dl; 8-25 enAkñúg Part 8 of the Manual (Volume II) pþl;eGayemKuNsMrab;
viPaK b¤KNnaKMrUFmμtaénRkumb‘ULúgEdlrgnUvbnÞúkcakp©it. sMrab;kartMeobb‘ULúgnImYy²Edl)an
BicarNa taragTaMgenaHpþl;nUvtMél C EdlCapleFob connection failure load elI fasterner
ultimate strength. edImI,TTYl)anbnÞúktMNEdlmansuvtßiPaB tMélefrenHRtUv)anKuNeday design
strength rbs;eRKOgP¢ab;EdleRbI. sMrab;bnÞúkcakp©itminRtUv)anbBa©ÚleTAkñúgtaragTaMgenHeT dUcenH
eKGaceRbI elastic method EdlCaviFImansuvtßiPaB. BitNas; kmμviFIkMuBüÚT½r b¤ spreadsheet software
k¾RtUv)aneRbIedIm,IKNna ultimate strength anlysis.
]TahrN_ 8>3³ eRbItaragenAkñúg Part 8 of the Manual edIm,IkMNt; factored load capacity Pu Edl
QrelI bolt shear sMrab;tMNEdlbgðajenAkñúgrUbTI 8>11. b‘ULúg bearing-type A325 Ggát;p©it
3 / 4in. edayeFμjsßitenAkñúgbøg;kat;. b‘ULúgrgnUv single shear.
304 tMNcakp©it
- 14.
T.chhay
design strength rbs;b‘ULúgGgát;p©it 3 / 4in. Edlrg single shear KW
φrn = φ (48)Ab = 0.75(48)(0.4418) = 15.90kips
eday C = Pu / φrn /
Pu = Cφrn = 1.53(15.90) = 24.3kips
cMeLIy³ lT§PaBbnÞúkemKuNGtibrma (maximum factored load capacity) rbs;tMNKW 24.3kips .
8>3> tMNcMNakp©itedayb‘ULúg³ kMlaMgkat;bUknwgkMlaMgTaj
Eccentric Bolted Connections: Shear Plus Tension
sMrab;kartP¢ab;EdleKeRbI tee stub bracket dUckñúgrUbTI 8>12 bnÞúkcMNakp©itbegáIt couple
EdlGacbegáInkMlaMgTajenAkñúgCYrxagelIrbs;eRKOgP¢ab; ehIykat;bnßykugRtaMgTajenAkñúgCYrxag
eRkam. RbsinebIeRKOgP¢ab;Cab‘ULúgEdlKμankugRtaMgTajedIm b‘ULúgxagelInwgRtUv)andak;eGayrgkug
RtaMgTaj ehIyb‘ULúgxageRkamnwgminrgT§iBl. edayminKitBIRbePTrbs;eRKOgP¢ab; b‘ULúgnImYy²
nwgrgnUvcMENkkMlaMgkat;esμI²Kña.
305 tMNcakp©it
- 15.
T.chhay
RbsinebIeRKOgP¢ab;Cab‘ULúgersIusþg;x<s;EdlrgeRbkugRtaMg épÞb:Hrvagsøabssr nigsøab
bracket nwgrgkarsgát;esμI munnwgkMlaMgxageRkAGnuvtþmk. Bearing pressure nwgesμInwgkMlaMgTaj
b‘ULúgsrubEdlEckedayépÞb:H. edaysarbnÞúk P Gnuvtþbnþicmþg² kMlaMgsgát;enAxagelInwgRtUv)an
kat;bnßy ehIykMlaMgsgát;enAxageRkamnwgekIneLIg dUcbgðajenAkñúgrUbTI 8>13 a. enAeBlEdlkM
laMgsgát;enAxagelIRtUv)anrMsayGs;rlIg bgÁúMkMlaMgnwgRtUv)anbMEbk ehIy couple Pe nwgRtUv)an
Tb;Tl;edaykMlaMgb‘ULúgTaj ehIykMlaMgsgát;enAelIépÞb:HEdlenAsl; dUcEdlbgðajenAkñúgrUbTI
8>13 b. enAeBlEdlkMlaMgxiteTArk ultimate load kMlaMgenAkñúgb‘ULúgnwgxiteTACit ultimate
tensile strength rbs;va.
viFIEdlsamBaØ nigmansuvtßiPaBRtUv)aneRbIenATIenH. eKsnμt;G½kSNWtrbs;tMNkat;tamTIRbCMu
TMgn;rbs;RkLaépÞb‘ULúg. bU‘LúgEdlsßitenABIxagelIG½kSenHrgkMlaMgTaj ehIyb‘ULúgEdlenABIxag
eRkamG½kSenHRtUv)ansnμt;fargkMlaMgsgát; dUcbgðajenAkñúgrUbTI 8>13 c. b‘ULúgnImYy²RtUv)ansnμt;
faTTYl)antMél ultimate rut . edaysarEtmanb‘ULúgBIrRKab;enARKb;nIv:U ¬rUbTI 8>13 c¦ kMlaMgnI-
mYy²RtUv)anbgðaj 2rut . kMlaMgpÁÜbénkMlaMgTaj nigkMlaMgsgát;Ca couple EdlesμInwgm:Um:g;Tb;rbs;
tMN. m:Um:g; couple GacRtUv)anrkedayeFVIplbUkm:Um:g;énkMlaMgb‘ULúgeFobG½kSNamYyEdlgayRsYl
dUcCaG½kSNWt. enAeBlEdlm:Um:g;Tb;RtUv)andak;eGayesμIm:Um:g;Gnuvtþn_ eKGacrkkMlaMgTajb‘ULúg rut
EdlminsÁal;BIsmIkarEdlTTYl)an. ¬viFIenHRsedogKñanwg Case II in Part 8 of the Manual,
Volume II).
306 tMNcakp©it
- 16.
T.chhay
]TahrN_ 8>4³ tMNbeam-to-column RtUv)anbegáIteLIgeday structural tee dUcbgðajenAkñúgrUbTI
8>14. eKeRbIb‘ULúg fully tightened bearing-type A325 Ggát;p©it 3 / 4in. cMnYn 8 RKab;edIm,IP¢ab;
søabrbs; tee eTAnwgsøabssr. cUrGegátPaBRKb;RKan;rbs;tMN ¬tee-to-column connecvtion¦ Rb
sinebIvargbnÞúkemKuN 88kips enAcMNakp©it 3in. . snμt;faeFμjb‘ULúgsßitenAkñúgbøg;kat;. EdkTaMg
Gs;Ca A36 .
dMeNaHRsay³ shear/bearing load sMrab;b‘ULúgmYyKW 88 / 8 = 11kips . sMrab; bearing design
strength eRbIGgát;p©itRbehag
1 3 1 13
h=d+ = + = in.
16 4 16 16
sMrab;RCugEdlenAEk,rRCugEKmCageKbMput yk Le = 1.5in. . enaH
h 13 / 16
Lc = Le − = 1.5 − = 1.094in.
2 2
⎛3⎞
2d = 2⎜ ⎟ = 1.5in.
⎝4⎠
edaysar Lc < 2d /
φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094)(0.560)(58) = 31.98kips > 11kips (OK)
sMrab;RbehagepSgeTotyk s = 3in. . enaH
13
Lc = s − h = 3 − = 2.188in. > 2d
16
⎛3⎞
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟(0.560)(58) = 43.85kips > 11kips
⎝4⎠
(OK)
307 tMNcakp©it
- 17.
T.chhay
tMNmanlkçN³RKb;RKan;sMrab; bearing.
sMrab; sheardesign strength
π (3 / 4)2
Ab = = 0.4418in 2
4
φRn = φFv Ab = 0.75(48)(0.4418) = 15.90kips
KNnakMlaMgTajsMrab;b‘ULúgmYy nwgbnÞab;mkRtYtBinitü tension-shear interaction. edaysarPaB
sIuemRTI TIRbCMuTMgn;sßitenAkMBs;Bak;kNþal. rUbTI 8>15 bgðajRkLaépÞb‘ULúg nigkarEbgEckkMlaMg
Tajb‘ULúg.
m:Um:g;rbs; resisting couple RtUv)anrkedayeFVIplbUkm:Um:g;eFobG½kSNWt³
∑ M NA = 2rut (4.5 + 1.5 + 1.5 + 4.5) = 24rut
m:Um:g;EdlGnuvtþKW
M u = Pu e = 88(3) = 264in. − kips
dak;m:Um:g;Tb; nigm:Um:g;Gnuvtþn_eGayesμIKña eyIg)an
24rut = 264 b¤ rut = 11kips
Tensile design strength KW
φRn = φFt Ab = 0.75(90)(0.4418) = 29.82kips
RtYtBinitü RCSC Equation LRFD 4.2 BI bolt specification (RCSC, 1994) CamYynwg
Pu = rut = 11kips nig Vu = bolt shear force = 11kips
2 2
⎡ Pu ⎤ ⎡ V ⎤ ⎛ 11 ⎞
2
⎛ 11 ⎞
2
⎢ ⎥ +⎢ u ⎥ =⎜ ⎟ +⎜ ⎟ = 0.615 < 1.0 (OK)
⎢ (φRn )t ⎥
⎣ ⎦ ⎢ (φRn )v ⎥
⎣ ⎦ ⎝ 29.82 ⎠ ⎝ 15.9 ⎠
cMeLIy³ tMNKWRKb;RKan;
308 tMNcakp©it
- 18.
T.chhay
enAeBlEdlb‘ULúgenAkñúgtMN slip-critical rgkarTaj slip-critical strength CaFmμtaRtUv)an
kat;bnßyedayemKuNEdlpþl;eGayeday AISC Equation A-J3-2 ¬emIl Epñk 7>9¦. mUlehtuKWfa
clamping effect nigkMlaMgkkitRtUv)ankat;bnßy. b:uEnþenAkñúgtMNEdleTIbnwgBicarNa vamankMlaMg
sgát;bEnßmenAkñúgEpñkxageRkamrbs;tMNEdlbegáInkMlaMgkkit EdlvaTUTat;nwgkarkat;bnßyenAkñúg
EpñkxageRkamrbs;tMN. sMrab;mUlehtuenH slip-critical strength minKYrRtUv)ankat;bnßyenAkñúgRb
ePTtMNenHeT.
8>4> tMNcMNakp©itedaypSar³ EtkMlaMgkat;
Eccentric Welded Connections: Shear only
eKviPaKtMNcMNakp©itedaypSartamviFIdUcKñasMrab;tMNedayb‘ULúg elIkElgRtg;kMlaMgkñúg
eRKOgP¢ab;mYy²RtUv)anCMnYsedaykMlaMgkñúgRbEvgTwkbnSarÉktþa. dUckñúgkrNIEdltMNcMNakp©it
edayb‘ULúgrgkMlaMgkat; tMNedaypSarrgkMlaMgkat;GacRtUv)anGegátedayviFI elastic method b¤
ultimate strength method.
Elastic method
bnÞúkenAelI bracket EdlbgðajenAkñúgrUbTI 8>16 a GacnwgRtUv)anBicarNaeGayeGVIGMeBIenA
kñúgbøg;énTwkbnSar EdlCabøg;rbs; throat. RbsinebIeyIgsnμt;EbbenH bnÞúknwgRtUv)anTb;edayRkLa
épÞTwkbnSarEdlbgðajenAkñúgrUb 8>16 b. b:uEnþ karKNnamanlkçN³samBaØ RbsinebIeKeRbI throat
mYyÉktþa. bnÞab;mkbnÞúkEdlKNna)anRtUvKuNnwg 0.707 CamYynwgTMhMrbs;TwkbnSaedIm,ITTYl)an
bnÞúkBitR)akd.
bnÞúkcMNap©itenAkñúgbøg;TwkbnSarEdleFVIeGayTwkbnSarrgTaMgkMlaMgkat;pÞal; (direct shear)
nigkMlaMgkat;edayrmYl (torsional shear). edaysarFatunImYy²rbs;TwkbnSarTb;Tl;nwgcMENk
esμIrbs; direct shear enaH direct shear stress KW
309 tMNcakp©it
- 19.
T.chhay
P
f1 =
L
Edl L CaRbEvgsrubrbs;TwkbnSar ehIyesμInwgRkLaépÞkMlaMgkat;edayKitCaelx edaysareKsnμt;
TMhM throat esμInwgmYyÉktþa. RbsinebIeKeRbIkMub:Usg;Ekg
f1x = x
P
L
nig f1y = PLy
Edl Px nig Py CabgÁúMkMlaMgtamTis x nig y . kugRtaMgkMlaMgkat;EdlekIteLIgedaysar couple
RtUv)aneKrkCamYynwgrUbmnþkMlaMgrmYl
Md
f2 =
J
Edl d= cMgayBITIRbCMuTMgn;rbs;RkLaépÞkMlaMgkat;eTAcMnucEdlkugRtaMgkMBugRtUv)anKNna
J = m:Um:g;niclPaBb:UElrrbs;RkLaépÞenaH
rUbTI 8>17 bgðajBIkugRtaMgTaMgenHenARtg;kac;RCugxagelIEpñkxageRkamrbs;TwkbnSar. tamkMub:Usg;
Ekg
f 2x =
My
J
nig f 2 y = MxJ
Edl J = ∫A r 2 dA = ∫A (x 2 + y 2 )dA = ∫A x 2 dA + ∫A y 2 dA = I y + I x
Edl I x nig I y Cam:Um:g;niclPaBrbs;RkLaépÞkMlaMgkat;. enAeBlEdlbgÁúMkMlaMgTaMgGs;RtUv)ankM
Nt; eyIgGacbUkbgÁúMkMlaMgedIm,ITTYl)ankugRtaMgkMlaMgkat;srubenARtg;cMnucEdleyIgcg;dwg b¤
fv = (∑ f x )2 + (∑ f y )2
dUcKñanwgtMNedayb‘ULúg CaTUeTATItaMgeRKaHfñak;sMrab;kugRtaMgpÁÜbGacRtUv)ankMNt;BIkarsegátelItMél
nigTisedArbs;bgÁúM direct shear nig torsional shearing stress.
edaysareKeRbITwkbnSarkñúgmYyÉktþa karKNnaTIRbCMuTMgn; nigm:Um:g;niclPaBKWmanlkçN³Ca
ExSbnÞat;. enAkñúgesovePAenH eyIgKitGgát;TwkbnSarCaGgát;ExSEdleyIgsnμt;eTARbEvgdUcKñanwgRCug
310 tMNcakp©it
- 20.
T.chhay
EKmrbs;EpñkEdlRtUvP¢ab;EdlenAEk,rva. elIsBIenH eyIgecalm:Um:g;niclPaBrbs;Ggát;ExSeFobeTA
nwgG½kSEdlRtYtKñaCamYynwgExS.
]TahrN_8>5³ kMNt;TMhMrbs;TwkbnSarEdlRtUvkarsMrab;tMN bracket enAkñúgrUbTI 8>18. bnÞúk
60kips CabnÞúkemKuN. eKeRbIEdk A36 sMrab;ssr nig bracket.
dMeNaHRsay³ eKGacCMnYsbnÞúkcakp©itedaybnÞúkcMp©it nig couple dUcbgðajenAkñúgrUbTI 8>18.
Direct shearing stress KitCa kips / in. KWdUcKñasMrab;RKb;Ggát;TwkbnSar ehIyesμInwg
60 60
f1 y = = = 2.143kips / in.
8 + 12 + 8 28
munnwgKNnabgÁúMkMlaMgrmYlrbs; shearing stress, eKRtUvkMNt;TItaMgrbs;TIRbCMuTMgn;rbs;RkLaépÞ
kMlaMgkat;. BIeKalkarN_m:Um:g;CamYynwgplbUkm:Um:g;eFobG½kS y /
x(28) = 8(4)(2) b¤ x = 2.286in.
311 tMNcakp©it
- 21.
T.chhay
cMNakp©it e KW10 + 8 − 2.286 = 15.71in.
ehIym:Um:g;rmYlKW M = Pe = 60(15.71) = 942.6in. − kips
RbsinebIeKecalm:Um:g;niclPaBrbs;TwkbnSartamTisedknImYy²eFobG½kSTIRbCMuTMgn;rbs;va enaH
m:Um:g;niclPaBénRkLaépÞsrubeFobnwgG½kSTIRbCMuTMgn;tamTisedkKW
Ix =
1
(1)(12)3 + 2(8)(6)2 = 720.0in.4
12
⎡1 ⎤
dUcKña I y = 2 ⎢ (1)(8)3 + 8(4 − 2.286)2 ⎥ + 12(2.286)2 = 195.0in.4
⎣12 ⎦
ehIy J = I x + I y = 720.0 + 195.0 = 915.0in 4
rUbTI 8>18 bgðajTisedArbs;bgÁúMkugRtaMgTaMgBIrenAkac;RCugrbs;tMNnImYy². tamkarsegát/ kac;
RCugxagelIEpñkxagsþaM b¤kac;RCugxageRkamEpñkxagsþaMGacRtUv)anKitCaTItaMgEdlmaneRKaHfñak;. Rb
sinebIeKeRCIserIskac;RCugxageRkamEpñkxagsþaM enaH
My 942.6(6)
f2x = = = 6.181kips / in.
J 915.0
M 942.6(8 − 2.286 )
f2y = x = = 5.886kips / in.
J 915.0
fv = (6.181)2 + (2.143 + 5.886)2 = 10.13kips / in.
RtYtBinitüersIusþg;rbs; base metal. BIsmIkar &>@!
φRn = φFBM × area subject to shear
⎛9⎞
= φFBM × t = 0.54 F y t = 0.54(36)⎜ ⎟
⎝ 16 ⎠
= 10.94kips / in. > 10.13kips / in. (OK)
BIsmIkar &>@0 weld strength KW
φRn = 0.707 × w × L × φFW
Electrode EdlRtUvKñasMrab;Edk A36 KW E 70 / CamYynwg φFW = 31.5ksi . dUcenHTMhMTwkbnSarEdl
RtUvkarKW
φRn 10.13
w= = = 0.455in.
0.707 LφFW 0.707(1.0 )(31.5)
cMeLIy³ eRbI fillet weld 1 / 2in. CamYynwg electrode E 70 .
312 tMNcakp©it
- 22.
T.chhay
Ultimate Strength Analysis
eKGacKNna Eccentric welded shear connection edayeRbI elastic method y:agsuvtßiPaB
b:uEnþemKuNsuvtßiPaBGacFMCagGVIEdlRtUvkar ehIyGacERbRbYlBItMNmYyeTAtMNmYy (Bultler, Pal,
and Kulak, 1920). karviPaKRbePTenHmanKuNvibtþixøHdUc elastic method sMrab; eccentric bolted
connections, edayrYbbBa©ÚlTaMgkarsnμt;faTMnak;TMngrvag bnÞúk-kMhUcRTg;RTay sMrab;karpSar. Rb
PBepSgeTotrbs;kMhusKWkarsnμt;faersIusþg;rbs;TwkbnSarminGaRs½ynwgTisedArbs;bnÞúkEdlGnuvtþ.
Ultimat strength procedure RtUv)anbgðajenAkñúg Part 8 of the Manual (Volume II) ehIyRtUv)an
segçbenATIenH. vaQrelIkarsikSaRsavRCavrbs; Butler et al. (1972) nig Timler (1984) ehIyviFI
EdlesÞIrEtdUcKñaEdlbegáIteLIgsMrab; eccentric bolted connections eday Crawford and Kulak
(1971).
CMnYseGaykarBicarNaelIeRKOgP¢ab;mYy² eyIgKitTwkbnSarEdlCab;CaGgát;TwkbnSardac;²
EdlpÁúMP¢ab;Kña. enAeBldac; bnÞúkEdlGnuvtþmkelItNRtUv)anTb;edaykMlaMgenAkñúgFatunImYy² CamYy
M
nwgkMlaMgEdleFVIGMeBIEkgeTAnwgkaMEdlbegáIteLIgBI instantaneous center of rotation eTATIRbCMuTMgn;
rbs;Ggát;TwkbnSar dUcbgðajenAkñúgrUbTI 8>19. KMnitkñúgkarKNnaenHKWRsedogKñanwgKMnitEdl eRbIsM
rab;eRKOgP¢ab;. b:uEnþ karkMNt;kMhUcRTg;RTayGtibrmarbs;Ggát;TwkbnSar nigkarkMNt;kMlaMgkñúgén
Ggát;TwkbnSarnImYy²enAeBlEdldac;KWBi)ak. edIm,IkMNt;FatuEdlmaneRKaHfñak; eKRtUvkMNt;pl
eFob Δ max / r sMrab;FatunImYy²/ Edl
Δ max = 1.087 w(θ + 6)−0.65 ≤ 0.17 w
θ= mMurvagkMlaMgTb; nigG½kSrbs;Ggát;TwkbnSar ¬emIlrUbTI 8>19¦
w = TMhMTwkbnSar
r = cMgayBI IC eTATIRbCMuTMgn;rbs;Ggát;TwkbnSar
313 tMNcakp©it
- 23.
T.chhay
FatuEdlmanpleFobtUcCageKKWCaFatuEdleTAdl; ultimate capacitymuneK. bnÞab;mkkMhUcRTg;
RTayrbs;Fatud¾éTeTotRtUv)ankMNt;eday
r
Δ= Δ max
rmax
Edl kaMsMrab;Fatu
r=
Δ max Δ
= sMrab;FatuEdleRKaHfñak;
rmax r
eKGackMNt;kMlaMgTb;sMrab;FatunImYy²BI
( )
R = 0.60 FEXX 1.0 + 0.50 sin1.5 θ [ p(1.9 − 0.9 p )]0.3
Edl FEXX = weld electrode tensil strength
Δ
p=
Δ max
¬mindUckrNItMNedayb‘ULúgEdl R CaGnuKmn_eTAnwg θ ¦. karKNnaBImunKWQrelIkarsnμt;TItaMg
rbs; instantaneous center of rotation. RbsinebIvaCaTItaMgBitR)akd smIkarlMnwgnwgRtUv)anbMeBj.
karKNnabnþeTotKWRsedogKñanwgtMNedayb‘ULúg.
!> KNna load capacity BIsmIkar
∑ M IC = 0
Ed;lIC Ca instantaneous center.
@> RbsinebIsmIkarlMnwgkMlaMgBIrRtUv)anbMeBj enaHTItaMg instantaneous center Edl)an
snμt; nigbnÞúkEdl)anrkenAkñúgCMhanmYyBitCaRtwmRtUv EtebImindUecñaHeT eKRtUvsnμt;TI
taMgfμI ehIyeFVIkarKNnasareLIgvij.
vabgðajy:agc,as;nUv)aBcaM)ac;kñúgkareRbIR)as;kmμviFIkMuBüÚT½r. dMeNaHRsayedaykMuBüÚT½rsM
rab;TMrg;FmμtaCaeRcInsMrab; eccentric welded shear connection RtUv)aneGayenAkñúgtaragEdlman
enAkñúg Part 8 og the Manual. Table 8-38 rhUtdl; 8-45 eGaylT§PaBbnÞúkemKuN (factored load
capacity) sMrab;karbnSMGgát;TwkbnSartamTisedk nigTisbBaÄrFmμtaCaeRcInedayQrelI ultimate
strength analysis. taragTaMgenHGacRtUv)aneRbIsMrab;karKNna b¤karviPaK nwgerobrab;nUvsßanPaBCa
eRcInEdlvisVkrGacnwgCYbRbTH. sMrab;tMNTaMgLayNaEdlmin)anerobrab;enAkñúgtarageKGaceRbI
elastic methoid.
314 tMNcakp©it
- 24.
T.chhay
]TahrN_ 8>6³ kMNt;TMhMTwkbnSarEdlcaM)ac;sMrab;kartP¢ab;enAkñúg]TahrN_8>5 edayQrelIkar
BicarNa ultimate strength. cUreRbItaragsMrab; eccentrically load weld group EdleGayenAkñúg
Part 8 of the Manual.
dMeNaHRsay³ TwkbnSarrbs;]TahrN_ 8>5 CaRbePTdUcKñaeTAnwgrUbEdlbgðajenAkñúg Tabl;e 8-42
(angle = 0 o )/ ehIykardak;bnÞúkk¾dUcKña. eKRtUvkartMélefrxageRkamsMrab;bBa©ÚleTAkñúgtarag³
al e 15.7
a= = = = 1.3
l l 12
kl 8
k= = = 0.67
l 12
edayeFVI interpolation enAkñúg Table 8-42 sMrab; a = 1.3
C = 1.14 sMrab; k = 0.6 ehIy C = 1.30 sMrab; k = 0 .7
enaHsMrab; k = 0.67 eyIgTTYl)an C = 1.25
sMrab; electrode E 70 XX / C1 = 1.0
tMél D EdlcaM)ac;KW
Pu 60
D= = = 4 .0
CC1l 1.25(1.0 )(12 )
dUcenHTMhMTwkbnSarEdlcaM)ac;KW
1
16
(4.0) = 0.25 ¬TMhMTwkbnSarEdlRtUvkarenAkñúg]TahrN_ 8>5 KW 0.455
cMeLIy³ eRbI electrode E 70 / fillet weld 1 / 4in.
karpþl;eGayCaBiesssMrab;Ggát;rgbnÞúktamG½kS Special Provision for
Axially Loaded Members
enAeBlEdlGgát;eRKOgbgÁúMrgbnÞúktamG½kS kugRtaMgRtUv)anBRgayesμIenAelImuxkat; ehIykM
laMgpÁÜbRtUv)anBicarNafaeFVIGMeBItamG½kSTIRbCMuTMgn; EdlvaCaG½kSEvgkat;tamTIRbCMuTMgn;. sMrab;Ggát;
EdlrgbnÞúkcMp©itenAxagcugrbs;va kMlaMgTb;pÁÜbEdlpþl;eGayedaytMNk¾RtUveFVIGMeBItamG½kSenHEdr.
RbsinebIGgát;enHmanmuxkat;sIuemRTI lT§plGacRtUv)ansMercedaykarpSar b¤P¢ab;b‘ULúgedaysIuemRTI.
RbsinebIGgát;manmuxkat;minsIuemRTI dUcCamuxkat;EdkEkgDub (double-angle section) enAkñúgrUbTI
8>20 karpSar b¤karP¢ab;b‘ULúgedaysIuemRTIeFVIeGaytMNenaHCatMNrgbnÞúkcakp©it CamYynwg couple
Te dUcbgðajenAkñúgrUbTI 8>20 b.
315 tMNcakp©it
- 25.
T.chhay
AISC J1.8GnuBaØateGayecalcMNakp©itenHsMrab;Ggát;rgkMlaMgsþaTic. enAeBlEdlGgát;rg
fatigue EdlbNþalmkBIPaBRcMdEdlénkardak;bnÞúk b¤PaBmanGt;rbs;kugRtaMg cMNakp©itRtUvEtyk
mkBicarNa b¤k¾minykmkBicarNaedaysarkartP¢ab;edaykarpSar b¤edayb‘ULúgEdlmanlkçN³sm
Rsb . ¬CakarBit eTaHbIdMeNaHRsayGacRtUv)aneKeRbIsMrab;EtGgát;EdlrgEtkMlaMgsþaTick¾eday¦.
eKGackMNt;karP¢ab;enHedayGnuvtþsmIkarlMnwgkMlaMg nigm:Um:g;. sMrab;tMNEdlpSarEdlbgðajenA
kñúgrUbTI 8>21 smIkardMbUgGacRtUv)anTTYledayplbUkm:Um:g;eFobTwkbnSartamTisedkxageRkam³
L
∑ M L2 = Tc − P3 3 − P L3 = 0
1
2
eKedaHRsaysmIkarenHedIm,Irk P1 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTisedkxagelI.
bnÞab;mkeKGacCMnYstMélenHeTAkñúgsmIkarlMnwgkMlaMgxageRkam³
316 tMNcakp©it
- 26.
T.chhay
∑ F = T − P − P2 − P3 = 0
1
eKGacedaHRsaysmIkarenHedIm,IrktMél P2 EdlCakMlaMgTb;caM)ac;enAkñúgTwkbnSartamTis
edkxageRkam. sMrab;RKb;TMhMrbs;TwkbnSar eKGacedaHRsayrkRbEvg L1 nig L2 . dMeNIrkaredaH
RsayRtUv)anbgðajenAkñúg]TahrN_ 8>7 EdleKsÁal;Ca balancing the weld.
]TahrN_ 8>7³ Ggát;rgkarTajEdlpSMeLIgeday double-angle section, 2L5 × 3 × 1 / 2 EdleKdak;
eCIgEvgrbs;vaTl;xñgKña. EdkEkgRtUv)anP¢ab;eTAnwg gusset plate kMras; 3 / 8in. . EdkTaMgGs;Ca
A36 . KNnatMNedaykarpSar edayeFVIkarkat;bnßycMNakp©itedIm,ITb;nwg tensil capacity eBj
rbs;Ggát;.
dMeNaHRsay³ Load capacity rbs;Ggát;edayQrelI gross section KW
φt Pn = 0.90 F y Ag = 0.90(36 )(7.5) = 243.0kips
Load capacity EdlQrelI net seactionRtUvkartMélrbs; U .
eKminsÁal;RbEvgTwkbnSar dUcenHeKminGacKNna U BI AISC Equation B3-2 )aneT. edayeRbI
tMélmFüm 0.85 eKTTYl)an³
Ae = UAg = 085(7.5) = 6.375in.2
φt Pn = 0.75Fu Ae = 0.75(58)(6.375) = 277.3kips > 243.0kips
Yeildingrbs; gross section CasßanPaBkMNt;EdlykmksikSa dUcenH φt Pn = 243.0kips . sMrab;
EdkEkgmYy bnÞúkEdlRtUvTb;KW
243.0
= 121.5kips
2
Electrode EdlRtUvKñanwgEdk A36 KW E70 XX / ehIy
TMhMTwkbnSarGb,brma = 16 in. (AISC Table J2.4)
3
TMhMGtibrma = 1 − 16 = 16 in. (AISC J2.2b)
2
1 7
sakl,g electrode E 70 fillet weld 5 / 16in. ³
lT§PaBenAkñúgRbEvg 1in. = 0.707w(φFW )
⎛5⎞
= 0.707⎜ ⎟(31.5)
⎝ 16 ⎠
= 6.960kips / in.
317 tMNcakp©it
- 27.
T.chhay
lT§PaBrbs; base metal rgkMlaMgkat; = t (φFBM ) = t (0.54Fy )
⎛ 3⎞
= ⎜ ⎟(0.54)(36 )
⎝8⎠
= 7.29kips / in.
edayersIusþg;rbs;TwkbnSartUcCageK dUcenHeRbIersIusþg;rbs;TwkbnSar 6.960kips / in. .
eyagtamrUbTI 8>22. lT§PaBrbs;TwkbnSarenAxagcugrbs;EdkEkgKW
P3 = 6.960(5) = 34.80kips
⎛5⎞
∑ M L2 = 121.5(3.25) − 34.80⎜ ⎟ − P (5) = 0
1
⎝2⎠
P = 61.58kips
1
∑ F = 121.5 − 61.58 − 34.80 − P2 = 0 / P2 = 25.12kips
L1 =
P1 = 61.58 = 8.85in.
6.960 6.960
yk 9in.
L2 =
25.12
6.960
= 3.61in.yk 4in.
cMeLIy³ eRbIkarpSaredUcbgðajenAkñúgrUbTI 8>23
318 tMNcakp©it
- 28.
T.chhay
8>5> tMNcMNakp©itedaypSar³ kMlaMgkat;nigkMlaMgTaj
Eccentric Welded Connections: Shear and Tension
tMNcMNakp©itCaeRcIn CaBiesskartP¢ab; beam-to-column TwkbnSarrgkMlaMgTaj nigkMlaMg
kat;. tMNEbbenHBIrRbePTRtUv)anbgðajenAkñúgrUbTI 8>24.
Seated beam connection pSMeLIgedayEdkEkgEdlmanRbEvgxøIRtUv)aneRbICaeFñIr (shelf) edIm,I
RTFñwm. TwkbnSarEdlP¢ab;EdkEkgenHeTAssrRtUvTb;nwgm:Um:g;EdlekIteLIgedayRbtikmμcakp©it k¾dUc
direct shear Edl)anBIRbtikmμrbs;Fñwm. EdkEkgEdlP¢ab;enAxagelIrbs;søabFñwmpþl;nUv torsional
stability eTAeGayFñwm Etvamin)anCYyRTRbtikmμeT. eKGacP¢ab;vaeTAnwgRTnugrbs;FñwmCMnYseGaykar
P¢ab;eTAnwgsøabrbs;Fñwm)an. beam-to-angle connection GacRtUv)aneFVIeLIgedaykarpSar b¤b‘ULúg
ehIyvaminRTnUvbnÞúkKNnaNaeT.
Framed beam connection ¬manlkçN³FmμtaCageK¦ EdlmanEdkEkgbBaÄrpSarP¢ab;eTAnwg
ssr ehIyrgnUvRbePTbnÞúkdUckrNI seated beam connection. Epñkrbs;kartP¢ab; beam-to-angle
k¾CaRbePTcakp©it b:uEnþbnÞúkenAkñúgbøg;énkMlaMgkat;TTwg dUcenHvaminmankMlaMgTajeT. TaMg seated
connection nig framed connection GacRtUv)anP¢ab;edayb‘ULúg.
319 tMNcakp©it
- 29.
T.chhay
enAkñúgRbePTnImYy²Edl)anerobrab;xagelI TWkbnSarbBaÄrenAelIsøabssrrgbnÞúkdUcbgðajenA
kñúgrUbTI 8>25. dUcKñaCamYynwgtMNedayb‘ULúgenAkñúgrUbTI 8>3 bnÞúkcakp©it P nig couple M = Pe .
kugRtaMgkMlaMgkat;KW
P
fv =
A
Edl A CaRkLaépÞ throat srubrbs;TwkbnSar. eKGacKNnakugRtaMgkMlaMgTajGtibrmaBI
flexure formula
Mc
ft =
I
Edl I Cam:Um:g;niclPaBeFobG½kSTIRbCMuTMgn;rbs;RkLaépÞEdlpSMeLIgedayRkLaépÞ throat
srubrbs;TwkbnSar nig c CacMgayBIG½kSTIRbCMuTMgn;eTAcMnucq¶abMputrbs;RCugEdlrgkarTaj. eKGac
rkkugRtaMgkMlaMgpÁÜbGtibrmaedayeFVIplbUkviuTr½kMub:Usg;TaMgBIrenH enaHeK)an
fr = f v2 + f t2
sMrab;xñat kips nig in. / kugRtaMgenHnwgRtUv)anKitCa kips / in 2 . RbsinebIkñúgkarKNnaenH eK
eRbITMhM throat Éktþa enaHeKGacsMEdgtMélenAHCa kips / in. . RbsinebI f r RtUv)ankMNt;BIbnÞúkem
KuN eKGaceRbobeFobvaCamYynwg design strength rbs;TwkbnSarénRbEvgÉktþa. eTAHbICaviFIKNna
RtUv)ansnμt;eFVIkarCalkçN³eGLasÞick¾eday k¾vamanlkçN³suvtßiPaBCamYynwg LRFD context Edr.
]TahrN_ 8>8³ eKeRbI L6 × 4 × 1 / 2 enAkñúg seated beam connection dUcbgðajenAkñúgrUbTI 8>26.
vaRtUvRTnUvbnÞúkemKuNRbtikmμ 22kips . EdkTaMgGs;Ca A36 ehIyeKeRbI electrode E 70 XX . etI
eKRtUvkarTMhMTwkbnSar fillet weld b:unμansMrab;tP¢ab;eTAnwgsøabssr?
320 tMNcakp©it
- 30.
T.chhay
dMeNaHRsay³ dUckñúg]TahrN_KNnaBImun/ eKeRbITMhMthroat ÉktþasMrab;KNna. eTaHbICakarpSar
enHRtUvkar end return k¾eday edIm,IsMrYlkñúgkarKNna eKnwgecalvasMrab;karKNnaxageRkam.
enARKb;krNI eKGac)a:n;sμanRbEvgrbs;vaenARtg;cMnucenH edaysareKminTan;)ankMNt;TMhMTwkbnSar.
edaysarmanKMlatBIssr 3 / 4in. FñwmRtUv)anRTeday 3.25in. elIRbEvg 4in. éneCIgrbs;
EdkEkg. RbsinebIeKsnμt;eGaykMlaMgRbtikmμeFVIGMeBIRtg;cMnuckNþalrbs;RbEvgEdlb:H enaHcMNak
p©iteFobnwgTwkbnSarKW
3.25
e = 0.75 + = 2.375in.
2
ehIym:Um:g;Kw
M = Pe = 22(2.375) = 52.25in. − kips
321 tMNcakp©it
- 31.
T.chhay
sMrab;rUbragénkarpSarEdlsnμt;enAkñúgrUbTI 8>27
2(1)(6 )3
= 36in.4 /
6
I= c = = 3in.
12 2
Mc 52.25(3)
ft = = = 4.354kips / in.
I 36
P 22
fv = = = 1.833kips / in.
A 2(1)(6 )
fr = f t2 + f v2 = (4.354)2 + (1.833)2 = 4.724kips / in.
eKGacrkTMhMTwkbnSarEdlcaM)ac; w edayeGay f r esμIeTAnwglT§PaBTwkbnSarkñúgmYyÉktþaRbEvg
f r = 0.707 w(φFW )
4.724 = 0.707 w(31.5) / w = 0.212in.
BI AISC Table J2.4,
TMhMTwkbnSarGb,brma = 1 in. ¬edayQrelITMhMsøabrbs;ssr 5 / 8in.
4
BI AISC J2.2b,
TMhMGtibrma = 1 − 16 = 16 in.
2
1 7
RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal:
Applied direct shear = f v = 1.833kips / in.
(
Shear capacity of angle leg = t (φFBM ) = t 0.54 F y = ) 1
2
(0.54)(36)
= 9.72kips / in. > 1.833kips / in. (OK)
cMeLIy³ eRbI electrode E70 XX / fillet weld 1 / 4in. .
eyIgecalnUv end returns enAkñúg]TahrN_ 8>8 b:uEnþeKGacbBa©ÚlvaedaykareFVIkarKNna
elIkTIBIrCamYynwg end return EdlmanRbEvgBIrdgTMhMTwkbnSarEdl)anrkeXIjenAkñúgkarKNna
elIkTImYy. ¬CMhanbENßmenHminRtUv)anGnuvtþenAkñúg]TahrN_enHeTedaysarTMhMTwkbnSarGb,-
brmaRKb; RKan;sMrab;karKNna¦. End return RtUv)anykmkniyayenAkñúg]TahrN_ 8>9.
322 tMNcakp©it
- 32.
T.chhay
]TahrN_ 8>9³ rUbTI8>28 bgðajBI framed beam connection edaypSar. Edk framing angle Ca
ehIyssrCa W 12 × 72 . EdkTaMgGs;CaRbePT A36 ehIyeKeRbI electrode
L4 × 3 × 1 / 2
E70 XX edIm,IbegáIt fillet weld 3 / 8in. . kMNt;kMlaMgRbtikmμemKuNrbs;FñwmEdlkMNt;edayTwk
bnSarenAelIsøabssr.
dMeNaHRsay³ eKsnμt;kMlaMgRbtikmμrbs;FñwmeFVIGMeBIkat;tamTIRbCMuTMgn;rbs;TwkbnSarén framing
angle . dUcenH cMNakp©itrbs;kMlaMgeFobnwgTwkbnSarenARtg;søabssrCacMgayBITIRbCMuTMgn;eTAsøab
ssr. sMrab;TMhM throat mYyÉktþa nigTwkbnSarEdlbgðajenAkñúgrUbTI 8>29 a
2(2.5)(1.25)
x= = 0.1689in. nig e = 3 − 0.1689 = 2.831in.
32 + 2(2.5)
m:Um:g;enAelITwkbnSarEdlenAelIsøabssrKW
M = Re = R 2.831in. − kips
Edl R CaRbtikmμrbs;FñwmKitCa kips
BITMhMEdleGayenAkñúgrUbTI 8>29 b/ lkçN³rbs;TwkbnSarenAelIsøabssr
32(16 )
y= = 15.63in.
32 + 0.75
1(32 )3
I= + 32(16 − 15.63)2 + 0.75(15.63)2 = 2918in.4
12
sMrab;TwkbnSarTaMgBIr
I = 2(2918) = 5836in.4
Mc 2.831R(15.63)
ft = = = 0.007582 Rkips / in.
I 5836
R R
fv = = = 0.01527 Rkips / in.
A 2(32 + 0.75)
323 tMNcakp©it
- 33.
T.chhay
fr = (0.007582 R )2 + (0.01527 R )2 = 0.01705Rkips / in.
yk 0.01705R = 0.707w(φFW ) ykKNnarktMél R
⎛ 3⎞
0.0175R = 0.707⎜ ⎟(31.5) / R = 489.8kips
⎝8⎠
RtYtBinitülT§PaBkMlaMgkat;TTwgrbs; base metal ¬kMras;rbs;EdkEkglub¦
( )
t (φFBM ) = t 0.54 F y = 0.5(0.54 )(36 ) = 9.72kips / in.
Direct shear RtUv)anTb;Kw
489.8
= 7.48kips / in. < 9.72kips / in. (OK)
2(32.75)
cMeLIy³ kMlaMgRbtikmμFñwmemKuNGtibrma = 490kips
8>6> tMNTb;m:Um:g; Moment-Resisting Connection
enARKb; beam-to-column connection nig beam-to-beam connection TaMgGs; vaEtgman
karTb;m:Um:g;xøH eTaHbICakarKNnatMNenaHCatMNsamBaØ b¤k¾tMNEdlKμanm:Um:g;k¾eday. müa:gvijeTot
eKBi)akkñúgkareFVIeGayman perfectly frictionless pin or hinge ehIytMNCaeRcInEdlRtUv)anKNna
CatMNEdldac;edayKμanm:Um:g;. dUcKña eKk¾Bi)akkñúgkareFVIeGayman perfectly rigid joint EdlGac
manlT§PaBepÞr moment capacity rbs;Ggát;mYyeTAGgát;mYyeTotEdr. dUcenH eTaHbICa framed nig
seated beam connections EdlbgðajkñúgrUbTI 8>24 k¾GacCatMNrwgxøH EdlvaGacbBa¢Únm:Um:g;tictYc
324 tMNcakp©it
- 34.
T.chhay
RbsinebI connecting angleman flexible RKb;RKan;. dUcEdl)ankt;cMNaMBIxagelI bnÞúkcakp©iteFob
eTAnwgb‘ULúg b¤TwkbnSarKWtUcNas; ehIyEdlCaTUeTARtUv)anecal.
AISC Specification kMNt;kartP¢ab;enHCaBIrRbePT enAkñúg Section A2.2, “Types of
Comstruction.”
Type FR – Fully Restrained (Rigid, or Continuous, Framing). eRKOgbgÁúMEdlman
moment-resistingg joint GacepÞrm:Um:g;EdlGgát;GacTb;)an edaymineFVIeGayGgát;enaHmanmMurgVil
enARtg;tMNenaH. RbsinebIeRKagRtUv)anKNnaCa rigid frame dUcenHtMNRtUv)anKNnaCa moment
connection.
Type PR – Partially Restrained (semirigid Framing). eRKagRbePTenHCa eRKagEdl
RtUv)anKNnaedayQrelIkarsÁal;brimaNTb; (restraint) cenøaHrvagtMNsamBaØ nigtMNrwg. CaTUeTA
moment restraint sßitenAcenøaH 20% eTA 90% rbs; member moment capacity. bBaðacMbgrbs;
eRKagEdlmantMNRbePTenHKWTamTarnUvkarviPaKeRKagd¾saMjauMedaysarvtþmanrbs; partial joint
restraint. tMrUvkarcaM)ac; sMrab;tMNRbePTenHKWExSekag m:Um:g;-mMurgVil.
RbsinebIeKecal partial restraint eKGaccat;TukFñwmCaFñwmTMrsamBaØEdlminman moment
restraint enARtg;tMN. Framed and seated beam connections sßitenAkñúgRbePTenH. CaTUeTAtMN
EdlepÞr member capacity ticCag 20% RtUv)ancat;TukCatMNsamBaØ. TMrFñwmEdlRtUv)anKNnaenA
kñúgkrNIenH eBlxøHRtUv)aneKehAfa shear connection EdlmanEtkMlaMgRbtikmμ b¤kMlaMgkat;enAxag
cugEdlRtUv)anbBa¢Ún.
eRKagEdlman shear connection RtUv)anBRgwgenAkñúgbøg;rbs;eRKagedaysarvaKμan “frame
action”edIm,IeFVIeGayman lateral stability. cMrwg (bracing) TaMgenHmaneRcInTMrg; GacCa diagonal
bracing members, shear wall, or lateral support BIeRKagEdlenACab;. m:Um:g;EdlekItBIbnÞúkxag
¬CaTUeTAKW xül; nigrBa¢ÜydI¦ RtUv)anykmkKitkñúgkarKNnasMrab;kareRCIserIs beam-to-column
connections. sMrab;viFIenH eKsnμt;tMNeGayeFVIkarCatMNsamBaØedIm,ITb;Tl;nwgbnÞúkefr nigbnÞúk
Gefr ¬bnÞúkTMnaj gravity load¦ nigCa moment connection CamYynwglT§PaBEdlmankMNt;kñúgkar
Tb;Tl;m:Um:g;xül;. RbsinebIeKKNnaFñwmCaRbePTTMrsamBaØ m:Um:g;bnÞúkTMnajGtibrmaGac
overestimated ehIyFñwmGac overdesigned. b:uEnþkñúgkrNICaeRcIn m:Um:g;xül;GacmantMéltUc.
RbsinebIeKeRbItMNsamBaØ Specification TamTareGayeKarBnUvlkçxNÐxageRkam³
325 tMNcakp©it
- 35.
T.chhay
!> eTaHbICaFñwm ¬rt¦ minRtUv)anRTedayTMrsamBaØk¾eday k¾vaRtUvEtRTbnÞúkTMnajtamEtvaGac
eFVI)an.
@> tMN nigGgát;EdlRtUv)anP¢ab; ¬Fñwm nigssr¦ RtUvmanlT§PaBGacTb;m:Um:g;xül;)an.
#> tMNRtUvman inelastic rotational capacity RKb;RKan;EdleRKOgP¢ab; b¤TwkbnSarnwgmin
RtUv)an overload eRkambnSMénbnÞúkTMnaj nigbnÞúkxül;.
enAkñúgsovePAenH eyIgBicarNaEttMNBIrRbePTKW³ tMNsamBaØ (simple connection) Edl
KNnasMrab;bnÞúkTMnaj ¬CamYynwg lateral frame stability Edlpþl;eGayeday positive bracing
system¦ nigtMNrwg (rigid connection) EdlKNnasMrab; moment capacity rbs;FñwmFMCag 90% .
eyIg)anBicarNa simple connection enAkñúg framed nig seated beam connections rYcehIy dUcenH
eyIgnwgRtUvkarykcitþTukdak;eTAelI rigid connectionsvijmþg.
]TahrN_FmμtaCaeRcInEdleRbI moment connection RtUv)anbgðajenAkñúgrUbTI 8>30. Ca
TUeTA karepÞrm:Um:g;PaKeRcInRtUv)anbBa¢ÚntamsøabFñwm ehIy moment capacity k¾RtUv)aneLIg. tMN
enAkñúgrUbTI 8>30 a bgðajBIKMnitenH. EdkbnÞHEdlP¢ab;RTnugFñwmeTAssrKWRtUv)anpSarP¢ab;eTAnwg
ssrenAeragCag nigRtUv)ancab;b‘ULúgeTAnwgFñwmenAkardæan. CamYynwgkarerobcMEbbenH FñwmRtUv)an
Gacdak;enAelITItaMgy:agRsYledayeGaysøabGacRtUv)anpSarP¢ab;eTAnwgssrenAkardæan. Plate
connection RtUv)anKNnaedIm,ITb;Tl;EtkMlaMgkat; nigTTYlRbtikmμrbs;Fñwm. Complete penetra-
tion groove welds P¢ab;søabFñwmeTAssr nigGacepÞrm:Um:g;esμInwg moment capacity rbs;søab Fñwm.
vanwgrYmKñaCamYy moment capacity rbs;FñwmPaKeRcIn b:uEnþbrimaNrbs;karTb;RtUv)anpþl;eGay eday
plate connection. ¬edaysar strain harderning full plastic moment capacity rbs;FñwmGac
RtUv)anbegáIteLIgtamry³søab¦. kareFVIkartP¢ab;søabTamTarfaEpñkd¾tUcrbs;RTnugFñwmRtUv)andk
ecjehIy “backing bar” RtUv)aneRbIenAelI søabmYyedIm,IGnuBaØateGaykarpSarTaMgGs;eFVIeLIgBIelI.
enAeBlEdlkarpSarBIxagelIRtCak; vanwg rYjCaTUeTARbEhl 1 / 8in. . bMlas;TItamTisbeNþayEdl
TTYl)anRtUv)anykmkKitsMrab;eRbIR)as; slotted bolt hole nigedayrwtbNþwgb‘ULúgeRkayeBlTwk
bnSarRtUv)anRtCak;.tMNRbePTenH eRbI column stiffenders EdlminRtUvkarCaTUeTAeT ¬emIlEpñk
8>7¦.
326 tMNcakp©it
- 36.
T.chhay
Moment connection rbs;rUbTI 8>30 a k¾RtUv)anbgðaj recommended connection design
practice: RKb;eBlTaMgGs; karpSarKYrEtRtUv)aneFVIenAkñúgeragCag ehIykarcab;b‘ULúgKYreFVIenAkardæan.
karpSarenAeragCagmantMélefakCag niggayRsYlkñúgkarRtYtBinitü.
sMrab; beam-to-column moment connections Ggát;CaEpñkrbs; plane frame ehIyRtUv)an
dak;dUcbgðajenAkñúgrUbTI 8>30 a EdlRTnugenAkñúgbøg;rbs;eRKagEdlkarBt;rbs;Ggát;nimYy²eFobeTA
nwgG½kSemrbs;va. enAeBlEdlFñwmRtUv)anP¢ab;eTAnwgRTnugrbs;ssrCaCagsøabrbs;ssr ¬Ca-
]TahrN_ enAkñúgeRKaglMhr¦ eKeRbItMNdUcEdlbgðajenAkñúgrUbTI 8>30 b. tMNenHRsedogKñaeTA
nwgGVIEdlbgðajenAkñúgrUbTI 8>30 a b:uEnþTamTarnUvkareRbI column stiffener edIm,IeFVIkartP¢ab;eTAnwg
søabFñwm.
eTaHbICatMNEdlbgðajenAkñúgrUbTI 8>30 a CatMNsamBaØk¾eday k¾kartMeLIgrbs;faTamTar
nUvkMritlMeGantUcEdr. RbsinebIFñwmtUcCagkarrMBwgTukcenøaHrvagssr nigsøabFñwmGacbgáPaBlM)ak
kñúgkarpSar enAeBlxøHeKeRbI backing bar. Three-plate connection EdlbgðajenAkñúgrUbTI 8>30 c
minman handicap eT ehIyvamanGtßRbeyaCn_bEnßmEdlRtUv)anP¢ab;edayb‘ULúgy:agl¥enAkardæan.
Flange plate nig web plate RtUv)anpSarenAkñúgeragCageTAnwgsøabssr nigcab;b‘ULúgeTAFñwmRtUv)an
eFVIenAkardæan. edIm,Ipþl;eGaysMrab;karERbRbYlenAkñúgkMBs;Fñwm cMgayrvag flange plates RtUv)aneFVI
327 tMNcakp©it
- 37.
T.chhay
eLIgFMCagkMBs; Fmμtarbs;Fñwm b:uEnþRbEhl3 / 8in. . KMlatenHRtUv)anbMeBjenAsøabxagelIkñúgeBl
dMeLIgCamYy shims/ Edl thin strip rbs;EdkedayRtUv)aneRbIsMrab;EktMrUvkarP¢ab;enARtg;tMN.
Shim GacCaRbePTmYykñúgcMeNamBIrRbePTKW conventional shim nig finger shim EdlGacs‘k
eRkayeBlb‘ULúgRtUv)anP¢ab; dUcbgðajenAkñúgrUbTI 8>30 d. enAkñúgtMbn;EdlmantMbn;rBa¢ÜyFM tMN
EdlbgðajenAkñúgrUbTI 8>30 a RtUvkarkarKNnaBiess (FEMA, 1995).
]TahrN_ 8>10 bgðajBIkarKNnarbs; three-plate moment connect edayrYmbBa©ÚlTaMg
tMrUvkarsMrab;kartP¢ab;Ggát; Edlmanerobrab;eday AISC J5.
]TahrN_ 8>10³ KNna three-plate moment connection rbs;RbePTEdl)anbgðajrUbTI 8>31 sM
rab;kartP¢ab;Fñwm W 21× 50 eTAsøabrbs;ssr W 14 × 99 . snμt;Fñwm set-back 1 / 2in. . karviPaK
eRKagbgðajfatMNRtUvEtepÞrm:Um:g;bnÞúkemKuN 210 ft. − kips nigkMlaMgkat;emKuN 33kips . RKb;bnÞH
EdkEdlpSareTAnwgssrCamYynwg electrode E70 XX nigkarP¢ab;b‘ULúgeTAFñwmCamYynwg bearing-
type bolts A325 . EdkTaMgGs;CaRbePTEdk A36 .
dMeNaHRsay³ sMrab; web plate ¬edayecalcMNakp©it¦ sakl,gb‘ULúgGgát;p©it 3 / 4in. . snμt;fa
eFμjsßitenAkñúgbøg;kMlaMgkat;. lT§PaBkMlaMgkat;TTwgrbs;b‘ULúgKW
φFv Ab = 0.75(48)(0.4418) = 15.90kips
cMnYnb‘ULúgEdlRtUvkar = 1533 = 2.08
.90
sakl,gb‘ULúg 3 RKab; nigkMNt;kMras;bnÞHEdlTamTarsMrab; bearing. eRbIKMlat nigcMgayeTARCug
EKmenAkñúgrUbTI 8>32 a ehIyGgát;p©itrn§KW
1 3 1 13
h=d+ = + = in.
16 4 16 16
328 tMNcakp©it
- 38.
T.chhay
sMrab;RbehagEdlenAEk,rRCugEKmbMput
h 13 / 16
Lc = Le − = 1.5 − = 1.094in.
2 2
⎛3⎞
2d = 2⎜ ⎟ = 1.5in.
⎝4⎠
edaysar Lc < 2d / bearing strength KW
φRn = φ (1.2 Lc tFu ) = 0.75(1.2 )(1.094)t (58) = 57.11tkips / bolt
sMrab;Rbehagd¾éT
13
Lc = s − h = 3 − = 2.188in. > 2d
16
⎛3⎞
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.03tkips / bolt
⎝4⎠
edIm,IrkkMras;EdlRtUvkardak; total bearing strength esμInwg applied load:
57.11t + 2(78.30t ) = 33 b¤ t = 0.154in.
sMrab;RTnugFñwm (beam web) t w = 0.380in. > 0.154in.
edIm,IkMNt;kMras;bnÞHEdkEdlRtUvkarsMrab;kMlaMgkat; cUrBicarNamuxkat;bBaÄrkat;tambnÞHEdk. BI
AISC J5, “Connecting Elements,”
φRn = 0.90[0.60 Ag F y ] (AISC Equation J5-3)
33 = 0.90[0.60(9t )(36 )]
t = 0.189in. ¬lub¦
dUcenHyk t = 1 / 4in.
329 tMNcakp©it
- 39.
T.chhay
sMrab;kartP¢ab; shear plateeTAnwgsøabssr TMhM fillet weld Gb,brmaKW 1 / 4in. . ¬edayQrelI
EpñkEdlRtUvP¢ab;EdlmankMras;Rkas;Cag TMhMfillet weld Gb,brmaKW 5 / 16in. b:uEnþvaminRtUvkarFM
CagkMras;rbs;EpñkEdlRtUvP¢ab;EdlesþIgCageT¦. enaH
lT§PaBkñúgmYyÉktþaRbEvg = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5)
⎜ ⎟
⎝4⎠
= 5.568kips / in.
lT§PaBkMlaMgkat;TTwgrbs; base metal KW
(
tφFBM = t 0.54 F y = ) 1
4
(0.54)(36) = 4.86kips / in. ¬lub¦
dUcenHRbEvgEdlcaM)ac;rbs; fillet weld 1 / 4in. KW
33
= 6.79in.
4.86
karpSarCab;KñaenAelIRCugmçagrbs;bnÞHGacRKb;RKan; b:uEnþCaTUeTAeKRtUvpSarsgxag ehIyRtUv)anGnuvtþ
enATIenH.
TTwgGb,brmarbs;bnÞHEdkGacRtUv)ankMNt;BIkarBicarNacMgayeTARCugEKm. bnÞúkEdl
RtUv)anRT ¬RbtikmμFñwm¦ KWmanTisbBaÄr dUcenHcMgayeTARCugEKmcaM)ac;eKarBtamtMrUvkarrbs; AISC
Table J3.4. RbsinebIeyIgsnμt;RCugEKmCa sheared edge cMgayeTARCugEKmGb,brmaKW 1 1 4 in. .
CamYynwg beam setback 1 / 2in. nigcMgayeTARCugEKm 1 12 in. dUcEdl)anbgðajenAkñúgrUbTI
8>32 b TTwgrbs;bnÞHEdkKW
0.5 + 2(1.5) = 3.5in. ykbnÞHEdkTMhM 3 1 2 × 1 4
sMrab; flange plates, rkkMlaMgRtg;épÞb:HrvagsøabFñwm nigbnÞHEdk. BIrUbTI 8>33
M 210(12)
M = Hd nig H=
d
=
20.83
= 121.0kips
330 tMNcakp©it
- 40.
T.chhay
sakl,gb‘ULúg A325 Ggát;p©it3 / 4in. . ¬edaysarb‘ULúgGgát;p©it 3 / 4in. RtUv)aneRCIserIssMrab;
shear connection dUcenHeyIgsakl,gTMhMb‘ULúgdUcKña¦. RbsinebIkMlaMgkat;TTwgb‘ULúglub cMnYnb‘U
LúgEdlRtUvkarKW
1 3 1 13
h=d+ = + = in.
16 4 16 16
sMrab;RbehagEdlenAEk,rRCugEKmCageK
h 13 / 16
Lc = Le − = 1.5 − = 1.094in.
2 2
2d = 2(3 / 4 ) = 1.5in.
edaysar Lc < 2d / bearing strength KW
φRn = φ (1.2 Lc tFu ) = 0.75(1.2)(1.094 )t (58) = 57.11tkips / bolt
sMrab;RbehagepSgeTot
13
Lc = s − h = 3 − = 2.188in. > 2d
16
⎛3⎞
dUcenH φRn = φ (2.4dtFu ) = 0.75(2.4)⎜ ⎟t (58) = 78.30tkips / bolt
⎝4⎠
edIm,IrkkMras;EdlRtUvkar dak; total bearing strength eGayesμI applied load:
2(57.11t ) + 6(78.30t ) = 121.0 b¤ t = 0.207in.
Flange plate TaMgBIrnwgRtUv)anKNnaCa tension connecting elements.
¬ebIeTaHbICabnÞHEdkmYyrgkMlaMgsgát;k¾eday kartP¢ab;lMGitecalnUvbBaðaesßrPaBTaMgGs;¦.
eKnwgkMNt;muxkat;Gb,brmaEdlRtUvkarsMrab;kugRtaMgTajenAelI gross nig net area. BI AISC
Equation J5-1,
(
φRn = 0.90 Ag F y )
Ag EdlRtUvkar = 0.φRnF
90
=
H
=
121.0
0.90 F y 0.90(36)
= 3.735in.2
y
BI AISC Equation J5-2,
φRn = 0.75 An Fu
EdlRtUvkar = 0.φ75nF = 0.75F = 0121(.58) = 0.782in.2
An
R H
.75
0
u u
sakl,gTTwgrbs;bnÞHEdk wg = 6.5in. ¬esμIeTAnwgTTwgsøabrbs;Fñwm¦. kMNt;kMras;caM)ac;edIm,I
bMeBjtMrUvkar requirement.
331 tMNcakp©it
- 41.
T.chhay
b¤ t = 0.575in.
Ag = 6.5t = 3.735in.2
KNnakMras;EdlcaM)ac;edIm,IbMeBjtMrUvkar net area
( )
⎡ ⎛ 7 ⎞⎤
An = twn = t wg − ∑ d hole = t ⎢6.5 − 2⎜ ⎟⎥ = 4.750t
⎣ ⎝ 8 ⎠⎦
yk 4.750t = 2.782in.2 b¤ t = 0.586in. ¬lub¦
kMras;k¾RtUvFMCagGVIEdlTamTarsMrab; bearing dUcenHvaRtUvCakMras;Gb,brmaEdlGacTTYlyk)an.
sakl,gbnÞH 6 12 × 5 8 . bnÞHenHCa tension connecting element dUcenH net area rbs;vaminGac
elIsBI 0.85 Ag enAkñúgkarKNna (AISC J5.2):
5⎡ ⎛ 7 ⎞⎤
An = ⎢6.5 − 2⎜ ⎟⎥ = 2.969in.2
8⎣ ⎝ 8 ⎠⎦
0.85 Ag = 0.85(0.625)(6.5) = 3.453in.2 > 2.969in.2 (OK)
ykbnÞH 6 12 × 5 8
Epñkrbs;RkLaépÞsøabrbs;FñwmnwgRtUv)an)at;bg;edaysarRbehagrbs;b‘ULúg nig moment capacity
RtUv)ankat;bnßy. AISC B10 GnuBaØatkarkat;bnßyenHedIm,IeGayecalenAeBl
0.75 Fu A fn ≥ 0.90 F y A fg (AISC Equation B10-1)
Edl A fg = gross flange area
= b f ⋅ t f = 6.530(0.535) = 3.494in.2
A fn = net flange area
( ) ⎡ ⎛ 7 ⎞⎤
= t f b f − ∑ d h = 0.535⎢6.530 − 2⎜ ⎟⎥ = 2.557in.2
⎣ ⎝ 8 ⎠⎦
edayeRbI AISC Equation B10-1 eyIgTTYl)an
0.75 Fu A fn = 0.75(58)(2.557 ) = 111.2kips
0.9 F y A fg = 0.9(36 )(3.494) = 113.2kips > 111.2kips
edaysar AISC Equation B10-1 minRKb;RKan; flexural KYrRtUvQrelIRkLaépÞsøabRbsiT§PaB
(effective flange area)
5 Fu
A fe = A fn
6 Fy
5 ⎛ 58 ⎞
= ⎜ ⎟(2.557 ) = 3.433in.2 (AISC Equation B10-3)
6 ⎝ 36 ⎠
332 tMNcakp©it
- 42.
T.chhay
RkLaépÞenHminxusKñay:agxøaMgBI actual grossflange are 3.494in.2 dUcenH flexural strength eday
minRtUvEkERb.
cMeLIy³ eRbItMNEdlbgðajenAkñúgrUbTI 8>34 ¬tMrUvkar column stiffener nwgRtUv)anBicarNaenAkñúg
Epñk 8>7¦*
8>7> Column Stiffeners and other Reinforcement
m:Um:g;PaKeRcInEdl)anepÞrBIFñwmeTAssrenAkñúgtMNrwgmanTMrg;Ca couple EdlpSMeLIgedaykM
laMgTaj nigkMlaMgsgát;EdlmanenAkñúgsøabrbs;Fñwm. karGnuvtþn_kMlaMgcMnucEdlmantMélFMGacTam
TarkarBRgwgssr. sMrab;m:Um:g;GviC¢manEdldUckrNICamYybnÞúkTMnaj kMlaMgTaMgenHmanTisedAdUc
bgðajenAkñúgrUbTI 8>35 CamYynwgsøabxagelIbMputrbs;FñwmEdlbBa¢ÚnkMlaMgTajeTAssr ehIysøab
xageRkamEdlbBa¢ÚnkMlaMgsgát;.
kMlaMgTaMgBIrRtUvbBa¢ÚneTARTnugssrCamYynwgkMlaMgsgát;EdlmaneRKaHfñak;Cagedaysar
stability problem. kMlaMgTajenAxagelIGacrMxansøabssr ¬rUbTI 8>35 c¦ EdlbegáItbnÞúkbEnßm
eTAelIkartP¢ab;edaypSarénsøabssreTAsøabFñwm. RbePTeRKOgBRgwg (stiffener) Edl)an
bgðaj)anBRgwgsøabssr. dUc)aneXIjy:agc,as; stiffener RtUv)anpSarP¢ab;eTAnwgRTnug nigsøab.
*
rUbTI 8>34 k¾bgðajBInimitþsBaØasMrab; bevel groove weld, edayeRbIenATIenHsMrab; beam flange plate-to-column connection
333 tMNcakp©it
- 43.
T.chhay
RbsinebIm:Um:g;EdlGnuvtþminpøas;bþÚrTisedA stiffener EdlTb;Tl;nwgkMlaMgsgát;¬stiffener xag
eRkam¦ minRtUvkarkarpSareT.
AISC Specification Requirements
tMrUvkarrbs; AISC sMrab;karBRgwgRTnugssrRtUv)anerobrab;enAkñúg Chapter K, “strength
Design Considerations.”. sMrab;EpñkCaeRcIn karpþl;eGayenHQrenAelIkarviPaKedayRTwsþIEdl
RtUv)anEkERbedIm,IeGayRtUvnwglT§plrbs;karBiesaFn_. RbsinebIbnÞúkemKuNGnuvtþn_EdlRtUv)an
epÞredaysøabFñwm b¤ flange plate FMCag design strength φRn sMrab;RKb;sßanPaBkMNt;Edl)an
BicarNaTaMgGs; enaHeKRtUvEteRbI stiffener.
edIm,IeCosvag local bending failure rbs;søabssr kMlaMgTajBIsøabFñwmdac;xatminRtUv
FMCag
(
φRn = φ 6.25t 2 F yf
f ) (AISC Equation K1-1)
Edl φ = 0.90
tf =kMras;rbs;søabssr
F yf = yield stress rbs;søabssr
sMrab;sßanPaBkMNt;rbs; local web yielding rgkugRtaMgsgát;
φRn = φ [(5k + N )Fywt w ] (AISC Equaton K1-2)
b¤ enAeBlEdlbnÞúkRtUv)anGnuvtþedaycMgayBIcugrbs;Ggát;EdlesμIkMBs;rbs;Ggát;
φRn = φ [(2.5k + N )Fywt w ] (AISC Equation K1-3)
Edl φ = 1.0
k = cMgayBIépÞsøabxageRkArbs;ssreTAeCIgrbs; fillet EdlenAelIRTnug
N = RbEvgrbs;bnÞúkGnuvtþn_ = kMras;rbs;søabFñwm b¤ flange plate
F yw = yield stress rbs;RTnugssr
t w = kMras;rbs;RTnugssr
eyIgk¾eRbI AISC Eqution K1-2 nig K1-3 in Section 5.13 edIm,IGegát web yielding enAkñúgFñwmEdl
rgbnÞúkcMcMnuc.
334 tMNcakp©it
- 44.
T.chhay
edIm,IkarBar web crippling enAeBlEdlbnÞúksgát;RtUv)anbBa¢ÚneTAEtsøabmYy dUckñúgkrNI
ssrxageRkAEdlmanP¢ab;CamYyFñwmEtmçag enaHbnÞúkGnuvtþn_minRtUvFMCag design strength EdleGay
daysmIkarmYykñúgcMeNamsmIkarxageRkam. ¬eyIgk¾Føab;)anerobrab;BI web crippling enAkñúg web
crippling enAkñúgEpñkTI 5>13¦ enAeBlEdlbnÞúkRtUv)anGnuvtþenAcMgayy:agtic d / 2 BIcugrbs;ssr
⎡ 1.5 ⎤
⎛N ⎞⎛ t w ⎞ ⎥ Fywt f
φRn = φ135t w ⎢1 + 3⎜
2
⎟⎜ ⎟ (AISC Equation K1-4)
⎢ ⎝ d ⎠⎜ t f ⎟
⎝ ⎠
⎥ tw
⎢
⎣ ⎥
⎦
Edl φ = 0.75
d=kMBs;srubrbs;ssr
RbsinebIbnÞúkRtUv)anGnuvtþenAcugrbs;ssr
⎡ 1.5 ⎤
⎛N ⎞⎛ t w ⎞⎥ Fywt f
φRn = φ 68t w ⎢1 + 3⎜
2
⎢ ⎝
⎟⎜ ⎟
d ⎠⎜ t f ⎟⎥ tw
sMrab; N
d
≤ 0.2 (AISC Equation K1-5b)
⎢
⎣ ⎝ ⎠ ⎥
⎦
⎡ 1.5 ⎤
2⎢ ⎛ N ⎞⎛ t w ⎞ ⎥ Fywt f
b¤ φRn = φ 68t w 1 + ⎜ 4 − 0.2 ⎟
⎢ ⎝ d
⎜ ⎟
⎠⎜ t f ⎟ ⎥ tw
sMrab; N
d
> 0.2
⎢
⎣ ⎝ ⎠ ⎥ ⎦
(AISC Equation K1-5b)
kMlaMgsgát; backling rbs;RTnugRtUv)anGegátenAeBlEdlbnÞúkRtUv)anbBa¢ÚneTAsøabssr
TaMgBIr. bnÞúkEbbenHnwgekItmanenAssrxagkñμúgCamYynwgFñwmEdlP¢ab;eTAssrTaMgsgxag. Design
strength sMrab;sßanPaBkMNt;enHKW
⎡ 4100t w Fyw ⎤
3
φRn = φ ⎢ ⎥ (AISC Equation K1-8)
⎢ h ⎥
⎣ ⎦
Edl φ = 0.90
h=kMBs;RTnugssrBIeCIgrbs; fillet eTAeCIgrbs; fillet ¬rUbTI 8>36¦
RbsinebIkartP¢ab;enAEk,rcugrbs;ssr ¬EdlRbsinebIbnÞúkRtUv)anGnuvtþenAcMgay d / 2 BI
cug¦ ersIsþg;EdleGayeday AISC Equation K1-8 KYrRtUv)ankat;bnßyBak;kNþal.
niyayedaysegçb edIm,IGegátPaBcaM)ac;sMrab; column stiffener eKRtUvRtYtBinitüsßanPaBkM
Nt;bIdUcxageRkam³
!> Local flang bending (AISC Equation K1-1)
335 tMNcakp©it
- 45.
T.chhay
@> Loacl web yielding (AISC Equation K1-2 or K1-3)
#> Web crippling b¤kMlaMgsgát; buckling rbs;RTnug. ¬RbsinebIkMlaMgsgát;RtUv)anGnuvtþ
eTAelIsøabEtmYy eKRtUvRtYtBinitü web crippling [AISC Equation K1-4 b¤ K1-5]. RbsinebIkMlaMg
sgát;RtUv)anGnuvtþeTAelIsøabTaMgBIr eKRtUvRtYtBinitü compressive buckling rbs;RTnug [AISC
Equation K1-8]¦.
RbsinebI stiffener EdlRtUvkareday AISC Equation K1-2 sMrab; local web yielding, eKGac
rkRkLaépÞmuxkat;EdlRtUvkarsMrab; stiffener dUcxageRkam. snμt;faeKGacTTYl)an design strength
bEnßmBIRkLaépÞrbs; stiffener Ast Edl yield. dUcenHBI AISC Equation K1-2.
φRn = φ [(5k + N )Fywt w + Ast Fyst ]
Edl Fyst Ca yield stress rbs; stiffener. dak;eGayGgÁxagsþaMrbs;smIkarenHesμInwgbnÞúkGnuvtþn_
EdlsMKal;eday Pbf nigedaHRsaysMrab; Ast eKTTYl)an
Pbf / φ − (5k + N )Fywt w
Ast =
Fyst
Pbf − (5k + tb )Fywt w
=
Fyst
¬*>^¦
Edl φ = 1.0 nig tb KWkMras;rbs;søabssr b¤ flange plate. smIkar 8>6 k¾GacRtUv)aneRbIedIm,IRtYt
Binitü local buckling yielding strength rbs;ssr. edaHRsayrk Ast RbsinebITTYl)anlT§pl
GviC¢man eKnwgminRtUvkar stiffener sMrab;sßanPaBenHeT.
RbsinebIeKRtUvkar stifferner AISC K1-9 eGaynUvTMhMsmamaRtrbs;vadUcxageRkam³
336 tMNcakp©it
- 46.
T.chhay
TTwgrbs; stiffener bUknwgkMras;Bak;kNþalrbs;RTnugssrRtUvFMCagb¤esμInwgmYyPaKbIén
TTwgrbs;søabFñwm b¤ flange plate EdlbBa¢ÚnkMlaMgeTAssr b¤BIrUbTI 8>37
t
b+ w ≥ b
2
b
3
dUcenH b ≥ b3b − t2
w
kMras;rbs; stiffener dac;xatRtUvEtFMCagb¤esμInwgBak;kNþalkMras;rbs;søabFñwm b¤ flange
plate b¤
t
t st ≥ b
2
pleFobTTwgelIkMras;RtUvEt
t
b
≤
250
F
¬xñat IS¦ b
t st
≤
95
Fy
¬xñat US¦
st y
eKRtUvkar Full-depth stiffener sMrab;krNI compression buckling b:uEnþeKGnuBaØateGayeRbI
half-depth stiffener sMrab;sßanPaBkMNt;epSgeTot. dUcenHeKRtUvkar full-depth stiffener EtenA
eBlEdlFñwmRtUv)anP¢ab;eTAnwgssrTaMgsgxag.
sMrab;RKb;sßanPaBkMNt;TaMgGs; karsMerckñúgkarpSar stiffener P¢ab;eTAsøabKWQrelIlkçxNÐ
xageRkam³
enAelIxagEdlrgkMlaMgTaj eKRtUvpSar stiffener P¢ab;eTAnwgRTnug nigsøab.
enAelIxagEdlrgkMlaMgsgát; stiffener RKan;EtRtUvkardak;EGbnwgsøabEtb:ueNÑaH EteKk¾Gac
pSarvaP¢ab;eTAnwgsøab.
Part 3 of the Manual, “Column Design,” mantMélefrEdlRtUv)anerobCataragEdlGaceFVI
karkMNt;karcaM)ac;sMrab; stiffener. kareRbIR)as;rbs;vaRtUv)anbgðajenAkñúg]TahrN_EdlmanenAkñúg
“General Notes” EtminRtUv)anbgðajenATIenHeT.
337 tMNcakp©it
- 47.
T.chhay
kMlaMgkat;enAkñúgRTnugssr Shear in the Column Web
karepÞrm:Um:g;EdlmantMélFMeTAssrGacbegáItkugRtaMgkMlaMgkat;FMenAkñúgRTnugssr
enAkñúgRBMEdn rbs;tMN. ]TahrN_ tMbn; ABCD enAkñúgrUbTI 3>38. eBlxøH eKehAtMbn;enHCa
panel zone. Net moment RtUv)anKit dUcenHRbsinebIFñwmRtUv)antP¢ab;eTARCugTaMgsgxagrbs;ssr
plbUkBiCKNiténm:U m:g;begáIt web shear enH.
RbsinebIkMlaMgsøabFñwmRtUv)ansnμt;eGayeFVIGMeBIenAcMgay 0.95db BIKña Edl db CakMBs;Fñwm
enaHkMlaMgsøabnImYy²GacRtUv)anykCa
M1 + M 2
H=
0.95d b
RbsinebIkMlaMgkat;ssrenAEk,r panel Ca Vu ehIymanTisedAdUcbgðaj kMlaMgkat;TTwgsrub
enAkñúg panel KW
M + M2
P = H − Vu = 1
0.95d b
− Vu ¬*>&¦
Web shear strength RtUv)aneGayenAkñúg AISC K1.7 Ca φRv Edl φ = 0.90 ehIy Rv Ca
GnuKmn_ eTAnwgbnÞúktamG½kSenAkñúgssr. enAeBlEdl Pu ≤ 0.4Py
Rv = 0.60 F y d c t w (AISC Equation K1-9)
enAeBlEdl Pu > 0.4Py /
338 tMNcakp©it
- 48.
T.chhay
⎡ ⎛P ⎞⎤
Rv = 0.60 F y d c t w ⎢1.4 − ⎜ u ⎟⎥ (ASIC Equation K1-10)
⎢ ⎜ Py ⎟⎥
⎣ ⎝ ⎠⎦
Edl Pu = bnÞúktamG½kSenAkñúgssr
Py = axial yield strength rbs;ssr = AF y
A = RkLaépÞmuxkat;rbs;ssr edayrYmbBa©ÚlTaMgeRKOgBRgwg ¬]TahrN_/ doubler plates¦
d c = TMhMssrtamTisFñwmsrub
t w = kMras;RTnugssr edayrYmbBa©ÚlTaMgbnÞHEdkEdlBRgwg
Fy = yield stress rbs;RTnugssr
RbsinebIRTnugssrman shear strength minRKb;RKan; eKRtUvBRgwgva. eKGaceRbI double plate
EdlmankMras;RKb;RKan;edIm,IpSarP¢ab;eTAnwgRTnug b¤ diagonal stiffener mYyKUr. kñúgkarGnuvtþeKeRcIn
eRbI stiffener Cag.
AISC K1.7 k¾)anpþl;nUvsmIkaredIm,IenAeBlEdleKBicarNaBI frame stabality EdlrYmbBa©Úl
TaMgkMhUcRTg;RTayrbs; panel zone. vaminRtUv)anerobrab;enATIenHeT.
]TahrN_ 8>11³ kMNt;faetItMNén]TahrN_ 8>10 RtUvkar stiffener b¤k¾ column web
. snμt;fa Vu = 0 nig Pu / Py = 0.4 .
reinforcement
dMeNaHRsay³ BI]TahrN_ 8>10 flange force RtUv)anykesμInwg
Pbf = H = 121.0kips
RtYtBinitü local flange bending CamYynwg AISC Equation K1-1:
(
φRn = φ 6.25t 2 F yf
f )
[ ]
= 0.90 6.25(0.780)2 (36) = 123kips > 121kips (OK)
RtYtBinitü local web yielding CamYynwg AISC Equation K1-2:
[
φRn = φ (5k + N )Fywt w ]
⎡ 5⎤
= 1.0⎢5(1.438) + ⎥ (36)(0.485) = 136kips > 121kips (OK)
⎣ 8⎦
RtYtBinitü web crippling CamYynwg AISC Equation K1-4:
⎡ 1.5 ⎤
⎛N ⎞⎛ t w ⎞ ⎥ Fywt f
φRn = φ135t w ⎢1 + 3⎜
2
⎟⎜ ⎟
⎢ ⎝ d ⎠⎜ t f ⎟
⎝ ⎠
⎥ tw
⎢
⎣ ⎥
⎦
339 tMNcakp©it
- 49.
T.chhay
⎡ ⎛ 5 / 8 ⎞⎛ 0.485 ⎞ ⎤ 36(0.780 )
1.5
= 0.75(135)(0.485)2 ⎢1 + 3⎜ ⎟⎜ ⎟ ⎥
⎢
⎣ ⎝ 14.16 ⎠⎝ 0.780 ⎠ ⎥ ⎦
0.485
= 193kips > 121kips (OK)
cMeLIy³ eKminRtUvkar column stiffener eT.
sMrab;kMlaMgkat;TTwgeNAkñúgRTnugssr BIsmIkar *>& nigedayecalkMras;rbs; shim enAkñúg
karKNnark db kMlaMgkat;TTwgemKuNenAkñúg column web panel zone KW
P=
(M 1 + M 2 ) − V
u
0.95d b
210(12)
= − 0 = 120kips
0.95[20.83 + 2(5 / 8)]
edaysar Pu = 0.4Py eRbI AISC Equation K1-9:
Rv = 0.60 F y d c t w = 0.60(36 )(14.16 )(0.485) = 148.3kips
Design strength KW
φRv = 0.90(148.3) = 134kips > 120kips (OK)
cMeLIy³ eKminRtUvkar column web reinforcement eT.
]TarhrN_ 8>12³ rUbTI 8>39 bgðajBI beam-to-column connection EdlepÞrm:Um:g;emKuN
142 ft − kips. m:Um:g;enHekIteLIgedaysarbnÞúkTMnagefr nigGefr. eKeRbIEdkRbePT A36 nig
electrode E 70 . cUreFVIkarGegát colum stiffener nigtMrUvkar web panel-zone reinforcement.
snμt;fa Vu = 0 nig Pu < 0.4Py .
dMeNaHRsay³ flange force KW
M 142(12)
Pbf = = = 98.07kips
d b − tb 17.90 − 0.525
edIm,IRtYtBinitü flange bending eKeRbI AISC Equation K1-1:
(
φRn = φ 6.25t 2 Fyf
f )
[ ]
= 0.90 6.25(0.560)2 (36) = 63.50kips < 98.07kips (N.G.)
dUcenH eKRtUvkar stiffener edIm,IkarBar loacla flange bending.
edIm,IRtYtBinitü local web yielding eKeRbIsmIkar 8>6 CMnYseGaykareRbI AISC Equation K1-2:
Pbf − (5k + tb )Fywt w
Ast =
Fyst
340 tMNcakp©it
- 50.
T.chhay
98.07 − [5(1.062) + 0.525](36)(0.36 )
= = 0.6236in.2
36
edaysar Ast viC¢man dUcenHeKRtUvkar stiffener mYyKUrEdlman combined cross-sectional area
y:agtic 0.623in.2 .
RtYtBinitü web crippling strength edayeRbI AISC Equation K1-4:
⎡ 1.5 ⎤
⎛ N ⎞⎛ t w ⎞ ⎥ Fywt f
φRn = φ135t w ⎢1 + 3⎜ ⎟⎜ ⎟
2
⎢ ⎝ d ⎠⎜ t f ⎟ ⎥
⎝ ⎠ ⎥ tw
⎢
⎣ ⎦
⎡ ⎛ 0.525 ⎞⎛ 0.360 ⎞ ⎤ 36(0.560 )
= 0.75(135)(0.36)2 ⎢1 + 3⎜ ⎟⎜ ⎟1.5⎥
⎣ ⎝ 8.25 ⎠⎝ 0.560 ⎠ ⎦ 0.360
= 107.9kips > 98.07kips (OK)
eKeRCIserIsTMhM stiffener edayQrelIlkçxNÐEdlpþl;eGayeday AISC Section K1-9, ehIybnÞab;
mkeKRtUvRtYtBinitüRkLaépÞmuxkat;EdlTTYl)an.
TTwgGb,brmaKW
bf t 6.015 0.360
b≥ − w = − = 1.825in.
3 2 3 2
341 tMNcakp©it
- 51.
T.chhay
RbsinebIeKminGnuBaØateGaybnøay stuffene eTAhYsRCugrbs;søabssrTTwgGtibrmaKW
8.07 − 0.360
b≤ = 3.855in.
2
kMras;Gb,brmaKW
tb 0.525
= = 0.2625in.
2 2
sakl,g 3× 5 /16 ³
⎛5⎞
Ast = 3⎜ ⎟ × 2stiffeners = 1.875in.2 > 0.6236in 2 (OK)
⎝ 16 ⎠
RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratio)
b 3
= = 9.6
t st 5 / 16
95 95
= = 15.8 > 9.6 (OK)
Fy 36
edaysarEtkartP¢ab;enHmanEtmçag dUcenHeKminRtUvkar full-depth stiffeners eT. dUcenH
= 4.125in. yk 4 1 2 in.
d 8.25
=
2 2
cMeLIy³ eRbIEdkTMhM 3 × 5 /16 × 4 12 cMnYn 2 bnÞH. ¬kat;RcwbRCugEkgxagkñúgrbs;bnÞHEdkedIm,IeCos
vag fillet enARtg;kEnøgEdlsøab nigRTnugrbs;ssrCYbKña. kat;RcwbedaymMu 45o sMrab;TMhM
5 / 8in. ¦.
KNnaTwkbnSarsMrab;P¢ab; stiffener eTARTnugssr
TMhMGb,brma = 16 in. (AISC Table J2.4, edayQrelIkMras;RTnug)
3
TMhMcaM)ac;sMrab;ersIusþg;KW
force resisted by stiffener
w=
0.707 L(φFW )
BIsmIkar *>^ kMlaMgEdlRtUvTb;eday stiffener KW
Ast Fyst = Pbf − (5k + tb )Fywt w
= 98.07 − [5(1.062 ) + 0.525](36 )(0.360 ) = 22.45kips
RbEvgEdlGacpSarP¢ab; stiffener eTAnwgRTnugssrKW
⎛ 5⎞
L = ⎜ 4.5 − ⎟ × 2sids × 2stiffeners = 15.5in.
⎝ 8⎠
¬emIlrUbTI 8>40¦
342 tMNcakp©it
- 52.
T.chhay
w=
22.45
0.707(15.5)(31.5)
3
= 0.0650in. < in.
16
TMhMGb,brma
ersIusþg;kMlaMgkat;rbs; base metal KW
⎛5⎞
φRn = φFBM t = 0.54 Fy t st = 0.54(36)⎜ ⎟ = 6.075kips / in.
⎝ 16 ⎠
nig ersIusþg;TwkbnSarcaM)ac; ¬sMrab; stiffener mYy¦ = 0.0650(0.707)(31.5)(2)
= 2.09kips / in. < 6.075kips / in. (OK)
cMeLIy³ yk filler weld 3 /16in. .
KNnaTwkbnSarsMrba;P¢ab; stiffener eTAnwgsøabssr
TMhMGb,brma = 1 in. (AISC Table J2.4, edayQrelIkMras;søab)
4
lT§PaBTwkbnSarkñúg 1in. = 0.707⎛ 1 ⎞(31.5) = 5.538kips / in.
⎜ ⎟
⎝4⎠
< 0.54 Fy t st = 0.6075kips / in. (OK)
RbEvgEdlmansMrab; = ⎛ 3 − 8 ⎞(2)(2) = 9.5in.
⎜
⎝
5
⎟
⎠
TMhMcaM)ac;sMrab;ersIusþg;KW
force resisted by stiffener 22.45 1
w= = = 0.106in. < in.
0.707 L(φFW ) 0.707(9.5)(31.5) 4
cMeLIy³ yk fillet weld 1/ 4in. . ¬m:Um:g;Gnuvtþn_EdlekIteLIgedaybnÞúkTMnaj ehIyEdlminGac
bþÚrTisedAGnuvtþn_)an dUcenHeKGacdak; stiffener Pa¢b;eTAnwgsøabssr Edl stiffener enHTb;søabrg
karsgát;rbs;FñwmedaymincaM)ac;pSar b:uEnþkrNIenHmin)anniyayenATIenHeT¦.
RtYtBinitüRTnugssrsMrab;kMlaMgkat;TTwg. BIsmIkar *>&
P=
(M 1 + M 2 ) − V 142(12)
u = − 0 = 100.2kips
0.95d b 0.95(17.90)
343 tMNcakp©it
- 53.
T.chhay
BI AISC Equation K1-9
Rv = 0.60 Fy d c t w = 0.60(36 )(8.25)(0.360 ) = 64.15kips
Design strength KW
φRv = 0.90(64.15) = 57.74kips < 100.5kips (N.G.)
eRbI AISC Equation edIm,IrkkMras;RTnugEdlRtUvakar. edaHRsayrk t w edayKuNPaKyk
nigPaKEbgeday φ
t w = required doubler plate thickness
= 0.625 − 0.360 = 0.265in.
sakl,g td = 5 /16in. . TwkbnSarRtUvmanTMhMeGayRtUvKñanwgersIusþg;kMlaMgkat;énkMras;
caM)ac;rbs; doubler plate. yk
φFBM t d = 0.707 w(φFW )
φFBM t d 0.54(36 )(0.265)
b¤ w=
0.707(φFW )
=
0.707(31.5)
= 0.231in.
yk w = 1/ 4in.
BI AISC J2.2b, TMhMTwkbnSarGtibrmaKW
1 5 1 1
td − = − = in. (OK)
16 16 6 4
cMelIy³ double plate 5 /16in. nig fillet weld 1/ 4in
eRbI diagonal stiffener
eRbI full-depth horizontal stiffeners dUcbgðajenAkñúgrUbTI 8>41 ¬RKan;EtCaCMerIs¦.
344 tMNcakp©it
- 54.
T.chhay
kMlaMgkat;TTwgEdlTb;eday web reinforcementKW 100.2 − 57.74 = 42.46kips . RbsinebIkMlaMg
enHRtUv)anKitCakMub:Usg;kMlaMgtamG½kSedk P enAkñúg stiffener
P cosθ = 42.46kips
⎛ db ⎞
⎟ = tan −1 ⎛
17.90 ⎞
Edl θ = tan −1 ⎜
⎜ ⎟ ⎜
⎝ 8.25 ⎠
⎟ = 65.26
o
⎝ dc ⎠
42.46
P=
(
tan 65.26 o ) = 101.5kips
yk φRn = φAst Fy = 0.9 Ast (36) = 101.5kips
bnÞab;mk Ast =
101.5
0.9(36)
= 3.13in.2
eRbI stiffener BIr/ 3× 9 /16 enAsgxagRTnug
⎛9⎞
Ast Edlpþl;eGay = 2(3)⎜ ⎟ = 3.38in.2 > 3.13in.2 EdlRtUvkar (OK)
⎝ 16 ⎠
RtYtBinitüpleFobTTwgelIkMras; (width-thickness ratrio):
b 3 95
= = 5.3 < = 15.8 (OK)
t st 9 / 16 36
KNnaTwkbnSar. RbEvgrbs; diagonal stiffener nImYy²KW
dc 8.25
=
(
cosθ cos 65.26 o )
= 19.7in.
RbsinebIeKpSarenAelIépÞTaMgsgxagrbs; stiffener enaHRbEvgTwkbnSarKW
L = 19.7(4 ) = 78.8in.
TMhMTwkbnSarEdlcaM)ac;sMrab;ersIusþg;KW
P 101.5
w= = = 0.058in.
0.707 L(φFW ) 0.707(78.8)(31.5)
eRbITMhMGb,brma 1/ 4in. (AISC Table J2.4)
edaysarTMhMEdlcaM)ac;sMrab;ersIusþg;mantMéltUc eyIgnwgGegátemIllT§PaBkñúgkareRbITwknSarEdl
minCab;Kña. BI AISC J2.2b
RbEvgGb,brma = 4w = 4⎛ 1 ⎞ = 1.0in. b:uEnþvaminRtUvtUcCag 1.5in. ¬1.5in. lub¦
⎜ ⎟
⎝ 4⎠
lT§PaB nigKMlatrbs;RkuménTwkbnSarbYnKW
⎛1⎞
4(0.707 )wL(φFw ) = 4(0.707 )⎜ ⎟(1.5)(31.5) = 33.41kips
⎝4⎠
345 tMNcakp©it
- 55.
T.chhay
lT§PaBEdlcaM)ac;kñúg 1in. = 101.75 = 5.152kips / in.
19
.
KMlatEdlcaM)ac;rbs;TwkbnSar = 5.152 = 6.48in.
33.41
shear capacity of base metal = 0.54 Fy t w = 0.54(36 )(0.360 ) = 7.00kips / in.
lT§PaBrbs;TwkbnSar = 0.707w(φFW ) = 0.707⎛ 1 ⎞(31.5)
⎜ ⎟
⎝4⎠
= 5.57 kips / in. < 7.00kips / in. (OK)
cMeLIy³ eRbITwkbnSarminCab;Kña 1/ 4in.×1 12 in. EdlmanKMlatBImYyeTAmYy 6in. KitBIG½kS enAelIépÞ
nImYy²rbs; diagonal stiffener.
dUcEdl)anbgðajBImun eKniymeRbI diagonal stiffener Cag doubler plate b:uEnþsMrab;lkçN³
esdækic©eKKYrEteRbIvaCamYynwgmuxkat;ssrFM. tMélBlkmμCamYynwg doubler plate nig stiffener
TaMgGs;GacnwgbEnßmtMéleRcIneTAelIsMPar³sMrab;ssrmuxkat;FM.
8>8> End Plate Connection
End plate connection Ca beam-to-column nig beam-to-beam connection Edlmankar
eBjniym ehIyRtUv)aneKeRbIcab;taMgBIBak;kNþalTsvtSr_qñaM 1950 mkemøH. rUbTI 8>42 bgðajBI
end plate connection BIrRbePTKW³ tMNsamBaØ b¤tMNrgEtkMlaMgkat; (Type PR construction) nig
tMNrwg b¤tMNTb;m:Um:g; (Type FR construction). Rigid connection k¾RtUv)anehA mü:ageTotfa
extended end plate connection. eKalkarN_rbs;RbePTTaMgBIrKW bnÞHEdkEdlRtUv)anpSarP¢ab;enA
xagcugrbs;FñwmRtUv)ancab;P¢ab;eTAnwgssr b¤Fñwmedayb‘ULúg. tMNenHRtUvkarb‘ULúgticCagkartP¢ab;
epSgeTotEdlGaceFVIeGaykartMeLIgelOn.
sMrab;tMNsamBaØ eKRtUvykcitþTukdak;kñúgkareFVIeGaymanlkçN³ flexible RKb;RKan;edIm,IeFVI
eGayFñwmmanmMurgVilenAxagcug. eKGacTTYl)an flexibility enH RbsinebIbnÞHEdkmanTMhMtUc nigesþIg
ebIeRbobeFobCamYynwg tMNRbePT fully restrained. Manual of Steel Construction, in Part 9,
“Simple Shear Connections,” )anENnaMfa kMras;RtUvsßitenAcenøaH 1 / 4in. nig 3 / 8in. edIm,ITTYl)an
flexibility. EpñkenHrbs; Manual k¾bgðajBIeKalkarN_ENnaM nig]TaheN_EdlrYmman reaction
capacities sMrab;bnSMCaeRcInénbnÞHEdk nigb‘ULúg.
346 tMNcakp©it
- 56.
T.chhay
karKNna moment-resisting end plate connections RtUvkarkarkMNt;kMras;bnÞH TMhMTwk
bnSar nigkarlMGitBIb‘ULúgCaedIm. karKNnaBITwkbnSar nigb‘ULúgCakarGnuvtþn_nUv traditional
analysis procedures. b:uEnþ karKNna kMras;bnÞHKWQrelIlT§plrbs;karBiesaFn_ nig statistical
research (Krishnamuthy, 1978). EpñkrgkarTajrbs;tMNKWmaneRKaHfñak; Éb‘ULúgenAEpñkrgkar
sgát;mannaTICaGñkrkSatMNeGayenARtg;G½kS. RbsinebImanm:Um:g;sgxag eKRtUvKNnaEpñkrgkar
TajTaMgsgxag. viFITUeTAKWxageRkam³
!> kMNt;kMlaMgenAkñúgsøabrgkarTajrbs;Fñwm
@> eRCIserIsb‘ULúgEdlcaM)ac;edIm,ITb;Tl;nwgkMlaMgenH
nigtMerobvaeGaymanlkçN³sIuemRTIeFobnwgsøabrgkarTaj.
RbsinebIm:Um:g;sßitenAsgxag eKRtUveFVIkartMerobdUcKñaenAelIEpñkrgkarsgát;Edr.
b‘ULúgRtUvEtmancMnYnRKb;RKan;edIm,ITb;Tl;nwgkMlaMgkat;TTwgEdl)anmkBIRbtikmμFñwm.
#> cat;TukEpñkrbs;søabFñwm nigbnÞHEdkEdlenAek,reFVIkarCa tee-shape
EdlrgbnÞúkTajEdlGnuvtþeTAelIRTnugrbs;va dUcbgðajenAkñúgrUbTI 8>43.
347 tMNcakp©it
- 57.
T.chhay
$> eRCIserIsTTwg nigkMras;rbs;søab tee enHedIm,IbMeBjtMrUvkar flexural dUcKñanwgviFIKNna
tee hanger ¬emIlEpñk 7>8¦.
%> RtYtBinitükMlaMgkat;enAkñúgbnÞHEdk.
^> KNnaTwkbnSar.
Manual of Steel Construction (Volume II), bgðajbIviFIsaRsþKNnalMGitCamYynwg]Ta-
hrN_enAkñúg Part 10, “Fully Restrained (FR) Moment Connection”. viFIsaRsþkñúgkarKNnarbs;
vaRsedogKñanwgGVIEdl)anerobrab;xagelIedaymankarEkrsMrYlxøH eBlxøHeKehAvafa Split-tee
method (Krishnamurthy, 1978). GVIEdlxusKña KWCMhanTI $ sMrab;karKNnam:Um:g;Bt;enAkñúgbnÞHEdk.
Traditional analysis KitbBa©ÚlTaMg prying forces EdlmanniyayenAkñúgEpñkTI 7>8. sMrab;viFI
KNnanaeBlbc©úb,nñ kareRCIserIsb‘ULúg nigkMras;bnÞHEdkminGaRs½ynwgkarBIcarNaBI prying action
348 tMNcakp©it
- 58.
T.chhay
eT. karKNnam:Um:g;KWQrelIkarsikSa stitisticalanalysis of finite element EdlmankarbBa¢ak;eday
kareFVIBiesaFn_. CMhandMbUgenAkñúgviFIsaRsþKNnaKW KNnakMlaMgenAkñúgsøabrgkarTajrbs;Fñwm.
Mu
Puf =
d −t f
bnÞab;mk eKeRCIserIsb‘ULúgedIm,ITb;nwgkMlaMgTajenH ehIyeKtMerobvaCaBIrCYreGayman
lkçN³sIuemRTIeFobnwgsøabrgkarTajrbs;Fñwm. eKRtUvbEnßmb‘ULúgy:agticBIrenARtg;søabrgkarsgát;
sMrab;tMrUvkarrbs;RbtikmμFñwm. cMnYnb‘ULúgEdlRtUvkaredIm,ITb;Tl;nwgRbtikmμFñwmnwgQrelI shear
capacity b¤k¾ slip-critical capacity rbs;b‘ULúg EdlGaRs½ynwgRbePTrbs;tMN. RbsinebItMNCa
bearing-type eKRtUvRtYtBinitüGnþrkmμénkMlaMgkat; nigkMlaMgTajenAkñúgb‘ULúg. eKmincaM)ac;eFVIkar
GegátenH sMrab; clip-critcal connection.
m:Um:g;GtibrmaenAkñúg split –tee nwgekItmanenARtg; “load line”, muxkat; 1-1 EdlbgðajenA
kñúgrUbTI 8>43 KW
M t = F1s
Edl F1 = kMlaMgkat;TTwg = P2
uf
s = cMgayBI load line eTAcMnucrbt; = e
p
2
pe = p f − 0.25d b − 0.707 w
BIrUbTI 8>43/ p f CacMgayBIG½kSb‘ULúgeTAsøabFñwm EdlCaTUeTAesμnwgGgát;p©itb‘ULúg db + 1/ 2in.
ehIy w CaTMhMTwkbnSar. eKehA p f CacMgayb‘ULúg (bolt distance) ehIy pe CacMgayb‘ULúg
RbsiT§PaB (effective bolt distance b¤ effective span). m:Um:g; M t EdlRtUv)anbMElgedayemKuN
α m edIm,ITTYl)anm:Um:g;RbsiT§PaB M eu
M eu = α m M t
Edl α m = C a Cb (A f / Aw )1 / 3 ( pe / d b )1 / 4
Ca = cMnYnefrEdlTak;TgeTAnwglkçN³rbs;sMPar³rbs;b‘ULúg nigbnÞHEdk.
Cb = b f / b p
bf = TTwgrbs;søabFñwm
349 tMNcakp©it
- 59.
T.chhay
bp = TTwgrbs; end plate [Krishnamurthy (1978) )anENnaMnUvTTwgRbsiT§PaBGtibrma
b f + 2 w + t p Edl t p CakMras;rbs; end plate. Manual ENnaMTTwgCak;EsþgGtibrma
b f + 1in. ]
Af =RkLaépÞsøabFñwm
Aw = RkLaépÞRTnugFñwmEdlenAcenøaH fillet
cMnYnefr Ca CaGnuKmn_EtnwglkçN³rbs;sMPar³ ehIyRtUv)anerobCataragsMrab;cMNat;fñak;
TUeTArbs; structural steel nig b‘ULúgersIusþg;x<s;. taragenHRtUv)anbgðajenAkñúg Table 10-1 enAkñúg
Part 10 én Manual. Table 10-2 eGaynUvtMél A f / Aw sMrab;rUbragFñwmEdlRtUv)aneRbICaTUeTA.
enAeBlEdleKKNnam:Um:g; M eu rYcehIy eKGacdak;vaeGayesμInwg design strength enaHeKnwg
GacrkkMras;bnÞHEdkGtibrma t p pre EdlcaM)ac;. sMrab;muxkat;ctuekaNEkgEdlekageFobnwgG½kStUc
(minor axis) enaH design strength KW
⎛ b pt 2 ⎞
⎜ p req ⎟
φb M n = φb M p = φb ZF y = 0.90⎜ ⎟ Fy
⎜ 4 ⎟
⎝ ⎠
edayeGaysmIkarenHesμInwgm:Um:g;emKuN eKTTYl)ankMras;bnÞHEdk
⎛ b pt 2 ⎞
⎜ p pre ⎟
0.90⎜ ⎟ Fy = M eu
⎜ 4 ⎟
⎝ ⎠
dUcenH t p req =
4 M eu
0.90b p Fy
eKGacP¢ab;søabrgkarTajrbs;FñwmeTAnwgbnÞHEdkeday full penetration groove weld b¤k¾
eday filler weld EdlpSarBT§½CMuvijsøabTaMgGs;. kMlaMgenAkñúgsøabTaMgGs;RtUv)anbegáItenAelIEpñk
rgkarTaj. eKKYrpSarRTnugenAépÞsgçagCamYynwg fillet welds EdlmanlT§PaBTb;Tl;nwgRbtikmμFñwm.
eKRtUveKarBnUveKalkarN_ENnaMbEnßmxageRkamedIm,IbMeBjkarsnμt;sMrab;GnuvtþnUvviFIKNnaxagelI.
!> TaMgbnÞHEdk nigEdkFñwmRtUvman yield stress dUcKñaKw Fy
@> Ggát;p©itb‘ULúg db minRtUvFMCag 1 12 in. = 38mm
#> b‘ULúgRtUvEtrgkarTajEdleKarBtam AISC Table J3.1.
$> cMgayRCugEKmbBaÄrKYrmantMélRbEhl 1 3 4 db b:uEnþminKYrtUcCag 1 1 2 db
350 tMNcakp©it
- 60.
T.chhay
]TahrN_ 8>13³ KNnaend plate connection sMrab;Fñwm W18× 35 . tMNenHRtUvmanlT§PaBkñúg
karbBa¢Únm:Um:g;emKuN 173 ft − kips nigkMlaMgkat;TTwgemKuN 34kips . eRbIEdk A36 / electrode
E70 XX nig slip-critical bolts A325 .
dMeNaHRsay³ kMlaMgsøabKW
Mu 173(12)
Puf = = = 120.2kips
d − t f 17.7 − 0.425
sakl,gb‘ULúgBIrCYrEdlkñúgmYyCYrmanBIrRKab;enAsøabxagelI nigb‘ULúgBIrRKab;enAsøabxageRka Edl
b‘ULúgTaMgGs;manR)aMmYyRKab;. Design strength rgkMlaMgTajsMrab;b‘ULúgmYyRKab;KW
φRn = 0.75(90) Ab
ehIyRkLaépÞmuxkat;EdlcaM)ac;sMrab;b‘ULúgmYyKW
Required φRn 120.2 / 4
Ab = = = 0.445in.2
0.75(90 ) 0.75(90)
cMeLIy³ eRbIb‘ULúg A325 Ggát;p©it 7 / 8in. ¬ Ab = 0.6013in.2 ¦
eKGackMNt;kMlaMgkat;GtibrmaEdlRTedaytMNBIkarBicarNa slip-critical strength rbs;b‘ULúg
¬EdlnwgmantMéltUcCag shear strength¦. sMrab;b‘ULúgR)aMmYyRKab;
φRstr = φ (1.13μTm N b N s ) = 1.0(1.13)(0.33)(39)(6)(1) = 87.3kips > 34kips (OK)
¬eKmindwgkMras;rbs;søabssr ehIyeKminTan;sÁal;kMras;rbs; end plate dUcenHeKminGaceFVIkarGegát
bearing strength enAeBlenH)aneT. b:uEnþ enAeBlEdlRKb;EpñkEdlRtUvtP¢ab;TaMgGs;RtUv)anKNna
enaHeKGacRtYtBinitü bearing strength¦. edaysarvaCa slip-critical connection enaHeKminRtUvkar
RtYtBiniüGnþrkmμénkMlaMgkat; nigkMlaMgTajeT.
cMeLIy³ eRbIbU‘LúgR)aMmYy EdlbYnRtUv)antMerobsIuemRTIKñaeFobnwgsøabrgkarTaj nigBIreTotsßitenA
Rtg;søabrgkarsgát;.
sMrab; flange weld RbEvgEdlGacpSar)anKW
L = 2b f + 2t f − t w = 2(6.0 ) + 2(0.425) − 0.30 = 12.55in.
TMhMTwkbnSarEdlRtUvkarKW
Puf 120.2
w= = = 0.4301in.
0.707 L(φFw ) 0.707(12.55)(31.5)
eTaHbICaeKminTan;sÁal;kMras;rbs; end plate k¾eday k¾TMhMTwkbnSarGb,brmaEdl)anBI AISC Table
J2.4 minEdlFMCag 5 / 16in. dUcenH 0.43in. EdlRtUvkarsMrab;ersIusþg;nwgmantMélFMCag.
351 tMNcakp©it
- 61.
T.chhay
cMeLIy³ eRbI filletweld 7 /16in.
sMrab; end plate/ yk
1
p f = db + = 0.875 + 0.500 = 1.375in.
2
pe = p f − 0.25d b − 0.707 w
⎛7⎞
= 1.375 − 0.25(0.875) − 0.707⎜ ⎟ = 0.8470in.
⎝ 16 ⎠
sMrab;TTwgbnÞHEdk/ yk
bq = b f + 1 = 6.00 + 1 = 7.00in.
⎛ Puf ⎞⎛ pe ⎞ ⎛ 120.2 ⎞⎛ 0.8470 ⎞
bnÞab;mk M t = F1s = ⎜ ⎟
⎜ 2 ⎟⎜ 2 ⎟ = ⎜ 2 ⎟⎜ 2 ⎟ = 25.45in. − kips
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
C a = 1.36 (Table 10-1, Part 10 of the Manula)
bf 6.00
Cb = = = 0.9258
bq 7.00
Af
= 0.504 (Table 10-2, Part 10 of the Manual)
Aw
1/ 3 1/ 4
⎛ Af ⎞ ⎛ pe ⎞
α m = C a Cb ⎜
⎜A ⎟
⎟ ⎜ ⎟
⎜d ⎟
⎝ w⎠ ⎝ b⎠
= 1.36(0.9258)(0.504 )1 / 3 (0.8470 / 0.875)1 / 4 = 0.9939
M eu = α m M t = 0.9939(25.45) = 25.29in. − kips
4M eu 4(25.29)
t p req = = = 0.668in.
0.90b p Fy 0.90(7.00)(36)
cMeLIy³ ykkMras;bnÞHEdk 3 / 4in.
TTwgbnÞHEdkRbsiT§PaBGtibrmaEdlENnaMeday Krishnamurthy (1978) KW
⎛7⎞ 3
b f + 2 w + t p = 6.00 + 2⎜ ⎟ + = 7.62in. > 7.00 (OK)
⎝ 16 ⎠ 4
RtYtBinitükMlaMgkat;. kMlaMgkat;enAkñúgbnÞHEdkKW
Puf 120.2
F1 = = = 60.1kips
2 2
BI AISC J5, ersIusþg;kMlaMgkat;KW (shear strength) KW
φRn = 0.90(0.60 Ag F y ) = 0.90(0.60)⎜ 7 × ⎟(36) = 102kips > 60.1kips
⎛ 3⎞
(OK)
⎝ 4⎠
352 tMNcakp©it
- 62.
T.chhay
edIm,ITTYl)an shear strengthrbs;RTnugdUcKña ersIusþg;TwkbnSarEdlcaM)ac; ¬TwkbnSarBIrCYrEdlenA
sgçagRTnug¦ KW
φvVn 103
= = 5.819kips / in.
d 17.7
TMhMTwkbnSarEdlRtUvkar
5.819 / 2
w= = 0.131in.
0.707(31.5)
kMNt;TMhMTwkbnSarEdlcaM)ac;edIm,ITb;Tl;nwgkarBt;enAkñúgRTnug. enAeBlEdlm:Um:g;Bt;eFVIkardl;m:U
m:g;)øasÞic kugRtaMgenAkñúgRTnugesμInwg yield stress Fy ehIybnÞúkkñúgmYyÉktþaRbEvgrbs;TwkbnSarKW
φb (Fy × t w × 1) = 0.90(36)(0.300) = 9.720kips / in.
bnÞúkkñúgmYyÉktþarbs;TwkbnSarmYyCYrKW 9.72 / 2 = 4.86kips / in. ehIyTMhMTwkbnSarEdlRtUvkarKW
4.860
w= = 0.2182in. > 0.131in.
0.707(31.5)
TMhMTwkbnSarGb,brmaKW 1/ 4in. (AISC Table J2.4, edayQrelIkMras;rbs;bnÞHEdk).
cMeLIy³ eRbI fillet weld 1/ 4in. ¬karKNnaRtUv)ansegçbenAkñúgrUbTI 8>44¦
Column Web Stiffener Consideration
eKbegáIt AISC Equation K1-2 EdlkarBar web yeilding rbs;ssrenAkñúgtMN beam-to-
column connection enAeBlEdleKeRbI end plates. smIkarenHKWQrelIkarkMNt;kugRtaMgenAelImux
kat;rbs;RTnugEdlbegáIteLIgedaykMras;rbs;va nigRbEvg tb + 5k dUcbgðajenAkñúgrUbTI 8>45 b.
353 tMNcakp©it
- 63.
T.chhay
eKnwgTTYl)anRkLaépÞFMCag enAeBlEdlbnÞúkRtUv)anbBa¢Úntamry³ endplate. RbsinebIeKKitTwk
bnSar beam flange-to-plate nigbnÞúkRtUv)ansnμt;EckedayCMerl 1 : 1 tamry³bnÞHEdk RbEvgRTnug
EdlrgbnÞúknwgesμInwg tb + 2w + 2t p + 5k . edayQrelIkarsikSaRsavRCavedaykarBiesaFn_
(Hendrick and Murray, 1984) tYr 5k GacRtUv)anCMnYseday 6k Edlpþl;lT§plenAkñúgsmIkar
xageRkamsMrab; yielding strength rbs;RTnug³
[(
φRn = φ 6k + tb + 2w + 2t p Fywt w )]
Edl TMhMTwkbnSar
w=
elIsBIenH eKRtUveFVIkarGegátBI local flange bending ning web stability (web crippling b¤
compression buckling). Part 10 of the Manual maneKalkarN_ENnaMBIkarKit local flange
bending.
8>9> esckþIsnñidæan Concluding Remarks
enAkñúgeyIgsgát;F¶n;elIkarKNna nigkarviPaKBIb‘ULúg nigTwkbnSareRcInCag connection
fitting dUcCa framing angle nig beam seats. kñúgkrNICaeRcIn karpþl;eGaysMrab; bearing enAkñúg
tMNedayb‘ULúg nig base metal/ nigsMrab;kMlaMgkat;enAkñúgtMNedayTwkbnSar nwgFananUvPaBRKb;
RKan;rbs;ersIusþg;rbs;EpñkTaMgenH. b:uEnþeBlxøH eKRtUvkarGegátkMlaMgkat;bEnßm. enAeBlxøHeTot
eKRtUvEtBicarNaBI direct tensiion nigm:Um:g;Bt;.
Flexibility rbs;tMNCakarBicarNad¾sMxan;mYyeTot. sMrab; shear connection (simple
framing), EpñkEdlP¢ab;RtUvman flexible RKb;RKan;edIm,IGnuBaØateGaytMNvileRkamGMeBIrbs;kMlaMg.
354 tMNcakp©it
- 64.
T.chhay
b:uEnþ tMNRbePT FR(rigid connections) KYrEtrwgRKb;RKan;EdlmMurgVilrbs;Ggát;EdlRtUv)anP¢ab;Gac
rkSanUvtMélGb,brma.
CMBUkenHRKan;EtENnaMBIkarKNnatMNenAkñúgeRKOgbgÁúMEdkEtb:ueNÑaH edaymin)anniyaylMGit
Gs;esckþIeT. Blodgett (1966) KWCaRbPBB½t’mand¾manRbeyaCn_EdlniyaylMGitBItMNedaypSar.
eTaHbICavaRtUv)ane)aHBum<yUrbnþicEmn Etvapþl;nUvkaENnaMEdlmanRbeyaCn_CaeRcIn. dUcKña Detaling
for Stell Construction (AISC, 1983) CaRbPaBEdlmanB½t’manEdlmanGtßRbeyaCn_sMrab;Gñk
KNna nigGñklMGitkartP¢ab;.
355 tMNcakp©it