SlideShare a Scribd company logo
1 of 61
T.Chhay                                                                   viTüasßanCatiBhubec©keTskmú<Ca


                    VIII.     Ggát;rgkarTaj nigrgkarsgát;eRbkugRtaMg
                Prestressed Compression and Tension Members

1> esckþIepþIm               Introduction
          eTaHCaeKeRbIebtugeRbkugRtaMgy:ageRcInsMrab;Ggát;rgkarBt;begáag dUcCaFñwm nigkMralxNÐk¾
eday k¾vaRtUv)aneKeRbIsMrab;Ggát;rgkMlaMgtamG½kS (axially loaded member) dUcCa ssrEvg ¬Ggát;
rgkarsgát;¦ nigGgát;cMNg (tie) sMrab;Ggát;ragFñÚ (arch) nig truss elements ¬Ggát;rgkarTaj¦. b:uEnþ
minTan;maneCIgtageRbIeRbkugRtaMgTajCamun b¤TajCaeRkayeT.
          RTwsþI/ karviPaK nigkarsikSaKNnaGgát;rgkarsgát;eRbkugRtaMgKWmanlkçN³RsedogKñanwgGgát;
ebtugGarem:rgkarsgát;Edr. kMlaMgeRbkugRtaMgtamG½kSxagkñúgenAkñúg bonded tendon min)anbegáIt
column action eT dUcenHminman buckling GacekItmaneT elIkElgEtEdkeRbkugRtaMg nigebtugEdl

B½T§CMuvijb:HKñaedaypÞal;tambeNþayRbEvgsrubrbs;Ggát;. edaysarEtEbbenHehIy eTIbPaBcg;ekag
rbs;ebtugenAkNþalRtUv)aneFVIeGayNWtedaysarT§iBlsNþkrbs;EdkeRbkugRtaMgEdlbgáb;tam
beNþayG½kS.
          CaFmμtassrEtgEtrgkarBt;begáagbEnßmBIelIbnÞúktamG½kS edaysarbnÞúkxageRkAkMrcMp©it
Nas;. CalT§pl muxkat;ebtugrgkarTajenARtg;RCugEdlenAq¶ayBIExSskmμrbs;bnÞúktambeNþay
CageK. sñameRbHekItmaneLIg b:uEnþeKGackarBarva)antamry³kareRbIkMlaMgeRbkugRtaMgenAkñúgssr.
RbsinebIbnÞúkGnuvtþn_CabnÞúkcMp©it enaHkMlaMgeRbkugRtaMgminmansar³sMxan;eT edaysareKminRtUvkar
eGaykugRtaMgsgát;enAelImuxkat;ebtugekIneLIg.
          eKGacBicarNaGgát;rgkarsgát;rgeRbkugRtaMgeBjtambeNþayRbEvgrbs;vaRbsinebIminmankM
hatbg;eRbkugRtaMgenAxagcugrbs;vaeTenaH. RbsinebIekItmankMhatbg;edayEpñk (partial loss) eK
RtUvBicarNakMNat;EdkenAkñúg development zone minmanrgeRbkugRtaMg ehIyeKRtUvKitmuxkat;enA
tMbn;xagcugCamuxkat;ebtugGarem:rgbnÞúkcakp©it.
          CaFmμtaGgát;rgkarTajEtgrgEtkMlaMgTajedaypÞal;Etb:ueNÑaH. Ggát;TaMgenHPaKeRcInCag
Ggát;ragCabnÞat; dUcCa railroad ties, restraining tie sMrab; arch bridges, Ggát;rgkarTajenAkñúg
truss nig foundation anchorage sMrab;eRKOgbgÁúMTb;dI. Ggát;rgkarTajk¾GacmanragrgVg; b¤)a:ra:bUl

pgEdr dUcCa witness prestressed circular container b¤ catenary-shaped bridge elements. tYnaTI

Prestressed Compression and Tension Members                                                 492
Department of Civil Engineering                                                           NPIC




cMbgrbs;Ggát;rgkarTajKWkarkarBarsñameRbHrbs;vaeRkamGMeBI service load nigGacTb;Tl; service
load xageRkA nig overload. karEdlminmansñameRbHKWkarBarERcHsIuEdk niglkçxNÐbrisßanepSg².



2> Ggát;rgkarsgát;eRbkugRtaMg³ GnþrGMeBIrvagbnÞúk nigm:Um:g;enAkñúgssr nigssrRKWH
     Prestressed Compression Members: Load-Moment Interaction in Columns and Piles
      edIm,IkMNt; nominal strength rbs;ssreRkamGMeBIbnÞúkcMNakp©itepSg² eKcaMcaMKNnanUv
lT§PaBepSgénbnSMrvag ultimate nominal loads Pn nig ultimate nominal moments M n Edl
eGayeday
                     M n = Pn ei                                                 (8.1)
Edl ei CacMNakp©itrbs;bnÞúkeRkamGMeBIénbnSMrvagbnÞúk nigm:Um:g;epSg². düaRkaménTMnak;TMngrvag
 Pn nig M n RtUv)anbgðajenAkñúgdüaRkam interaction énrUbTI 8>1 sMrab;ssrminRsav ¬)ak;edaysar

sMPar³¦ nigssrRsav ¬)ak;edassaresßrPaB¦. enAkñúgssrxøI kar)ak;ekItmanedaysarbnÞúkQaneTA
dl;cMnuc A tambeNþayKnøg OA ehIy concrete arches enARtg;RCugrgkarsgát;. sMrab;ssrRsav
tMélrbs;bnÞúkGtibrmaQaneTAdl;cMnuc B tambeNþayKnøg OBC Edlkat;nwg interaction diagram
enARtg;cMnuc C . GesßrPaBekItmanenAeBlEdlbnÞúkQaneTAdl;bnÞúkeRKaHfñak; (critical load).




       karsnμt;CamUldæansMrab;ssrebtugeRbkugRtaMgmanlkçN³RsedogKñanwgkarsnμt;sMrab;ssr
ebtugGarem:Edr. karsnμt;TaMgenaHmandUcxageRkam³
       !> karBRgaybMErbMrYlrageFobenAkñúgebtugERbRbYlCalkçN³bnÞat;eTAtamkMBs;muxkat;.

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                493
T.Chhay                                                                     viTüasßanCatiBhubec©keTskmú<Ca

          @> karBRgaykugRtaMgenAkñúgtMbn;rgkarsgát;manrag)a:ra:bUl ehIyRtUv)anCMnYsedaybøúk
              ctuekaNsmamaRtenAkñúgkarviPaK nigkarsikSaKNna.
          #> eKsÁal;düaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobrbs;ebtug nigrbs;EdkeRbkugRtaMg.
          $> Crushing strain rbs;ebtugedaysarbnSMkarBt;begáag nigkMlaMgtamG½kSenARtg;srésxag
             eRkAbMputKW ε c = 0.003in. / in. ehIy crushing strain mFümenARtg;Bak;kNþalkMBs;rbs;
             muxkatEdlrgbnÞúktamG½kSCasMxan;KW ε 0 = 0.002in. / in. .
          %> eKKitfamuxkat;)ak;enAeBlEdlbMErbMrYlrageFobenAkñúgebtugenARtg;srésrgkarsgát;xag
             eRkAbMputQaneTAdl; ε c = 0.003in. / in. b¤ ε 0 = 0.002in. / in. enARtg;Bak;kNþalkMBs;
             rbs;muxkat;. cMNaMfa ε c = 0.003in. / in. CatMélEdleRbIenAkñúg ACI Code b:uEnþ code
             déTeToteRbItMélFMCagenHKW 0.0035 b¤ 0.0038 .
          ^> eKsnμt;famanPaBRtUvKñaénbMErbMrYlrageFob (compatibility of strain) rvagebtug
             nigEdkeRbkugRtaMg.

          TMrg;énkar)ak;k¾manlkçN³RsedogKñanwgkar)ak;rbs;ssrebtugGarem:pgEdr³
          !> kar)ak;edaykarsgát;dMbUg (initial compression failure), cMNakp©ittUc. TMrgénkar)ak;enH
              ekItmanenAeBlbMErbMrYlrageFobenAkñúgebtugenARtg;RCugEdlrgbnÞúkQandl; ε cu =
              0.003in. / in. xN³EdlbMErbMrYlrageFobenAkñúgEdkeRbkugRtaMgEdlenARCugq¶aymçageTot

              mantMélTabCag yield strain. cMNakp©it e rbs;bnÞúktamG½kSmantMéltUcCag balanced
              eccentricity eb .

          @> kar)ak;edaykarTajdMbUg (initial tension failure), cMNakp©itFM. TMrg;énkar)ak;enHbRBa©as
              BITMrg;énkar)ak;elIkmun. ebtugenARCugq¶ay yield munebtugEbkRtg;RCugEdlrgbnÞúk. cM
              Nakp©it e rbs;bnÞúktamG½kSFMCag balanced eccentricity eb .
          #> Balanced state of strain, ε t = 0.002in. / in. , balanced eccentricity. TMrg;enHkMNt;nUv
              lkçxNÐéntMélm:Um:g;Gtibrma M nb enAelIExSekagGnþrGMeBIEdlRtUvKñanwg maximum
              tensile strain enAkñúgRsTab;rgkarTajesμInwg strain increment Δε ps = 0.0012 eTA

              0.002in. / in. bnÞab;BI service load. cMNakp©itrbs;bnÞúktamG½kSRtUv)ankMNt;Ca

              balanced eccentricity eb .




Prestressed Compression and Tension Members                                                   494
Department of Civil Engineering                                                             NPIC




          cMnucsMxan;bIenAelIdüaRkam interaction KW³
          !> M u = 0 EdlRtUvKñaeTAnwg ε 0 = 0.002in. / in. enAeBl)ak;edaysarbnÞúkcMp©it Pu .
              TItaMgG½kSNWtKWenAGnnþ.
          @> KμankarTajenARtg;srésrgkarTajxageRkAbMputrbs;ebtug ehIy ε cu = 0.003in. / in. enA
              Rtg;srésrgkarsgát;xageRkAbMputrbs;ebtug. TItaMgG½kSNWtsßitenAelIsrésrgkarTaj
              xageRkAbMput.
          #> Pu = 0 nig ε cu = 0.003in. / in. enARtg;srésrgkarsgát;xageRkAbMput. G½kSNWtsßitenA
              xagkñúgmuxkat; ehIyRtUv)ankMNt;eday trail and adjustment edaysnμt;kMBs; c .
          rUbTI 8>2 bgðajBIkarEbgEckkugRtaMg nigbMErbMrYlrageFobsMrab;krNITaMgbIxagelI.




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                  495
T.Chhay                                                                   viTüasßanCatiBhubec©keTskmú<Ca

         cMnucEdlenAesssl;enAelIdüaRkam interaction KWsMrab;krNIEdlsßitenAcenøaHdMNak;kal
(a), (b) nig (c) rbs;rUbTI 8>2 b¤BIbnÞúkcMputeTAdl;karBt;begáagsuT§ (pure bending). kñúgkrNIrbs;

ssr pure bending kMNt;sßanPaBEdlminKitBIpleFobrbs;bnÞúktamG½kSemKuN Pu elIm:Um:g;Bt;
begáag M u . karBRgaykugRtaMgrag)a:ra:bUlsMrab;krNI (b) nig (c) RtUv)anCMnYsedaybøúkctuekaN
smamaRt EdlkMBs;rbs;bøúk a = β1c dUckrNIsMrab;FñwmrgkarBt;begáagEdr.




Prestressed Compression and Tension Members                                                 496
Department of Civil Engineering                                                               NPIC




         krNIKMrUénGgát;rgkarsgát;KWsßitenAcenøaHdMNak;kal (b) nig (c) rbs;rUbTI 8>2. bMErbMrYl
rageFob kugRtaMg nigkMlaMgsMrab;krNIEbbenHRtUv)anbgðajenAkñúgrUbTI 8>3 sMrab;muxkat;eRKaHfñak;
eRkamsßanPaBkMNt;én ultimate load edaykar)ak;edaysMPar³. kat;düaRkamGgÁesrI (free-body
diagram) enARtg;Bak;kNþalkMBs;rbs;ssrRtg;muxkat; 1-1 muxkat;rbs;Ggát;RtUv)anbgðajenAkñúg

cMnuc (b) rbs;rUb ehIybMErbMrYlrageFob nigkugRtaMgenAeBl)ak;manenAkñúgcMnuc (c) nig (d) erogKña.
bMErbMrYlrageFob ε ce CabMErbMrYlrageFob uniform enAkñúgebtugeRkamGMeBIeRbkugRtaMgRbsiT§PaB
eRkayeBl creep, shrinkage nig relaxation losses EdleGayerogKñadUcxageRkam³
                     Ccn = 0.85 f 'c ba                                              (8.2a)

                     T 'sn = A' ps f ' ps                                            (8.2b)

nig           Tsn = f ps Aps1                                                        (8.2c)

smIkarlMnwgrbs;kMlaMgKW
                     Pn = Ccn − T 'sn −Tsn                                           (8.3)
       RbsinebIkMlaMgeRbkugRtaMgRbsiT§PaBeRkayeBlkMhatbg;TaMgGs;Ca Pe enaHbMErbMrYlrag
eFobenAkñúg tendon munnwgkarGnuvtþrbs;bnÞúkxageRkAKW
                                  f pe                Pe
                     ε pe =              =
                              E ps           (Aps            )
                                                    − A' ps E ps
                                                                                     (8.4a)

       eKGackMNt;karERbRbYlénbMErbMrYlrageFobenAkñúgRkLaépÞEdkeRbkugRtaMg A' ps enAeBl
EdlGgát;rgkar sgát;qøgkat;BIdMNak;kalkMlaMgeRbkugRtaMgRbsiT§PaBeTAdl; ultimate load dUc
xageRkam³
                                    ⎛ c − d'⎞
                     Δε ' ps = ε cu ⎜       ⎟ − ε ce                                 (8.4b)
                                    ⎝ c ⎠
                                   ⎛d −c⎞
                     Δε ps = ε cu ⎜        ⎟ + ε ce                                  (8.4c)
                                   ⎝ c ⎠
                     Δε p = Δ ps − ε ce                                              (8.4d)

                                                                 (
                     T 'sn = A' ps f ' ps = A' ps E ps ε pe − Δε ' ps    )
                                        ⎡            ⎛ c − d'⎞        ⎤
b¤                   T 'sn = A' ps E ps ⎢ε pe − ε cu ⎜
                                                     ⎝ c ⎠
                                                             ⎟ + ε ce ⎥              (8.5)
                                        ⎣                             ⎦
dUcKña                                                   (
                     Tsn = Aps f ps = Aps E ps ε pe + Δε ps          )
                                      ⎡            ⎛d −c⎞        ⎤
b¤                   Tsn = A' ps E ps ⎢ε pe + ε cu ⎜
                                                   ⎝ c ⎠
                                                        ⎟ + ε ce ⎥                   (8.6)
                                      ⎣                          ⎦



Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                    497
T.Chhay                                                                viTüasßanCatiBhubec©keTskmú<Ca

edayKitm:Um:g;eFobnwgTMRbCMuTMgn;FrNImaRt cgc rbs;muxkat;eK)an
                                                                                     (8.7)
        BIsmIkar 8.2a, 8.5, 8.6 ni 8.7 eKGackMNt; nominal strength Pu nig M u sMrab;cMNakp©it
ei epSg² edIm,Isg;düaRkam interaction P − M sMrab;muxkat;NamYy b¤begáIt nondimensional

series éndüaRkam interaction P − M sMrab;ersIusþg;ebtugepSg². ersIusþg;KNna (design strength)

RtUv)anKNnaBItMél nominal strength
                    Pu = φPn
nig             M u = φM n = φPn e

Edl φ CaemKuNkat;bnßyersIusþg;rbs;Ggát;rgkarsgát;. cMNaMfa tMél Pu nig M u KNnaRtUvman
tMélEk,r EtminRtUvtUcCagtMél Pu nig M u emKuNeT. rUbTI 8>4 bgðajBIdüaRkamTMnak;TMngbnÞúk
nigm:Um:g;EdlmancMNakp©it.




Prestressed Compression and Tension Members                                              498
Department of Civil Engineering                                                              NPIC




3> emKuNkat;bnßyersIusþg;                      φ
       Strength Reduction Factor φ
         sMrab;Ggát;rgkarBt;begáag nigrgbnÞúktamG½kStUc enaHGgát;rgkar)ak;eday tension rein-
forcement eFVIkardl; yield ehIykareFVIkarCalkçN³sVit (ductile) rbs;Ggát;mankarekIneLIg. dUc

enH sMrab;bnÞúktamG½kStUc eKGnuBaØateGaybegáInemKuN φ BIGVIEdleK)antMrUvsMrab;Ggát;rgkarsgát;
suT§. enAeBlEdlminmanbnÞúktamG½kS Ggát;RbQmnwgkarBt;begáagsuT§ (pure flexure) ehIyemKuN
kat;bnßyersIusþg; φ esμInwg 0.90 .
         rUbTI 4>45 bgðajBI transition zone EdlenAkñúgenaHeKGacbegáInemKuNkat;bnßyersIusþg; φ BI
0.65 sMrab; tied column eTA 0.70 sMrab; spirally reinforced column eTAdl; 0.90 sMrab; pure

flexure enAkñúg strain limits approach. Balanced limit strain sMrab; compression-controlled state

RtUv)ankMNt;eday limiting strain ε t = 0.002in. / in. b¤pleFobkMBs;G½kSNWt c / dt = 0.60 sMrab;
Ggát;rgkarsgát;. eKGacBicarNatMél φPn = 0.10 f 'c Ag Ca design axial load EdltMé;ltUcCagenH
eKGacbegáIntMél φ edaysuvtßiPaBsMrab;Ggát;rgkarsgát;PaKeRcInEdlsßitenAkñúg transition zone én
rUbTI 4>45. eKGaceFVI interpolation éntMél φ sMrab; transition zone BI limit stain state rgkar
sgát; (ε t = 0.002) eTA limit strain state rgkarTaj (ε t = 0.005) dUcenAkñúgsmIkar 4.36 (a) nig
4.36 (b) dUcxageRkam³

    (a) φ CaGnuKmn_énbMErbMrYlrageFob

         Tied section³

                     0.65 ≤ [φ = 0.48 + 83ε t ] ≤ 0.90                              (8.8a)

          Spirally-reinforced section:
                     0.70 ≤ [φ = 0.57 + 67ε t ] ≤ 0.90                              (8.8b)
     (b) φ  CaGnuKmn_énpleFobkMBs;G½kSNWt
           Tied section³

                            ⎡           0.25 ⎤
                     0.65 ≤ ⎢φ = 0.23 +        ⎥ ≤ 0.90                             (8.9a)
                            ⎣           c / dt ⎦

          Spirally-reinforced section:

                            ⎡           0.20 ⎤
                     0.70 ≤ ⎢φ = 0.37 +        ⎥ ≤ 0.90                             (8.9b)
                            ⎣           c / dt ⎦


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                   499
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca

        cMNaMfa balanced strain condition enAkñúgGgát;rgkarsgát;ebtugeRbkugRtaMgmandWeRkminkM-
Nt;x<s;. eKGaceRbIviFIsmrmü (trial and adjustment) edIm,IedaHRsayedaysnμt;tMél Δ ps = 0.0012
eTA 0.0020in. / in. bnÞab;BIrg service load nigedayKNnakMBs;bøúkkugRtaMg a rbs;muxkat;ebtug.
eKRtUvepÞógpÞat;karsnμt;enH ehIyeKRtUvEktMrUv nominal moment sMrab; limit stain condition ε 't =
0.002 eRkayeBlsg;düaRkam interaction rYc. tamviFIenH eKGaceFVIeGaytMélm:Um:g;Gtibrmaman

lkçN³RbesIreLIgsMrab; balanced strain limit state rgkarsgát; EdlsMEdgedaykMBs;G½kSNWt cb
RbsinebIcaM)ac;.

4> dMeNIrkarsMrab;sikSaKNnaGgát;xøIrgkarsgát;ebtugeRbkugRtaMg
       Operational Procedure for the Design of Nonslender Prestressed Compression Members
      eKGacGnuvtþCMhanxageRkamsMrab;sikSaKNnassrxøIEdlkareFVIkarrbs;vaRKb;RKgedaykar)ak;
edaysMPar³
      !> KNnabnÞúktamG½kSxageRkAemKuN Pu nigm:Um:g;emKuN M u . KNnacMNakp©itEdlGnuvtþ
          e = M u / Pu .

      @> snμt;muxkat; nigRbePTrbs;EdkxagEdlRtUveRbI dUcCa tied b¤ spiral. eKminRtUveRCIserIs
         muxkat;tUc.
      #> snμt;cMnYn nigTMhMrbs; strand.
      $> snμt;fabMErbMrYlrageFobenAsrésrgkarTajxageRkAbMputesμInwgbMErbMrYlrageFobEdlsnμt;
         ε ps rbs;EdkeRbkugRtaMg nigbnÞab;mkbnþKNna balanced limit strain axial load Pnb nig
         m:Um:g; M nb enARtg; limit strain ε t = 0.002 . CMhanenHk¾GaceGayeKepÞógpÞat;tMélrbs;
         emKuNkat;bnßyersIusþg;pgEdr. m:Um:g; M nb )anBItMél strain ε ps EdkeGaym:Um:g;Gtibrma
         enAkñúgdüaRkam interaction.
      %> snμt;kMBs;G½kSNWt c ehIykMNt;rk Pn nig M n . bnÞab;mkRtYtBinitüPaBRKb;RKan;rbs;mux
         kat;Edlsnμt; eday φPn > Pu emKuN nig φM n > M u . RbsinebImuxkat;minGacRTbnÞúkem
         KuN b¤vamanmuxkat;FMeBk eKRtUveRCIserIsmuxkat; nigEdkeLIgvijtamry³ trial and adjust-
         ment edayGnuvtþCMhan $ nig% eLIgvij edayrYmTaMgkarsg;düaRkam interaction.

      ^> sikSaKNnaEdkxag (lateral reinforcement).
      rUbTI 8>5 bgðajBI flowchart énCMhan trial-and-adjustment kñúgkarviPaK nigsikSaKNna.

Prestressed Compression and Tension Members                                               500
Department of Civil Engineering              NPIC




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg   501
T.Chhay                                                                    viTüasßanCatiBhubec©keTskmú<Ca

5> sg;düaRkamGnþrGMeBIrvagbnÞúk nigm:Um:g;
      Construction of Nominal Load-Moment (Pn − M n ) and Design (Pu − M u )
      Interaction Diagram
]TahrN_ 8>1³ sg;düaRkam interaction én nominal load-moment sMrab;Ggát;rgkarsgát;eRbkug
RtaMgEdlmanmuxkat;kaer: EdlRCugrbs;vaesμInwg 14in.(356mm) . Ggát;RtUv)anBRgwgeday 7-wire
stress-relieved 270-K strands Ggát;p©it 1 / 2in.(12.7 mm ) cMnYn 8 EdlBak;kNþalenAelIRCugnImYy²

rbs;épÞTaMgBIrEdlRsbnwgG½kSNWtEdlbgðajenAkñúgrUbTI 8>6. düaRkamTMnak;TMngkugRtaMg nigbMEr
bMrYlrageFobsMrab; strain RtUv)anbgðajenAkñúgrUbTI 8>7. kMlaMgeRbkugRtaMgRbsiT§PaBeRkaykMhat
bg;TaMgGs;KW f pe = 150,000 psi(1,034MPa) . elIsBIenH sd;düaRkam design interaction edayeRbI
tMélemKuNkat;bnßyersIusþg;Edlsmrmü. eKeGay
         f 'c = 6,000 psi(47.5MPa ) ebtugTMgn;Fmμta

         E ps = 29 × 10 6 psi (200 × 103 MPa )

          f ps = 240,000 psi(1,655MPa )

          ε cu = 0.003in. / in. enAeBl)ak; (failure)
                                                                        ⎛ e2 ⎞
          ε ce = 0.0005in. / in. enAeBl Pe eFVIGMeBIenAelImuxkat; = e
                                                                    P   ⎜1 + ⎟
                                                                   AE   ⎜ r2 ⎟
                                                                  c c   ⎝    ⎠
                                                BIrUbTI 8>9.
          ε py = strand yield strain ≅ 0.012in. / in.
snμt;tMélsmrmüén ε p nigeFVIkarEktMrUvRbsinebIcaM)ac;.




Prestressed Compression and Tension Members                                                  502
Department of Civil Engineering                                                                                    NPIC




dMeNaHRsay³
         düaRkam nominal strength Pn − M n
!> kMlaMgsgát;tamG½kS³ M u = 0 / c = ∞ ¬eRbI ε cu = 0.003 edaysarvaminGacmankarsgát;tamG½kS
   l¥tex©aH¦
   kMBs;bøúkrgkarsgát; a = 14in.(356mm) ehIykMBs;RbsiT§PaB d = 14 − 2 = 12in.(305mm) . dUcenH
   eyIgman Ccn = 0.85 f 'c ba = 0.85 × 6000 ×14 ×14 = 999,600lb(4,446kN )
         BIsmIkar 8.5
                                         ⎡            ⎛ c − d'⎞        ⎤
                     T ' sn = A' ps E ps ⎢ε pe − ε cu ⎜       ⎟ + ε ce ⎥
                                         ⎣            ⎝ c ⎠            ⎦
                                                       (
                     A' ps = 4 × 0.153 = 0.612in.2 3.95cm 2  )
BIsmIkar 8.7/ sMrab; E ps = 29 ×106          psi (200 ×10 MPa ) / ε
                                                            3
                                                                           pe   = 0.0052in. / in.   ehIy ε cu = 0.003
dUcenH
                                               ⎡              ⎛∞−2⎞         ⎤
                     T ' sn = 0.612 × 29 ⋅10 6 ⎢0.0052 − 0.003⎜   ⎟ + 0.0005⎥
                                               ⎣              ⎝ ∞ ⎠         ⎦
                           = 0.612 × 29 ⋅10 6 (0.0052 − 0.003 + 0.0005)

                           = 47,920lb(213kN )


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                                         503
T.Chhay                                                                              viTüasßanCatiBhubec©keTskmú<Ca

BIsmIkar 8.6
                                   ⎡            ⎛ d −c⎞        ⎤
                   Tsn = A ps E ps ⎢ε pe + ε cu ⎜     ⎟ + ε ce ⎥
                                   ⎣            ⎝ c ⎠          ⎦
                                           ⎡                  ⎛ 12 − ∞ ⎞         ⎤
                       = 0.612 × 29 ⋅10 6 ⎢0.0052 + 0.003⎜             ⎟ + 0.0005⎥
                                           ⎣                  ⎝ ∞ ⎠              ⎦
                        = 47,920lb(213kN )
BIsmIkar 8.2
                    Pn = Ccn − T ' sn −Tsn = 999,600 − 47,920 − 47,920

                                              = 903,760lb(4,020kN )
BIsmIkar 8.7

                                  ⎛ 14 14 ⎞     ⎛ 14  ⎞         ⎛    14 ⎞
                         = 999,600⎜ − ⎟ − 47,920⎜ − 2 ⎟ + 47,920⎜12 − ⎟
                                  ⎝2 2⎠         ⎝2    ⎠         ⎝     2⎠

                        =0
                        M
                    e1 = n = 0
                        Pn
@> kMlaMgTajsUnüenARtg;épÞrgkarTaj/ c = 14in.
                                   0.05( f 'c −4,000)
                    β1 = 0.85 −                       = 0.75
                                        1,000

                    a = β1c = 0.75 × 14 = 10.5in.(267 mm )

                   Ccn = 0.85 × 6,000 × 14 × 10.5 = 749,700lb(3,335kN )
                                              ⎡              ⎛ 14 − 2 ⎞         ⎤
                   T ' sn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 − 0.003⎜        ⎟ + 0.0005⎥
                                              ⎣              ⎝ 14 ⎠             ⎦
                         = 55,526lb(247 kN )
                                           ⎡              ⎛ 12 − 14 ⎞         ⎤
                   Tsn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 + 0.003⎜         ⎟ + 0.0005⎥
                                           ⎣              ⎝ 14 ⎠              ⎦
                        = 93,557lb(416kN )
                    Pn = Ccn − T ' sn −Tsn = 749,700 − 55,526 − 93,557

                        = 600,617lb(2,672kN )



                        = 1,502,130in. − lb(170kN .m )



Prestressed Compression and Tension Members                                                            504
Department of Civil Engineering                                                            NPIC




                                      = 2.50in.(63.5mm )
                            1,502,130
                     e2 =
                             600,617
#> karBt;begáagsuT§ (pure bending): Pu = 0
       edayecalT§iBlrbs;Edkrgkarsgát; A' ps eyIgman
                             A ps f ps       0.612 × 240,000
                     a=                  =                     = 2.06in.(52.3mm )
                         0.85 f 'c b         0.85 × 6,000 × 14

                              = 2.75in.(69.9mm )
                         2.06
                     c=
                         0.75
                                     ⎛    a⎞                  ⎛     2.06 ⎞
                     M n = A ps f ps ⎜ d − ⎟ = 0.612 × 240,000⎜12 −      ⎟
                                     ⎝    2⎠                  ⎝       2 ⎠

                          = 1,611,274in. − lb
                          1,611,274
                     e3 =            =∞
                               0
$> Limit strain condition: Pn / M n / e
         snμt;fabMErbMrYlrageFobenAkñúg tensile strand Aps RtUvesμInwg incremental strain Δε p
bnÞab;BIrg service load Pe . edayKittMél Δε p ≅ 0.0014 RtUv)anEkERbeday trial and adjustment
nigBIrUbTI 8>8/ ¬RtIekaNdUc¦ eyIg)an
                        c     ε     0.003
                             = cu =
                     (d − c ) Δε p 0.0014
dUcenH c = 8.15in.(207mm) .




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                 505
T.Chhay                                                                         viTüasßanCatiBhubec©keTskmú<Ca

                    a = β1c = 0.75 × 8.15 = 6.11in.(155mm )

                   Ccn = 0.85 × 6,000 × 6.10 × 14 = 435,540lb(1,937kN )
                                              ⎡              ⎛ 8.13 − 2 ⎞         ⎤
                   T ' sn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 − 0.003⎜          ⎟ + 0.0005⎥
                                              ⎣              ⎝ 8.13 ⎠             ⎦
                         = 61,018lb(271kN )
                                             ⎡              ⎛ 12 − 8.13 ⎞         ⎤
                   Tsn = 0.612 × 29 ⋅ 10 − 6 ⎢0.0052 + 0.003⎜           ⎟ + 0.0005⎥
                                             ⎣              ⎝ 8.13 ⎠              ⎦
                        = 126,509lb(563kN )
          Limit strain state    sMrab; Pn / M n nig e mandUcxageRkam
                    Pn = 435.540 − 61,018 − 126,509 = 248,013lb(1,103kN )



                        = 2,047,838in. − lb(272kN .m )

                                        = 8.26in.(210mm )
                             2,047,838
                    e4 = e =
                              248,013
       kUGredaensMrab;krNITaMgbYnBIelIkmunCacMnucGegátenAelIdüaRkam interaction Pn − M n . eK
k¾RtUvKNnacMnucepSgeTotpgEdr edIm,ITTYl)andüaRkamsuRkitEdlRKbdNþb;elIkardak;bnÞúkRKb;Ebb
y:ag. Ca]TahrN_ eKRtUvkMNt;cMnucbEnßmrvagkUGredaenenAcenøaHkrNITIBIr nigkrNITIbI edaysnμt;tM
élbEnßménkMBs;G½kSNWt c nigkMNt; Pn / M n nig e sMrab;tMél c Edl)ansnμt;. tarag 8>1 segçb
BItMélénkUGredaenEdleRbIsMrab;sg;düaRkam interaction Pn − M n k¾dUcCadüaRkam interaction
Pu − M u . BIdüaRkam eyIgeXIjfaGredaenénm:Um:g;GtibrmamantMélEk,rnwg M n = 2,047,838in. − lb

dUcenHkarsnμt; cb = 8.15in. KWepÞógpÞat;.




Prestressed Compression and Tension Members                                                       506
Department of Civil Engineering                                                              NPIC




          düaRkam design load-moment (P − M ) . sg;düaRkam interaction P − M sMrab;kUGr-
                                                  u      u

edaen EdlmanrayenAkñúgtarag 8>1. sMrab;CMhan 7 enAkñúgdüaRkam ssrsßitenAkñúg transition zone
Edl c / dt = 6.0 / 12.0 = 0.50 < 0.60 sMrab; limit balanced strain rgkarsgát;
        BIsmIkar 8.9 (a)/ φ = 0.23 + (c0/.25 ) = 0.23 + 0..50 = 0.73
                                          dt
                                                        0 25


dUcenH Pu = 101.2 ⋅ 103 × 0.73 = 73.7 ⋅103 lb
           M u = 1969.9 ⋅ 103 × 0.73 = 1438.0 ⋅ 103 in. − lb
                     M u3   sMrab;karBt;begáagsuT§ = φM n3 = 0.90 × 1,611,274
                                                      = 1,450,147in. − lb(164kN .m )
                                                      ¬minGaceRbI)an¦
                     Pu1 = φPn = 0.65 × 903,760 = 587,444lb

       ACI Code TamTareGay design axial load strength Gtibrma φPn sMrab; tied prestressed

column minRtUvFMCag 0.80φPn ehIysMrab; spirally reinforced prestressed columns minRtUvFMCag

0.85φPn eT. dUcenH eyIgman

                     Pu max = 0.82φPn = 0.80 × 587,444

                                  = 469,955lb(2090kN )
                     Pu 5 = 0.65 × 826,648 = 537,321(2,574kN )




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                   507
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca

      tMélEdlenAsl;énkUGredaenRtUv)ansegçbenAkñúgtarag 8>1. düaRkam interaction sMrab;
nominal strength (Pn − M n ) ehIy design strength (Pu − M u ) RtUv)anbgðajenAkñúgrUbTI 8>9.



6> sßanPaBkMNt;enAeBl)ak;eday                 Buckling     rbs;ssrEvgeRbkugRtaMg
       Limit State at Buckling Failure of Slender (long) Prestressed Columns
        RbsibebIpleFobrlas; (slenderness ration) rbs;ssrFMCagEdnkMNt;sMrab;ssrxøI Ggát;
rgkarsgát;nwgekagmunnwgQaneTAdl;sßanPaBénkar)ak;edaysMPar³. bMErbMrYlragenAkñúgépÞrgkar
sgát;rbs;ebtugeRkamGMeBI buckling load RtUvtUcCag 0.003in. / in. EdlbgðajenAkñúgrUbTI 8>10.
ssrEbbenHGacCaGgát;RsavEdlrgbnSMkMlaMgtamG½kS nigkarBt; EdleFVIeGayxUcRTg;RTayxag
nigedaybegáItm:Um:g;bEnßmEdlbNþaledaysarT§iBl PΔ Edl P CabnÞúktamG½kS nig Δ CaPaBdab
rbs;rUbragekagrbs;ssrenARtg;muxkat;EdlBicarNa.




        eKmanssrRsavEdlrgkMlaMgtamG½kS Pu enARtg;cMNakp©it e . T§iBl buckling begáItm:Um:g;
bEnßm Pu Δ . m:Um:g;enHkat;bnßylT§PaBrbs;bnÞúkBIcMnuc C eTAcMnuc B enAkñúgdüaRkam interaction én
rUbTI 8>10. m:Um:g;srub Pu e + Pu Δ RtUv)antMNagedaycMnuc B enAkñúgdüaRkam ehIyeKGacsikSa

Prestressed Compression and Tension Members                                               508
Department of Civil Engineering                                                          NPIC




KNnassrsMrab;m:Um:g;FMCagenH b¤sMrab; magnified moment M c dUcssrxøI.
        RbEvgRbsiT§PaB klu EdlbgðajenAkñúgrUbTI 8>11 RtUv)aneRbICa modified length rbs;ssr
EdlKitPaBTb;xagcug (end restraint) EdlxusBITMr pinned. klu tMNageGayRbEvgrbs;ssrEdl
manTMr pinned Fmμta Edlman Euler buckling load esμInwgbnÞúkrbs;ssreRkamkarBicarNa. müa:g
vijeTot vaCacMgayrvagcMnucrbt;rbs;Ggát;kñúgTMrg;ekagrbs;va.




         tMélrbs;emKuNRbEvgRbsiT§PaBEdlTb;xagcug (end restraint effective length factor) k
ERbRbYlcenøaH 0.5 nig 2.0 GaRs½yeTAnwgRbePTén restraint dUcxageRkam³
         cugssrTaMgsgçag pinned/ minmancl½txag k = 1.0
         cugssrTaMgsgçag fixed                     k = 0 .5

         cugmçag fixed nigcugmçageTotTMenr         k = 2 .0

         cugTaMgsgçag fixed/ Gaccl½txag            k = 1 .0

RbePTkrNIEdlbgðajBIragekagrbs;ssrsMrab;lkçxNÐcugepSg² nigemKuNRbEvg k RtUv)anbgðaj
enAkñúgrUbTI 8>11.


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                               509
T.Chhay                                       viTüasßanCatiBhubec©keTskmú<Ca




Prestressed Compression and Tension Members                     510
Department of Civil Engineering                                                              NPIC




       sMrab;Ggát;enAkñúgeRKOgbgÁúMeRKag end restraint sßitenAcenøaHlkçxNÐ hinged nig fixed. eK
GackMNt;tMél k Cak;EsþgBI Jackson nig Moreland alignment chart enAkñúgrUbTI 8>12. CMnYs
eGay chart TaMgenH eKGaceRbIsmIkarxageRkamEdl)anesñIeLIgenAkñúg ACI Code commentary
sMrab;KNna k ³
       !> Braced Compression members³ eKGacykEdnkMNt;rbs;emKuNRbEvgRbsiT§PaBCatMél
          tUcCageKénsmIkar
                     k = 0.7 + 0.05(ψ A +ψ B ) ≤ 1.0                               (8.10a)
             nig k = 0.85 + 0.05ψ min ≤ 1.0                                        (8.10b)

             Edl ψ A nig ψ B CatMélrbs;cugrbs; ψ enARtg;cugTaMgBIrrbs;ssr ehIy ψ min CatMél
             tUcCageKkñúgcMeNamtMélTaMgBIr. ψ CapleFobénPaBrwgRkajrbs;Ggát;rgkarsgát;TaMg
             Gs;elIPaB rwgRkajénGgát;rgkarBt;TaMgGs;enAkñúgbøg;enARtg;cugmçagrbs;ssr.
                           ∑ EI / lu columns
                     ψ=                                                            (8.11)
                            ∑ EI / ln beams
            Edl lu CaRbEvgminmanTMrrbs;ssr nig ln Ca clear span rbs;Fñwm.
          @> Unbraced compression members restrained at both ends³ eKGacKitRbEvgRbsiT§PaB
            dUcxageRkam³
            sMrab; ψ m < 2
                           20 −ψ m
                     k=            1 +ψ m                                          (8.12a)
                              20
             sMrab; ψ m ≥ 2
                     k = 0.9 1 + ψ m                                               (8.12b)

            Edl ψ m CatMélmFümrbs;tMél ψ enARtg;cugTaMgBIrrbs;Ggát;rgkarsgát;.
          #> Unbraced compression members hinged at one end³ eKGacKitRbEvgRbsiT§PaB
            dUcxageRkam³
                     k = 2.0 + 0.3ψ                                                (8.13)
        Edl ψ CatMélenAxagcugEdlTb; (restrained end).
      eKGacykkaMniclPaB (radius of gyration) r = I g / Ag Ca r = 0.3h sMrab;muxkat;ctuekaN
Edl h CaTMhMrbs;muxkat;ssrEdlEkgeTAnwgG½kSénkarBt;. sMrab;muxkatrgVg; eKyk r = 0.25h .



Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                  511
T.Chhay                                                                    viTüasßanCatiBhubec©keTskmú<Ca

     k> karBicarNaBI Buckling                  Buckling Considerations
         eRKagEdlminmankarBRgwgxag (lateral bracing) dUcCag shear walls, diaphragms b¤
diagonal coupling beams manlkçN³rlas; (flexible) CageRKagEdlman lateral braced. Lateral

flexibility GacbgáeGayeRKOgbgÁúMTaMgmYlbMlas;TItamTisedkRKb;RKan; EdleRKOgbgÁúMGac)at;bg;

esßrPaBedaysarm:Um:g;eFVIeGayRkLab; (overturning moment) bEnßmEdlmantMélFM. lkçN³eFVIkar
enHmaneRKaHfñak;enAeBlEdlssrxøIRTkMral.
      ACI 318 Code kMNt;viFIbIsMrab;KNnakMlaMgenAelIssrEvg nigGgát;enAkñúgeRKagEdlTb;Tl;

kMlaMgxag (lateral force) EdlbEnßmBIelIbnÞúkTMnaj (vertical gravity load). b:uEnþ sMrab;kardak;bnÞúk
TMnajEdlminman side-sway enaH first-order analysis EdleRbIemKuNbEnßmm:Um:g; (moment magni-
fycation factors) δ ns KWmanlkçN³RKb;RKan;. sMrab;karbnSMkMlaMgTMnaj nig side-sway forces Edl

bgáeGayemanT§iBl P − Δ / viFITaMgbIenaHKW³
         (a) kmμviFIkMuBüÚT½rEdleRbI second-order analysis EdlkMNt;TMhMrbs; overturning

               moment bEnßmenAkñúgeRKag.

         (b) emKuNbEnßmm:Um:g; (moment magnification factore) EdlKNnaedayEp¥kelIeKal

               karN_ first-order lateral displacements nig m:as;enABIelInIv:UnImYy².
         (c) Moment magnification relationship EdlmanTMrg;RsedogKñaeTAnwgGVIEdlRtUvkarsMrab;

               KNna no-sway magnifier δ ns sMrab;ssrenAkñúg braced frame edayeRbI stability
               index Q . eKmincaM)ac;kMNt;bMlas;TItamTisedk (horizontal displacement) enAkñúg

               viFIenHeT b:uEnþeKRtUvEtKNnam:Um:g;EdlTb;Tl;nwg lateral forces. viFIenHmanlkçN³sμúK
               sμaj nigminsUvsuRkit. viFIEdlmanlkçN³suRkitKWviFI (a) EdleRbIkmμviFIkMuBüÚT½rdUcCa
               PCA’s Frame Program, STAAD Pro, CSI Sap 2000 nigkmμviFIdéTeTot.

         eKmanssrEvgEdlRbQmnwgbnÞúktamG½kS enARtg;cMNakp©it e . T§iBl buckling begáIt
m:Um:g;bEnßm Pu Δ Edl Δ CabMlas;TIxagGtibrmarbs;ssrrgkarsgát;rvag cugTaMgBIreTATItaMgedIm.
m:Um:g;bEnßmenHkat;bnßy load capacity BIcMnuc C eTAcMnuc B enAkñúgdüaRkam interaction enAkñúgrUbTI
8>10. m:Um:g;srub (Pu e + Pu Δ ) RtUv)antMNagedaycMnuc B enAkñúgdüaRkam ehIyssrKYrRtUv)ansikSa
KNnasMrab; magnified moment M c EdlFMCag dUcssrxøI eday first-order analysis Fmμta.


Prestressed Compression and Tension Members                                                  512
Department of Civil Engineering                                                               NPIC




          enAkñúgkarviPaKEbbenH m:Um:g; nigkMlaMgtamG½kSenAkñúgeRKagRtUv)anTTYleday classical
elastic procedures. dMeNIrkarviPaKenHminKitBIT§iBlrbs; lateral displacement Δ eTAelIkMlaMg

tamG½kS Pu nigm:Um:g;Bt; M c eT. dUcenH TMnak;TMngrvagbnÞúk nigbMlas;TI nigTMnak;TMngrvagbnÞúk nig
m:Um:g;KWmanragCabnÞat; (linear). RbsinebIeKKitBIT§iBl P − Δ / second-order analysis køayCacM)ac;
CamYynwg nonlinear relationship énbnÞúkCag lateral displacement (deflection) nigm:Um:g;. ACI
318 - 02 Code GnuBaØateGayeRbI first order analysis b¤k¾ second-order analysis sMrab;ssrEdl

man intermediate slenderness nigeGayeRbI second-order analysis sMrab;ssrEvgEdlman
slenderness ratio FMCagesμI 100. viFI ACI Code EdlminKitT§iBl P − Δ RtUv)aneKeGayeQμaHfa

moment magnification method Edlmanerobrab;enAkñúgcMnucxageRkam.



7> viFIm:Um:g;bEnßm³ karviPaKdWeRkTI1
       Moment Magnification Method: First-order Analysis
         bnÞúktamG½kSemKuN Pu / m:Um:g;emKuN M1 nig M 2 manGMeBIenAcugssr ehIyPaBdabRtUv)an
kMNt;enAkñúgviFIenHedayeRbI elastic first-order analysis CamYynwg lkçN³muxkat;EdlkMNt;eday
KitT§iBlrbs;bnÞúktamG½kS vtþmanrbs;tMbn;EdlmaneRbHtambeNþayRbEvgrbs;Ggát; nigT§iBlén
ry³eBlénkardak;bnÞúk.
         dUcEdl)anerobrab;enAkñúgcMnuc 6xagelI nigtamry³rUbTI 8>10/ m:Um:g; M 2 RtUv)anbEnßmeday
magnification factor δ . ssrrgnUvm:Um:g; M 1 nig M 2 enAxagcugrbs;va EdleKKitfa M 2 FMCag M 1 .

bnÞúktamG½kS Pu nigm:Um:g;emKuN M1 nig M 2 RtUv)anTb;edaylkçN³muxkat;EdleRCIserIsedaykar
viPaK Edlrab;bBa©ÚlTaMgtMbn;EdlmaneRbHtambeNþayRbEvg b¤kMBs;rbs;Ggát;rgkarsgát; nigry³
eBlrbs;bnÞúk. CMnYseGaykarKNnaTaMgenH/ ACI 318-02 Code GnuBaØateGayeRbItMélmFümxag
eRkamsMrab;lkçN³rbs;Ggát;enAkñúgeRKOgbgÁúM³
     (a) m:UDuleGLasÞic Ec = 33w1.5 f 'c nigsMrab;ebtugEdlmanersIusþg; 5,000 psi < f 'c < 12,000 psi
                                   c

         Ec = (40,000 + 1 × 106 )(wc / 145)1.5
     (b) m:Um:g;niclPaB

              Fñwm                               0.35I g

              ssr                                0.70 I g

              CBa¢aMg ¬KμansñameRbH¦             0.70 I g


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                    513
T.Chhay                                                                    viTüasßanCatiBhubec©keTskmú<Ca

             CBa¢aMg ¬mansñameRbH¦             0.35I g

             Flate plates nig flat slabs       0.25I g

    (c) RkLaépÞ³ 1.0 Ag

    (d) kaMniclPaN (radius of gyration) r = 0.3h sMrab;muxkat;ctuekaN Edl h CaTMhMenAkñúgTis

        EdlKitesßrPaB b¤ r = 0.25D sMrab;muxkat;rgVg; Edl D CaGgát;p©itrbs;Ggát;rgkarsgát;.
        eKKYrEckm:Um:g;niclPaBCamYynwg (1 + β d ) enAeBlEdl sustained lateral load manGMeBI b¤
sMrab;RtYtBinitüesßrPaB Edl β d CaemKuN creep dUcenH
                           maximum factored sustained axial load
                    βd =
                                 total factored axial load
        eKsnμt;bnÞúkmanGMeBIenARtg;cMNakp©it (e + Δ ) enAkñúgrUbTI 8>10 edIm,IbegáItm:Um:g; M c . pl
eFob M c / M 2 RtUv)aneKeGayeQμaHfa magnification factor δ . dWeRkrbs; magnification GaRs½y
nwgpleFob slenderness klu / r Edl k CaemKuNRbEvgRbsiT§PaB (effective length factor) sMrab;
Ggát;rgkarsgát; ehIyvak¾GaRs½ynwg stiffness enARtg;tMNéncugrbs;Ggát;nImYy².
        eKRtYtBinitü magnification factor tamRbePTrbs; magnified moment δM 2 nig δM1 Edl
manGMeBIenARtg;cugelx 2 nigelx 1 rbs;ssr ¬side-sway rbs;eRKagekItmanb¤Gt;¦. eKKYrcMNaM
faenAkñúgkrNIGgát;rgkarsgát;RbQmnwgkarBt;eFobG½kSemTaMgBIrrbs;va eKRtUvKitm:Um:g;eFobG½kS
nImYy²dac;edayELkBIKñaedayQrelI restraint condition EdlRtUvnwgG½kSenaH.

     k>    Moment Magnification in Non-Sway Frames
       enAkñúgkrNIGgát;rgkarsgát;sßitkñúg non-sway frames (braced frame) eKGacykemKuN
RbEvgRbsiT§PaB k = 1.0 Tal;EtkarviPaKeGaytMéltUcCag. enAkñúgkrNIEbbenH eKkMNt;tMél
k edayEp¥kelItMél EI EdlbgðajenAkñúgcMnucxagelI nig monogram enAkñúgrUbTI 8>12.

       eKGacminKitBIT§iBl slenderness RbsinebI
                    klu          ⎛M ⎞
                        ≤ 34 − 12⎜ 1 ⎟
                                 ⎜M ⎟                                                    (8.14)
                     r           ⎝ 2⎠
klu =RbEvgRbsiT§PaBrvagcMnucrbt; ehIyeKminGacyk [34 − 12(M1 / M 2 )] FMCagEdlkMNt;én
smIkar 8.14 eT. tY (M1 / M 2 ) mantMélviC¢manenAeBlEdlGgát;ekagedaykMeNageTal (single
curvature) ehIyvamantMélGviC¢manenAeBlGgát;ekagedaykMeNagDub (double curvature) ¬emIlrUb




Prestressed Compression and Tension Members                                                  514
Department of Civil Engineering                                                             NPIC




TI 8>12a). RbsinebI non-sway magnification factor Ca δ ns ehIy sway factor δ s = 0 /
magnified moment køayCa
                     M c = δ ns M 2                                               (8.15)

Edl                  δ ns =
                                Cm
                                  Pu
                                       ≥ 1.0                                      (8.16a)
                            1−
                                0.75Pc
                            π 2 EI
                     Pc =                                                         (8.16b)
                            (klu )2
Edl Pc Ca Euler buckling load sMrab; pin-ended column.
eKyk stiffness
                             0.2 Ec I g + Es I se
                     EI =                                                         (8.16c)
                                  1 + βd
                             0.4 Ec I g
b¤                   EI =
                              1 + βd
Cm =  emKuNEdlTak;TgdüaRkamm:Um:g;Cak;EsþgeTAnwg equivalent uniform moment diagram.
sMRab;Ggát;EdlKμan transverse load ¬rgEtbnÞúkxagcug¦.
                                      M1
                     Cm = 0.6 +          ≥ 0.4                                    (8.17)
                                      M2
Edl M 2 ≤ M1 nig M1 / M 2 > 0 RbsinebIKμancMnucrbt;enAcenøaHcugrbs;ssr rUbTI 8>12 a (single
curvature). sMrab;lkçxNÐdéTeTot Ggát;EbbenHEdlman transverse load enAcenøaHTMr Cm = 1.0 .

       tMélGnuBaØatGb,brmarbs; M 2 KW
                     M 2, min = Pu (0.6 + 0.03h )                                 (8.18)

Edl h KitCa in. . sMrab;xñat SI M 2,min = Pu (15 + 0.03h) Edl h KitCamIlIEm:Rt. müa:gvijeTot cM
Nakp©itGb,brmaenAkñúgssrEvgKW emin = 0.6 + 0.03h . RbsinebI M 2,min FMCagmU:m:g;Gnuvtþn_ M 2 eK
KYryktMélrbs; Cm enAkñúgsmIkar 8.17 esμInwg 1.0 b¤edayEp¥kelIm:Um:g;cug M1 nig M 2 EdlKNna
Cak;Esþg.
        eRKagEdlBRgwgRbqaMgnwg side-sway b¤BRgwgeday shear wall KYrman lateral deflection tUc
Cag hs / 1500 . enAeBlEdl lateral deflection FMCagpleFobenH eKRtUveFVIeGaym:Um:g;bEnßmEdlbgá
eday side sway mantMélGb,brma nigkat;bnßy lateral drift BIeRKag nigBIssr.



Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                 515
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca

     x>    Moment Magnification in Sway Frames
       sMrab;Ggát;rgkarsgát;EdlminmankarBRgwgRbqaMgnwg side sway eKGackMNt;emKuNRbEvgRb
siT§PaB k BItMél EI EdlbgðajenAkñúgcMnuc 7/ b:uEnþtMélrbs;vaminRtUvFMCag 1.0 eT. eKGacminKitBI
T§iBl slenderness RbsinebI
                    klu
                        < 22                                                          (8.19)
                     r
eKKYrbegáInm:Um:g;cug M1 nig M 2 dUcxageRkam
                    M 1 = M 1ns + δ s M 1s
                    M 2 = M 2ns + δ s M 2 s                                           (8.20)
edayeKsnμt;fa M 2 > M1 / enaH design moment
                    M c = M 2ns + δ s M 2 s                                           (8.21)
Edl M 2ns = m:Um:g;cugemKuNenAxagcugrbs;Ggát;rgkarsgát;EdlbNþalBIbnÞúkEdlbgáeGayman
side-sway EdlminsMxan; vaRtUv)anKNnaedayeRbI first-order elastic frame analysis. M 2 s =

m:Um:g;cugemKuNenAxagcugrbs;Ggát;rgkarsgát;EdlbNþalBIbnÞúkEdlbgáeGayman side-sway Edl
sMxan; vaRtUv)anKNnaedayeRbI first-order elastic frame analysis.
                                  Ms
                   δsM s =                 ≥ M s ≤ 2.5                                (8.22)
                                   ∑ Pu
                              1−
                                 0.75 ∑ Pc
Edl ∑ Pu CaplbUkénbnÞúkbBaÄrTaMgGs;enAkñúgmYyCan; ehIy ∑ Pc CaplbUk Euler buckling load
¬ Pc sMrab; pin-ended column sMrab;ssrEdlTb;nwg sway TaMgGs;enAkñúgmYyCan; [Pc = π 2 EI /(klu )2 ]
BIsmIkar 8.16b¦ CamYynwgtMél EI EdlTTYl)anBIsmIkar 8.16c b¤ d.
         enAkñúgkrNIsMrab;EtGgát;rgkarsgát;EtmYyEdlman
                    lu           35
                       >
                     r       Pu / f 'c Ag

eKRtUvsikSaKNnaGgát;sMrab;bnÞúktamG½kSemKuN Pu nig magnified moment M c = δ ns M 2 Edl
 M 2 enAkñúgkrNIenHKW M 2 = δ ns M 2ns + δ s M 2 s . krNIenHGacekItmanenAkñúgssrEvgEdlrgbnÞúk

tamG½kSFM enAeBlEdlm:Um:g;GtibrmaGacekItmanenAcenøaHcugrbs;ssr dUcenHm:Um:g;cugmincaM)ac;Ca
m:Um:g;GtibrmaeT.



Prestressed Compression and Tension Members                                               516
Department of Civil Engineering                                                                 NPIC




         !> Moment Magnification in sway frames using a stability index Q
         enAkñúgviFIenH ¬viFI c enAkñúgcMnuc 6>k¦ code GnuBaØateGaysnμt;ssrenAkñúgeRKOgbgÁúMEdl
BRgwgCa non-sway RbsinebIkarekIneLIgénbnÞúk nigm:Um:g;EdlbNþalBI second-order effect minFM
Cag 5% én first-order end moment. eKGacBicarNaCan;enAkñúgeRKOgbgÁúMCa non-sway RbsinebI
stability index Q enAkñúgsmIkarxageRkamenHminFMCag 0.05
                            ∑ Pu Δ o
                     Q=                                                               (8.23a)
                             Vu lc
Edl        ∑ Pu = bnÞúkbBaÄrsrubenAkñúgmYyCan;
          Vu = kMlaMgkat;tamCan; (story shear)

          Δ o = first-order relative deflection rvagxagelI nigxageRkamrbs;Can;EdlbNþalBI Vu

          lc = RbEvgrbs;Ggát;rgkarsgát;enAkñúgeRKagEdlvagBIG½kSrbs;tMN

          Non-sway magnification factor edayeRbItY Q KW
                             1
                     δs =        ≥ 1.0                                                (8.23b)
                            1− Q
enAeBl Q FMCag 0.05 eKRtUvbnþkarKNnaeTA second-order analysis tamry³kareRbIR)as;kmμviFI
kMuBüÚT½r. karviPaKedaykMuBüÚT½rEbbenHGaceGayeKKNnatMélsarcuHsareLIgrbs;m:Um:g; nigtMél sway
Δ o EdlbNþalBIT§iBl P − Δ manPaBsuRkit nigelOn.

          eKKYrcMNaMfa stability index Q method manlkçN³sμúKsμaj nigsuRkitsMrab;KNnaT§iBl
 P − Δ elIm:Um:g;enARtg;tMNssrenAkúñgeRKagEdlBRgwg.

          Casegçb moment magnification method EdlbegáIteLIgdMbUgsMrab; prismatic column eFIV
kar )anl¥CamYynwgssrEdlman slenderness ratio klu / r tUcCag 100 CaBiessRbsinebIeRKag
RtUv)anBRgwg. enAkñúgkrNI unbraced frames Edlman slenderness ration Rbhak;RbEhlKña eKKYr
KitbBa©ÚlT§iBl P − Δ eTAelIm:Um:g; nigPaBdabtamry³ second-order analysis edIm,ITTYl)an
lT§plkan;EtsuRkitCag. karsikSaviPaKGac
          !> Gnuvtþ first-order analysis Edl lateral load ¬BI hi BIrUbTI 8>13¦ RtUv)anbUkbnþeday
             ∑ Pu Δ l enAkñúgCMuénkarKNnamþg² ehIycat;TuklT§plcugeRkayCa second-order result

             b¤
             @> eRbIkmμviFIkMuBüÚT½r second-order analysis BitR)akd EdlenAkñúgenaHeKeRbIkarkat;bnßy
             relative side-sway resistance enAkñúg global stiffness matrix sMrab;Ggát;TaMgBak;B½n§.


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                     517
T.Chhay                                                                   viTüasßanCatiBhubec©keTskmú<Ca

8> karviPaKeRKagdWeRkTIBIr nigT§iBl               P−Δ
       Second-Order Frames Analysis and the P − Δ Effects
          Second-order analysis  CakarviPaKeRKagEdlrYmbBa©ÚlT§iBlkMlaMgkñúgEdl)anBI lateral dis-
placement (deflection) rbs;ssr. enAeBleKGnuvtþkarviPaKEbbenHedIm,IkMNt; δ s M s enAkñúg non-

braced frame eKRtUvKNnaPaBdabedayEp¥kelI fully cracked section CamYynwgtMél stiffness EI

Edlkat;bnßy. tMélRbhak;RbEhldUckareRbI first-order analysis eRcInCMu ehIykarviPaKGaceFVIeGay
prismatic section kan;EtRbesIreLIg. b:uEnþkarviPaKKYrepÞógpÞat;faersIusþg;EdlrMBwgTukrbs;Ggát;rgkar

sgát;éneRKageRKOgbgÁúMsßitenAkñúgcenøaH 15% énlT§plsMrab;ssrenAkñúgeRKOgbgÁúMebtugGarem:min
kMNt;. lT§plCaragFrNImaRtrbs;Ggát;EdlRtUvviPaKRtUvRsedogKñanwgragFrNImaRtrbs;Ggát;Edl
RtUvsagsg;. RbsinebIGgát;enAkñúgeRKOgbgÁúMcugeRkaymanTMhMmuxkat;xusBIGVIEdlva)ansnμt;kñúgkar
viPaK 10% eKRtUvGnuvtþkarKNnaCafμI.
        Second-order analysis CaviFIsarcuHsareLIgénT§iBl P − Δ eTAelIssrRsav EdlrYmbBa©Úl

TaMg shear deformation. dUcenH eKGaceRbIkmμviFIkMuBüÚT½rRbesIrCakarKNnaedayédkñúgkarsikSa
KNnassrRsavrbs;eRKag. b:uEnþ ssrebtugPaKeRcInenAkñúgeRKagsMNg;minRtUvkarkarviPaKEbbenH
eT edaysarpleFob (klu / r ) eRcInEttUcCag 100 .




       BicarNassrenAcenøaHBIrCan;KW (i − 1) nig (i ) enAkñúgeRKagEdlbgðajenAkñúgrUbTI 8>13.
snμt;fa lateral displacement Gtibrma b¤ drift enARtg;cugxagelIrbs;cugkMBUlrbs;ssrenAkñúgeRKag

Prestressed Compression and Tension Members                                                 518
Department of Civil Engineering                                                                    NPIC




KW xmax nigsnμt;fakMBs;srubrbs;GKarKW hs . Lateral displacement b¤ drift d¾FMrbs;GKarCan;xagelI
bgáeGaymansñameRbHdl;CBa¢aMgdæ b¤kargarbegðIyxagkñúg. EdnkMNt;én lateral deflection Gtibrma
KW hs / 500 . dUcenH karsnμt;d¾l¥KWkareRCIserIs xmax sßitenAcenøaH hs / 350 eTA hs / 500 EdlKitfa
CaFmμta fully braced frame manpleFob drift xmax Gtibrma enAelIkMBs;eRKag hs tUcCag 1 / 1,500 .
         RbsinebI xi Ca drift enARtg;nIv:UCan; i nig yi CakMBs;rbs;ssrcenøaHCan; (i − 1) nig (i ) enAkñúg
rUbTI 8>13 a, eKGacsnμt;fa horizontal drift sMrab;Can;KWsmamaRteTAnwgkaer:énpleFobénkMBs; hi
rbs;Can; nigkMBs;srub hs rbs;eRKagTaMgmUl.
                                       2
                               ⎛h ⎞
                     xi = xmax ⎜ i ⎟
                               ⎜h ⎟                                                      (8.24)
                               ⎝ s⎠
        eKGacsegçbdMeNIrkarKNnadUcxageRkam³
        !> eRCIserIsmuxkat;rbs;eRKag nig stiffness EI rbs;vaedaytMélRbhak;RbEhl
        @> KNna drift (lateral deflection Δi ¦ nig ultimate load Pu,i enARtg;tMN i = 1,..., n rUbTI
            8>13.
        #> KNnarkkMlaMgtamTisedksmmUl H i BI H i = Pi Δi / hi ¬rUbTI 8>13 b¦.
        $> bEnßmtMélEdlTTYl)anenAkñúgCMhan # eTAelI lateral load Cak;EsþgenAelIeRKag.
        %> Gnuvtþ frame analysis edayeRbI kmμviFIkMuBüÚT½rEdlsmRsb.
        ^> Iterative computer program EdleRbI stiffness EI pþl;eGay Δi EdlRtUveRbobeFobCa
            mYynwgtMélGnuBaØat xi .
        &> RbsinebItMélrbs; Δi TaMgGs; ≤ tMélrbs; xi TaMgGs; enaHeKGacTTYlykdMeNaHRsay
            nigkarsikSaKNnaCadMeNaHRsay second-order. RbsinebImindUecñaHeT eKRtUv run kmμviFI
            edaybEnßmcMnYnCMuCamYynwg modified stiffness rhUtdl;eKTTYl)anlT§plEdleKcg;)an.
        eKGaceRbIkmμviFIkMuBüÚT½repSg²edIm,IKitbBa©ÚlT§iBl P − Δ enAkñúgeRKag side-sway. kmμviFI
TaMgenaHrYmman Strudel, PCA Frame, STAAD Pro ,or CSI Sap 2000 nigkμviFIdéTeTot.

9>     Operational Procedure and Flowchart for the Design of Slender Column

          !> kMNt;faetIeRKagman side-sway FMb¤Gt;. RbsinebIvaman side-sway FM eRbI magnify-
             cation factors δ ns nig δ s . RbsinebIeKecal side-sway, snμt;fa δ s = 0 . bnÞab;mk




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                         519
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca

             snμt;muxkat; rYcKNnacMNakp©itedayeRbIm:Um:gcugEdlFMCageK ehIyRtYtBinitüemIlfava
                                                        ;
             FMCagcMNakp©itGnuBaØatGtibrmab¤k¾Gt;
                       ≥ (0.6 + 0.03h )in.
                    M2
                    Pu




Prestressed Compression and Tension Members                                               520
Department of Civil Engineering                                                              NPIC




          @> KNna ψ A nigψ B edayeRbIsmIkar 8.12 b¤ 8.13 nigbnÞab;mkTTYl)an k edayeRbIrUbTI
             8>12 b¤smIkar 8.13. KNna klu / r nigkMNt;favaCassrxøI b¤ssrEvg. RbsinebIssr
             CassrEvg ehIy klu / r < 100 KNna magnified moment M c . bnÞab;mk edayeRbI
             tMélEdlTTYl)an KNnacMNakp©itsmmUl edIm,IKNnassrCassrxøI. RbsinebI klu / r
             > 100 Gnuvtþ second-order analysis.

          #> KNnassrxøIsmmUl. Flowchart enAkñúgrUbTI 8>14 bgðajBICMhanénkarKNna. smIkar
             caM)ac;manenAkñúgcMnuc 2 nigenAkñúg flowchart.

10> sikSaKNnassreRbkugRtaMgEvg
          Design of Slender (Long) Prestressed Column
]TahrN_ 8>2³ Square tied prestressed bonded co,umn CaEpñkrbs;eRKagGKar 5 × 3bays Edlrg
nUvkarBt;tamG½kSmYy (uniaxial bending). Clear height rbs;vaKW lu = 15 ft (4.54in.) ehIyvamin
RtUv)anBRgwgRbqaMgnwg sidesway eT. bnÞúkxageRkAemKuN Pu = 300,000lb(1,334kN ) nigm:Um:g;cug
emKuNKW M1 = 425,000in. − lb(48kN .m) nig M 2 = 750,000in. − lb(84.8kN.m) . sikSaKNnamux
kat;ssr nigEdkBRgwgcaM)ac;sMrab;lkçxNÐBIrxageRkam³
        !> KitEtbnÞúkTMnajb:ueNÑaH edaysnμt;ecal lateral sidesway EdlbNþalBIxül;
        @> ]bma sidesway wind effect bgáeGaymanbnÞúkemKuN Pu = 24,000lb(107kN ) nigm:Um:g;
           emKuN M u = 220,000lb(24.9kN .m) . bnÞúkkñúgmYyCan;énssrTaMgGs;enARtg;nIv:UenaHKW
           ∑ Pu = 4.5 ⋅ 106 lb(20 ⋅ 103 kN ) nig ∑ Pc = 31.0 ⋅ 106 lb(138 ⋅ 103 kN ).

        eRbI 270-K stress-relieved prestressing strand Ggát;p©it 1 / 2in. . eKeGayTinñn½ydUcxag
eRkam³
                     β d = 0.4

                     ψ A = 1 .0
                     ψ B = 2 .0
                      f 'c = 6,000 psi (41.4MPa )
                      f pu = 270,000 psi (1,862MPa )

                      f pe = 150,000 psi (1,034MPa )

                                       (
                     E ps = 28 ⋅ 106 psi 200 ⋅ 103 MPa   )

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                   521
T.Chhay                                                                           viTüasßanCatiBhubec©keTskmú<Ca

                   ε cu = 0.003in. / in.      enAeBl)ak;
                   ε ce = 0.0005in. / in.     enAeBl Pe eFVIGMeBIelImuxkat;
                    d ' = 2in.(50.8mm )
                    f y = 60,000 psi (414MPa )sMrab;Edkkg
düaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlragrbs;EdkeRbkugRtaMgKWdUcenAkñúgrUbTI 8>7.
dMeNaHRsay³
                               BIdüaRkam stress-strain énrUbTI 8>7 EdlRtUvKñanwg f pe = 150,000 psi .
          ε pe = 0.0052in. / in.
RsedogKña ε py ≅ 0.012in. / in. BIrUbdUcKña EdlRtUvKñanwg f py = 260,000 psi .
!> sMrab;EtbnÞúkTMnaj (gravity load only)
         RtYtBinitüsMrab; no sidesway nigcMNakp©itGtibrma ¬CMhan !¦
         edaysareRKagminman sidesway FM/ eyIgyk M 2ns Ca M 2 TaMgmUl ehIyeKyk magnify-
cation factor sMrab; sidesway δ s = 0 enAkñúgsmIkar 8.15. tamry³ trial and adjustment, eyIgGac

snμt;muxkat;ssr nigeFVIkarsikSaviPaK. dUcenH eyIgsakl,gmuxkat; 15in. × 15in.(381mm × 381mm)
dUcbgðajenAkñúgrUbTI 8>15 (a) ehIyeyIg)an
                  cMNakp©itCak;Esþg = MP2ns = 300,,000 = 2.50in.(63.5mm)
                                                750 000
                                           u

                  cMNakp©itGnuBaØatGb,rbma = 0.6 + 0.03h = 0.6 + 0.03 × 15
                                                  = 1.05in.(2.67 mm ) < 2.50in.
dUcenH yk M 2ns = 750,000in. − lb Cam:Um:g;EdlFMCageKkñúgcMeNam M1 nig M 2 enAelIssr.




Prestressed Compression and Tension Members                                                         522
Department of Civil Engineering                                                                   NPIC




          KNnacMNakp©itEdlRtUveRbIsMrab;ssrxøIsmmUl ¬CMhan @¦
          BI chart enAkñúgrUbTI 8.12 (b)/ k = 1.45 nig slenderness ration KW
                     klu 1.45 × 15 × 12
                        =               = 58.0
                      r     0.3 × 15
edaysar 58 > 22 Et < 100 eRbI moment magnification method. eyIg)an
              Ec = 33w1.5 f 'c = 33 × 1451.5 6,000 = 4.46 × 106 psi (32 ⋅ 103 MPa )
                          15(15)3
                     Ig =           = 4,218.8in.4
                            12
                          Ec I g / 2.5 4.46 ⋅ 106 × 4,218.3      1
                     EI =              =                    ×
                            1 + βd                2.5         1 − 0.4

                          = 5.34 ⋅ 109 lb. − in 2
                     (klu )2 = (1.45 × 15 × 12)2 = 68.1× 103 in.2
                                                     π 2 EI        π 2 × 5.34 ⋅ 109
dUcenH               Pc = Euler buckling load =                =
                                                     (klu )2          68.1 ⋅ 103

                                                    = 773,132lb = 773.1kips(3,439kN )
                     Cm = 1.0     sMrab; nonbraced column. snμt; φ = 0.65 . enaHeyIgman
                                                 Cm                1.0
                     Moment magnifier δ ns =              =                   = 2.07
                                                    Pu            300,000
                                             1−             1−
                                                 0.75Pc        0.75 × 773,132
                     Design moment M c = δ ns M 2 ns = 2.07 × 750,000

                                                           = 1,552,500in. − lb(184kN .m )

                     Pn EdlRtUvkar = Pu = 300.,65 = 461,538lb(2053kN )
                                       φ      0
                                                000


                     M n EdlRtUvkar =            = 2,388.462in. − ln (291kN .m )
                                       1,552,500
                                          0.65
                     cMNakp©it e = 2461,538 = 5.18in.(131mm)
                                    ,388,462


sikSaKNnassrxøIsmmUl (equivalent nonslender column) ¬CMhan #¦
        ssrsmmYlRtUvRT nominal axial load Pn = 461,538lb nig nominal uniaxial moment
Gb,brma M n = 2,388,462in. − lb .
        edIm,IsikSaKNna equivalent nonslender column, eyIgsikSaviPaKmuxkat;ssrEdl)ansnμt;
15in. × 15in. EdleRbI 7-wire stress-relieved strands Ggát;p©it 1 / 2in. cMnYn 5 enAelIépÞnImYy²rbs;mux

TaMgBIrEdlRsbeTAnwgG½kSNWt dUceXIjenAkñúg]TahrN_ 8>1. enaH

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                        523
T.Chhay                                                                        viTüasßanCatiBhubec©keTskmú<Ca

                                                         (
                    Aps = A' ps = 5 × 0.153 = 0.765in.2 4.94cm 2   )
Balanced Limit Strain Failure Condition
                    d = h − 2 = 15 − 2 = 13in.(330mm )
edayeRbobeFobCamYynwg]TahrN_ 8>1 nigedayeRbI trial and adjustment enaHkMBs;G½kSNWtEdl
smRsbsMrab; balanced condition KYrmantMél cb = 8.3in.(211mm) . enaH ab = β1 × cb = 0.75 × 8.3
= 6.23in.(158mm ) .

       BIrUbTI 8>3
                   Ccn = 0.85 × 6,000 × 15 × 6.23 = 476,595lb(2,119kN )
          BIsmIkar 8.5
                                            ⎡              ⎛ 8.3 − 2 ⎞         ⎤
                   T 'sn = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜         ⎟ + 0.0005⎥
                                            ⎣              ⎝ 8.3 ⎠             ⎦
                         = 73,318lb(385kN )
          BIsmIkar 8.6
                                          ⎡              ⎛ 13 − 8.3 ⎞         ⎤
                   Tsn = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜          ⎟ + 0.0005⎥
                                          ⎣              ⎝ 8.3 ⎠              ⎦
                        = 158,482lb(704kN )
          BIsmIkar 8.2, sMrabk;krNI “balanced” strain limit ¬ c / dt = 0.60 ¦
                    Pnb = Ccn − T 'sn −Tsn

                         = 476,595 − 73,318 − 158,482

                         = 229,310lb(1,020kN )
          BIsmIkar 8.7/ sMrabk;krNI “balanced” strain limit ¬ c / dt = 0.60 ¦
                                  ⎛ 15 6.23 ⎞         ⎛ 15  ⎞          ⎛    15 ⎞
                    M nb = 476,595⎜ −       ⎟ = 73,318⎜ − 2 ⎟ + 158,482⎜13 − ⎟
                                  ⎝2    2 ⎠           ⎝2    ⎠          ⎝     2⎠

                        = 2,103,124in. − lb(237.7kN .m )
                        M
                    eb = nb =
                        Pnb
                               2,103,124
                                229,310
                                                      Cak;Esþg = 5.18in.
                                          = 9.17in.(233mm ) > e

ssreRbkugRtaMgEdlrgbnÞúkEdlmancMNakp©ittUcnwg)ak;edaykarsgát;. ehIy φ = 0.65 dUckarsnμt.
                                                                                       ;
      snμt;kMBs;G½kSNWt c = 12in.
                    a = β1c = 0.75 × 12 = 9.0in.
BIsmIkar 8.1a

Prestressed Compression and Tension Members                                                      524
Department of Civil Engineering                                                                  NPIC




                     Ccn = 0.85 f 'c ba = 0.85 × 6,000 × 15 × 9 = 688,500lb
BIsmIkar 8.5
                                        ⎡            ⎛ c − d' ⎞        ⎤
                     T 'sn = A' ps E ps ⎢ε pe − ε cu ⎜        ⎟ + ε ce ⎥
                                        ⎣            ⎝ c ⎠             ⎦
                                               ⎡                    ⎛ 12 − 2 ⎞         ⎤
                           = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜               ⎟ + 0.0005⎥
                                               ⎣                    ⎝ 12 ⎠             ⎦
                            = 68,544lb
BIsmIkar 8.6
                                    ⎡            ⎛d −c⎞        ⎤
                     Tsn = Aps E ps ⎢ε pe + ε cu ⎜    ⎟ + ε ce ⎥
                                    ⎣            ⎝ c ⎠         ⎦
                                             ⎡                ⎛ 13 − 12 ⎞         ⎤
                         = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜            ⎟ + 0.0005⎥
                                             ⎣                ⎝ 12 ⎠              ⎦
                          = 127,449lb
BIsmIkar 8.2
                     Pn = Ccn − T ' sn −Tsn
                   EdlGacman = 688,500 − 68,544 − 127,449
                     Pn

               = 492,507lb > Pn EdlRtUvkar = 461,538lb

dUcenH eyIgbnþeTA trial-and-adjustment CMuTIBIr
snμt;kMBs;G½kSNWt c = 11.2in.
                     a = β1c = 0.75 × 11.2 = 8.4in.
                     Ccn = 0.85 f 'c ba = 0.85 × 6,000 × 15 × 8.4 = 642.600lb
                                              ⎡              ⎛ 11.2 − 2 ⎞         ⎤
                     T 'sn = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜          ⎟ + 0.0005⎥
                                              ⎣              ⎝ 11.2 ⎠             ⎦
                            = 69,309lb
                                            ⎡              ⎛ 13 − 11.2 ⎞         ⎤
                     Tsn = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜           ⎟ + 0.0005⎥
                                            ⎣              ⎝ 11.2 ⎠              ⎦
                          = 132,421lb
               EdlGacman = 642,600 − 69,309 − 132,421
                     Pn

                             = 440,870lb xN³Edl Pn EdlRtUvkar = 461,538lb O.K.

edaysar moment capacity FMCag M n EdlRtUvkar. karekIneLIgd¾tictYcbMputrbs;kMBs;muxkat;Gac
ykQñHelIPaBxusKñatictYcrvag Pn EdlRtUvkar nig Pn EdlGacman.

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                       525
T.Chhay                                                                         viTüasßanCatiBhubec©keTskmú<Ca

          BIsmIkar 8.7

                                 ⎛ 15 8.4 ⎞           ⎛ 15    ⎞          ⎛    15 ⎞
                       = 642,600⎜ −         ⎟ − 69,309⎜ − 2 ⎟ + 132,421⎜13 − ⎟
                                 ⎝2      2 ⎠          ⎝2      ⎠          ⎝     2⎠
                       = 2,467,696in. − lb > 2,338,462in. − lb(678.8kN .m > 250kN .m ) O.K.

                    e=
                       2,467,696
                        448,870
                                         Cak;Esþg
                                  = 5.5 ≈ e          = 5.18in.TTYlyk)an
dUcenH TTYlykmuxkat; 15in. × 15in. CamYynwg 7-wire stress-relieved 270-K strand Ggát;p©it 1 / 2in.
cMnYn 5 enARCugnImYy²énépÞEdlenARsbnwgG½kSNWt. bnÞab;mk sikSaKNnaEdkkg (transverse tie)
EdlcaM)ac;.
@> sMrab;bnÞúkTMnaj nigbnÞúkxül; (gravity and wind loading [sidesway])
BIdMeNaHRsaycMnucTI ! eyIgman
                Pe = 773,132lb nig U = 1.2 D + 1.0 L + 1.6W . ehIy U = 0.9 D + 1.6W ¬minlub¦.

 Pu = (300,000 + 24,000) = 324,000lb / M 2b = 750,000in. − lb nig M 2t = 220,000in. − lb .

RtYtBinitüfa gravity moment RtUvkarm:Um:g;bEnßmb¤Gt;
                        35               35               l
                               =                 = 71.4 > u = 40
                         Pu            324,000             r
                       f 'c At       6,000 × 225

dUcenH gravity moment M 2b minRtUvkarm:Um:g;bEnßmeT
        BIsmIkar 8.16(b)
                              1.0                1.0
                   δs =                =                      = 1.24
                               ∑ Pu             4.5 ⋅ 106
                          1−             1−
                             0.75 ∑ Pc      0.75 × 31.0 ⋅ 106
          BIsmIkar 8.15
                    M c = M 2ns + δ s M 2 s = 750,000 + 1.24 × 220,000

                       = 1,022,800in. − lb
                    PnEdlRtUvkar  =
                                    324,000
                                       0.65
                                              = 498,462lb

                    MnEdlRtUvkar  =
                                    1,022,800
                                        0.65
                                                = 1,573,538in. − lb

                   cMNakp©it e=
                                1,573,538
                                 498,462
                                            = 3.16in. < eb = 9.17in. < e   Cak;Esþg = 5.18in.


Prestressed Compression and Tension Members                                                       526
Department of Civil Engineering                                                            NPIC




       dUcenH vaekItman initial compression failure. ehIy M n = 1,573,538in. − lb
< M n = 2,388,462in. − lb enAkñúgkrNITI !.

       lkçxNÐsMrab;krNITI @ Edlman sidesway Gt;lub/ edaysarEtvaenAEt)ak;edaysarkar
sgát;dEdl. m:Um:g;tMrUvkar M n mantMéltUcCagm:Um:g;sMrab;krNITI ! ehIycMNakp©itk¾mantMéltUcCag
krNITI ! Edr. dUcenH TTYlykmuxkat;dUckrNITI ! KW 15in. × 15in. CamYynwg 7-wire stress-relieved
270-K strand Ggát;p©it 1 / 2in. cMnYn 5 enARCugnImYy²énépÞEdlenARsbnwgG½kSNWt.



11> Ggát;rgkarsgát;rgkarBt;BIrTis
           Compression Members in Biaxial Bending
      k>    Exact Method of Analysis




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                 527
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca

        ssrEdlenAkac;RCugrbs;GKarCaGgát;rgkarsgát;EdlRbQmnwgkarBt;BIrTisKWeFobnwgG½kS
 x nigG½kS y dUcbgðajenAkñúgrUbTI 8>16. m:Um:g;Bt;BIrTisenHekItmanedaysarbnÞúkminesμIKñaenAelI

ElVgEk,r ehIyCaBiessvaekItmanenAelIssrs<an (bridge pier). ssrEbbenHrgnUvm:Um:g; M xx eFob
nwgG½kS x EdlbegáItcMNakp©it e y nigrgnUvm:Um:g; M yy eFobnwgG½kS y EdlbegáItcMNakp©it ex . dUc
enHG½kSNWtsßitenAelIbnÞat;eRTtEdlpÁúM)anmMu θ CamYynwgbnÞat;edk.
        mMu θ GaRs½ynwg interaction énm:Um:g;Bt;eFobG½kSTaMgBIr CamYynwgTMhMénbnÞúksrub Pu . Rk-
LaépÞrgkarsgát; (compressive area) enAkñúgmuxkat;ssrGacmanTMrg;NamYydUcbgðajenAkúñgrUbTI
8>16 (c). edaysarssrEbbenHRtUv)ankMNt;BIeKalkarN_TImYy eKGnuBaØateGayeRbIviFIsaRsþ
trial-and-adjustment enAeBlEdl compatibility of strain RtUv)anrkSaenARtg;RKb;nIv:UTaMgGs;rbs;

EdkBRgwg. eKRtUvkarkarKNnabEnßmeTot edaysarTItaMgrbs; bøg;G½kSNWteRTt nigTMrg;rbs;RkLa-
épÞrgkarsgát;rbs;ebtugGacmanTMrg;bYnxusKña.
        rUbTI 8>17 bgðajBIkarBRgaybMErbMrYlrageFob nigbgðajBIkMlaMgenAelImuxkat;ssrctuekaN
EdlrgbnÞúkBIrG½kS. Gc CaTIRbCMuTMgn;RkLaépÞsgát;rbs;ebtug EdlmankUGredaen xc nig yc BIG½kS
NWttamG½kS x nig y erogKña. Gst CaTItaMgpÁÜb (resultant position) rbs;kMlaMgEdkenAkñúgRkLaépÞ
rgkarTajEdlmanTItaMgkUGredaen xst nig yst BIG½kSNWttamG½kS x nig y erogKña. BIsmIkarlMnwgén
kMlaMgxagkñúg nigxageRkA
                    Pn = 0.85 f 'c Ac + Fsc − Fst                                     (8.25)
Edl       Ac =RkLaépÞéntMbn;sgát;EdlRKbdNþb;edaybøúkkugRtaMgctuekaN
         Fsc = kMlaMgpÁÜbrbs;Edksgát; (∑ A's f sc )

         Fst = kMlaMgpÁÜbrbs;EdkTaj (∑ As f st )

dUcKña BIsmIkarlMnwgénm:Umg;xagkñúg nigm:Um:g;xageRkA
                           :
                    Pn ex = 0.85 f 'c Ac xc + Fsc xsc + Fst xst                       (8.26a)

                    Pn e y = 0.85 f 'c Ac yc + Fsc y sc + Fst y st                    (8.26b)

eKRtUvsnμt;TItaMgrbs;G½kSNWtenAkñúgkarsakl,gnImYy² ehIykugRtaMgEdlKNnaenAkúñgEdkBRgwg
nImYy²mansmIkardUcxageRkam
                                              si
                    f si = Esε si = Ecε c        < fy                                 (8.27)
                                              c




Prestressed Compression and Tension Members                                               528
Department of Civil Engineering                                                              NPIC




      x> Load Contour Method of Analysis
        viFIEdlpþl;dMeNaHRsayy:agelOnCakarsikSaKNnassrsMrab;plbUkviucT½rén M xx nig M yy
ehIyeRbI circular reinforcing cage enAkñúgmuxkat;kaer:sMrab;ssrenARtg;kac;RCug. b:uEnþ viFIsaRsþmin
pþl;lkçN³esdækic©enAkñúgkrNIPaKeRcIneT. viFIsikSaKNnaepSgeTotEdlepÞógpÞat;edaykarBiesaFKW
karbMElgm:Um:g;BIrTiseGayeTACam:Um:g;mYyTissmmUl )equivalent uniaxial moment) nigcMNakp©it
mYyTissmmUl (equivalent uniaxial eccentricity). bnÞab;mk eKGacsikSaKNnamuxkat;sMrab;kar
Bt;mYyTis ¬dUckarerobrab;BIxagelIkñúgemeronenH¦ edIm,ITb;nwgm:Um:g;Bt;BIrTisemKuNCak;Esþg.
        viFIEbbenHBicarNa failure surface CMnYseGay failure planes ehIyCaTUeTAeKeGayeQμaHfa
Bresler-Parme contour method. viFIenHkat; three-dimensional failure surfaces enAkñúgrUbTI 8>18

Rtg;tMélefr Pn edIm,ITTYl)an interaction plane EdlTak;Tgnwg M nx nig M ny . müa:gvijeTot
contour surface S CaépÞekagEdlrYmbBa©ÚlnUvRKYsarrbs;ExSekag EdleKeGayeQμaHfa load contour.

        smIkarKμanxñatTUeTA (general nondimensional equation) sMrab; load contour eRkamGMeBI
bnÞúkefr Pn KW
                                  α1             α2
                     ⎛ M nx ⎞           ⎛ M ny   ⎞
                     ⎜
                     ⎜      ⎟
                            ⎟          +⎜        ⎟    = 1.0                         (8.28)
                     ⎝ M ox ⎠           ⎜ M oy   ⎟
                                        ⎝        ⎠
Edl        M nx = Pn e y


Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                   529
T.Chhay                                                                   viTüasßanCatiBhubec©keTskmú<Ca

          M ny = Pn ex

          M ox = M nx  Rtg;bnÞúktamG½kS Pn Edl M ny b¤ ex = 0
       M oy = M ny Rtg;bnÞúktamG½kS Pn Edl M nx b¤ e y = 0

       m:Um:g; M ox nig M oy CaersIusþg;m:Um:g;EdlTb;Tl;smmUltMrUvkar (required equivalent resis-
ting moment strength) eFobG½kS x nigG½kS y erogKña Edl α1 nig α 2 CaniTsSnþEdlGaRs½ynwgrag

FrNImaRtmuxkat; PaKryEdk TItaMgrbs;Edk nigkugRtaMgsMPar³ f 'c nig f y .




       eKGacsMrYlsmIkar 8>28 edayeRbIniTsSnþFmμta nigedaybBa©ÚlemKuN β sMrab;tMélbnÞúk
tamG½kSBiess Pn mYy EdlpleFob M nx / M ny KYrmantMéldUcKñanwgpleFob M ox / M oy . kar
sMrYlEbbenHnaMeGayeK)an
                             α                α
                   ⎛ M nx ⎞   ⎛M              ⎞
                   ⎜
                   ⎜M ⎟   ⎟ + ⎜ ny            ⎟ = 1.0                                   (8.29)
                   ⎝ ox ⎠     ⎜ M oy          ⎟
                              ⎝               ⎠
Edl α = log 0.5 / log β . rUbTI 8>19 bgðajBIdüaRkam contour ABC BIsmIkar 8.27.
      sMrab;karsikSaKNna/ eKKitExS contour CabnÞat;Rtg; AB nig BC edaytMélRbhak;RbEhl/
ehIyeKGacsMrYlsmIkar 8.29 CaBIrkrNI³


Prestressed Compression and Tension Members                                                 530
Department of Civil Engineering                                                             NPIC




          !> sMrab; AB enAeBlEdl M ny / M oy < M nx / M ox
                      M nx M ny ⎡1 − β ⎤
                          +              = 1 .0
                      M ox M oy ⎢ β ⎥
                                                                                  (8.30a)
                                ⎣      ⎦
          @> sMrab; BC enAeBlEdl M ny / M oy > M nx / M ox
                      M ny         M nx ⎡1 − β ⎤
                               +                 = 1 .0
                                   M ox ⎢ β ⎥
                                                                                  (8.30b)
                      M oy              ⎣      ⎦
enAkñúgsmIkarTaMgBIrxagelIenH ersIusþg;m:Um:g;tamG½kSmYysmmUlEdllubCak;Esþg (actual control-
ling equivalent uniaxial moment strength) M oxn b¤ M oyn y:agehacNas;RtUvsmmUleTAnwg

required controlling moment strength M ox nig M oy énmuxkat;ssrEdleRCIserIs.




       sMrab;muxkat;ctuekaNEdleKBRgayEdkedaybrimaNesμIKñaRKb;RCugTaMgGs;rbs;muxkat;ssr
enaHeKGacykpleFob M oy / M ox RbEhlesμInwg b / h . enAkñúgkrNIenH eKGacsMrYlsmIkar 8.30
dUcxageRkam
       !> sMrab; M ny > b
                 M      h nx




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                 531
T.Chhay                                                                viTüasßanCatiBhubec©keTskmú<Ca
                                   b 1− β
                    M ny + M nx           ≅ M oy                                     (8.31a)
                                   h β

          @> sMrab; M ny ≤ b
                    M      h
                        nx
                                   h 1− β
                    M nx + M ny           ≅ M ox                                     (8.31b)
                                   b β
Controlling required moment strength M ox      b¤ M oy sMrab;karsikSaKNnamuxkat;KWCatMélEdlFM
CageKkñúgcMeNamtMélTaMgBIrEdlkMNt;enAkñúgsmIkar 8.31.
        eKeRbIdüaRkamenAkñúgrUbTI 8>20 kñúgkareRCIserIs β kñúgkarviPaK nigsikSaKNnassr. Cakar
Bit eKGacniyayfa modified load-contour enAkñúgsmIkar 8.31 CaviFIsMrab;kMNt; equivalent
required moment strength M ox nig M oy sMrab;sikSaKNnassr RbsinebIvargkMlaMgtamTismYy.




Prestressed Compression and Tension Members                                              532
Department of Civil Engineering                                                          NPIC




      K> Step-by-Step Operational Procedure for the Design of Biaxially Loaded Columns
       eKGaceRbICMhanxageRkamCaeKalkarN_ENnaMsMrab;sikSaKNnassrEdlrgkarBt;tamTis x
nigTis y . viFIsaRsþsnμt;RkLaépÞEdkenARKb;RCugTaMgbYnrbs;ssrmanbrimaNesμIKña.
       !> KNna uniaxial bending moment edaysnμt;cMnYnEdkenAelIRCugnImYy²rbs;ssresμIKña.
          snμt;tMélrbs; interaction contour factor β enAcenøaH 0.50 nig 0.70 nigpleFobrbs;
           h / b . pleFobenHGacmantMélRbhak;RbEhlnwg M nx / M ny . edayeRbIsmIkar 8.31

          kMNt; equivalent required uniaxial moment M ox b¤ M oy . RbsinebI M nx FMCag M ny
          yk M ox sMrab;karKNna nigpÞúymkvij.
       @> snμt;muxkat;sMrab;ssr nigpleFobEdk ρ = ρ ' ≅ 0.01 eTA 0.02 enAelIRCugnImYy²rbs;
          RCugTaMgBIrEdlRsbnwgG½kSénkarBt;rbs; equivalent moment NaEdlFMCag. bnÞab;mk
          eRCIserIsmuxkat;dMbUgrbs;Edk nigepÞógpÞat;lT§PaB Pn énmuxkat;ssrEdlsnμt;. sMrab;kar
          sikSaKNnaEdlmanlçN³eBjelj eKeRbIbrimaNEdkbeNþaydUcKñaenAelIRCugTaMgbYn.
       #> KNna actual nominal moment strength M oxn sMrab; equivalent uniaxial bending
          eFobG½kS x enAeBl M ox = 0 . vaRtUvmantMély:agehacNas;smmUlnwg required
          moment strength M ox .

       $> KNna actual nominal moment strength M oyn sMrab; equivalent uniaxial bending
          moment eFobG½kS y enAeBlEdl M oy = 0 .

       %> kMNt; M ny edaybBa©Úl M nx / M oxn nigtMélsakl,g β eTAkñúgdüaRkamExSekagemKuN
           β énrUbTI 8>20.
       ^> Gnuvtþ trial and adjustment elIkTIBIr edaybegáIntMélsnμt; β RbsinebItMél M ny Edl
          TTYl)anBIkarbBa©ÚleTAkñúg chart tUcCagtMél required M ny . GnuvtþCMhanenHeLIgvij
          rhUtdl;tMélén M ny xitCitKña tamry³karpøas;bþÚr β b¤pøas;bþÚrmuxkat;.
       &> sikSaKNa lateral ties niglMGitmuxkat;.
       Flowchart sMrab;CMhandMbUgkñúgkarkMNt;tMél controlling moment enAkñúg biaxially loaded

column RtUv)aneGayenAkñúgrUbTI 8>21.




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                               533
T.Chhay                                                               viTüasßanCatiBhubec©keTskmú<Ca




12> karBicarNakñúgkarsikSaKNnaGnuvtþn_
          Practical Design Considerations
        xageRkamCaeKalkarN_ENnaMsMrab;karsikSaKNna nigkartMerobEdkenAkñúgkarsikSaKNna
Gnuvtþn_.

     k> EdkbeNþay b¤Edkem                     Longitudinal or Main Reinforcement
    kugRtaMgRbsiT§PaBmFümenAkñúgebtugenAkñúgGgát;rgkarsgát;eRbkugRtaMgminKYrtUcCag 225 psi
(1.55MPa ) . tMrUvkarrbs; code kMNt;pleFobEdkGb,brmaEbbNaeGayGgát;rgkarsgát;Edlrg
kMlaMgeRbkugRtaMgtUc nigmanpleFobEdkminrgeRbkugRtaMgGb,brma1% .
Prestressed Compression and Tension Members                                             534
Department of Civil Engineering                                                              NPIC




      x> EdkxagsMrab;ssr               Lateral Reinforcement for Columns
       !> EdkcMNgxag           Lateral ties

       eKRtUvkar lateral reinforcement edIm,IkarBar spalling rbs; concrete cover b¤ local buckling
rbs;EdkbeNþay. EdkBRgwgxagRtUvmanTMrg;Ca ties EdlBRgayedaycenøaHesIμtamkMBs;rbs;ssr.
EdlbeNþayEdlmanKMlatBIKña 6in. KYrRtUv)anTb;eday lateral ties dUcbgðajenAkñúgrUbTI 8>22.
       eKRtUvGnuvtþtameKalkarN_ENnaMxageRkamsMrab;kareRCIserIsTMhM nigKMlatrbs; ties:
   !> TMhMrbs;EdkcMNg b¤Edjkg (tie) minRtUvtUcCag #3(9.5mm) .
   @> KMlatbBaÄrsMrab; tie minRtUvFMCag
       (a) 48 dgénGgát;p©itrbs; tie

       (b) 16 dgénGgát;p©itrbs;EdkbeNþay

       (c) TMhMxagtUcCageKrbs;ssr

       rUbTI 8>22 bgðajBIkartMerob tie sMrab;EdkbeNþay 4, 6 nig 8 enAkñúgmuxkat;ssr.




        @> EdkkgvNÐ            Spirals

     RbePTepSgeTotrbs; lateral reinforcement KW spiral b¤ helical lateral reinforcement dUc
bgðajenAkñúgrUbTI 8>23. Spiral manRbeyaCn_BiesskñúgkarbegáIn ductility b¤ PaBrwgrbs;Ggát;
dUcenHeKesñIeGayeRbI spiral sMrab;tMbn;EdlRbQmnwgrBa¢ÜydIx<s;. CaTUeTA ebtugEdlB½T§CMuvij
confined core énssrEdlBRgwgeday spiral Gac spall eRkamGMeBI lateral force minFmμta nigPøam²

dUcCakMlaMgrBa¢ÜydI. ssrRtUvmanlT§PaBTb;Tl;nwgbnÞúkPaKeRcInbnÞab;BIebtugkarBar spall edIm,I
karBarkardYlrlMGKar. dUcenH eKRtUvsikSaKNnaKMlat nigTMhMrbs; spiral edIm,IrkSalT§PaBRTbnÞúk
PaKeRcInrbs;ssr eTaHbICaeRkamlkçxNÐbnÞúkeRKaHfñak;EbbenHk¾eday.

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                   535
T.Chhay                                                                 viTüasßanCatiBhubec©keTskmú<Ca




                             EdlmanKMlatCit²begáIn ultimate-load capacity rbs;ssr. eKRtUv
          Spiral reinforcement

eRCIserIsKMlat (spacing b¤ pitch) rbs; spacing edIm,IeGay load capacity Edl)anBI confining
spiral action GacTb;Tl;nwgkar)at;bg;muxkat;ebtugedaysar spalling.

        edayeGaykarekIneLIgénersIusþg;EdlbNþalBI confinement esμInwgkar)at;bg; capacity
edaysar spalling ehIybBa©ÚlemKuNsuvtßiPaB 1.2 eyIgTTYl)anpleFob spiral reinforcement
Gb,brma
                          ⎛ Ag    ⎞ f'
                    ρ s = 0.45⎜
                              ⎜− 1⎟ c
                                  ⎟ f                                                 (8.32)
                          ⎝ Ac    ⎠ sy
Edl       ρ=
                  volume of the spiral steel per one revolution
              volume of concrete core contained in one revolution
               πD 2
          Ac = c                                                                      (8.33a)
                4
               πh 2
          Ag =                                                                        (8.33b)
                4
          h=   Ggát;p©itrbs;ssr
          as = RkLaépÞmuxkat;rbs; spiral

          d b = nominal diameter rbs; spiral

          Dc = Ggát;rbs;sñÚlebtug (concrete core) EdlKitBIépÞxageRkArbs; spiral

          f sy = yield strength rbs; spiral reinforcement




Prestressed Compression and Tension Members                                               536
Department of Civil Engineering                                                                  NPIC




        edIm,IkMNt; pitch s rbs; spiral/ KNna ρ s edayeRbIsmIkar 8.33/ eRCIserIsGgát;p©it db
sMrab; spiral/ KNna as nigbnÞab;mkTTYl)an pitch b edayeRbIsmIkar 8.35b xageRkam.
        eKGacsresrpleFob spiral reinforcement ρ s dUcxageRkam
                             asπ (Dc − d b )
                     ρs =                                                              (8.34a)
                                  (π / 4)Dc2 s
dUcenH eKTTYl)an pitch
                           asπ (Dc − d b )
                     s=                                                                (8.35a)
                        (π / 4)Dc2 ρ s
                       4 a (D − d b )
b¤                   s= s c
                                  Dc ρ s
                                   2
                                                                                       (8.35b)

        EdnkMNt;énKMlat b¤ pitch rbs; spiral sßitenAcenøaH 1in.(25.4mm) eTA 3in.(76.2mm)
ehIyGgát;p©itminRtUvtUcCag 3 / 8in.(9.53mm) . eKRtUvbRBa¢Üsy:agehacNas;mYyCMuknøH RbsinebIeK
mineRbItMNpSar.

    #> sikSaKNna Spiral Lateral Reinforcement
]TahrN_ 8>3³ sikSaKNna lateral spiral reinforcement sMrab;ssrebtugeRbkugRtaMgmUlEdl
manGgát;p©it h = 20in.(508mm) nig clear cover dc = 1.5in.(38mm) nigman f y = 60,000 psi
(414MPa ) .
dMeNaHRsay³ edayeRbIsmIkar 8.32
                                     ⎛ Ag    ⎞ f'
                ρ s EdlRtUvkar = 0.45⎜
                                     ⎜    − 1⎟ c
                                             ⎟ f
                                       A         ⎝   c      ⎠   sy

edayeRbI spiral #3 Edlman yield strength                  f y = 60,000 psi   eyIgman
                     clear concrete cover d c = 1.5in.(38mm )
                      f sy = 60,000 psi

                     Dc = h − 2d c = 20.0 − 2 × 1.5 = 17in.(432mm )
                             π (17.0)2
                     Ac =                  = 226.98in.2
                                    4
                     Ag = 314.0in.2
                                     ⎛ 314      ⎞ 4,000
                     ρ s = 0.45⎜             − 1⎟       = 0.0115
                                     ⎝ 226.98 ⎠ 60,000
sMrab; spiral #3 / as = 0.11in.2 . dUcenHedayeRbIsmIkar 8.35b eyIg)an

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                     537
T.Chhay                                                                                viTüasßanCatiBhubec©keTskmú<Ca
                                4as (Dc − d b )       4 × 0.11(17.0 − 0.375)
                   pitch s =                      =                            = 2.20in.(56mm )
                                     Dc ρ s
                                      2
                                                        (17.0)2 × 0.0115
dUcenH eRbI spiral #3 CamYynwg pitch 2 14 in. ¬spiral Ggát;p©it 9.53mm CamYynwg pitch 54.0mm ¦.

13>       Reciprocal Load Method for Biaxial Bending
         viFIenHRtUv)anbegáIteLIgeday Bressler. viFIenHP¢ab;TMnak;TMngrvagtMélbnÞúktamG½kSEdl
cg;)an Pu eTAnwgtMélbIepSgeTotEdl reciprocial eTAnwg failure surface. snμt; S1 CakUGredaen
enAelI failure surface énrUbTI 8>18 EdltMélénbnÞúk nigcMNakp©itCa Pu / ex nig e y . RbsinebI
S 2 CacMnucenAelI compatible reciprocal surface eTAnwgGVIenAkñúgrUbTI 8>18 enaH S 2 nwgkMNt;kUGr-

edaenéncMnucenaHCa 1 / Pu / ex nig e y Edl Pu = φPn EdlCabnÞúkemKuN.
         RbsinebI desired axial load Pu eRkam biaxial loading eFobG½kS x nigG½kS y RtUvTak;Tg
eTAnwgtMél Pu EdleGayeday Puy / Pux nig Puo enaH
                    1   1   1   1
                      =   +   −                                                                      (8.36a)
                    Pu Pux Puy Puo

b¤                   1
                       =
                          1
                             +
                                1
                                   −
                                     1
                    φPn φPnxo φPnyo φPno
                                                                                                     (8.36b)

Edl       Pux = φPnxo = design strength     rbs;ssrEdlmancMNakp©it ex RbsinebI e y = 0
          Puy = φPnyo = design strength rbs;ssrEdlmancMNakp©it e y RbsinebI ex = 0

          Puo = φPno = axial load design strength tamRTwsþIsMrab;ssrEdlmancMNakp©it ex = e y = 0

          M ux = m:Um:g;eFobG½kS x = Pu e y

          M uy = m:Um:g;eFobG½kS y = Pu ex

          ex = cMNakp©itvas;RsbeTAnwgG½kS y dUcenAkñúgrUbTI 8>24 Edl ex = M uy / Pu = Pu ex / Pu

          e y = cMNakp©itEdlvas;RsbeTAnwgG½kS x = Pu e y / Pu

          x = TMhMrbs;muxkat;ssrEdlRsbeTAnwgG½kS x

          y = TMhMrbs;muxkat;ssrEdlRsbeTAnwgG½kS y




Prestressed Compression and Tension Members                                                              538
Department of Civil Engineering              NPIC




Ggát;rgkarsgát; nigkarTajeRbkugRtaMg   539
T.Chhay                                                                              viTüasßanCatiBhubec©keTskmú<Ca

14>       Modified Load Contour Method for Biaxial Bending
        CMnYseGaysmIkar 8.32, Hsu )anesñInYvsmIkarEdlEktMrUvEdlGacCMnYseGay strength inter-
action diagram nig failure surface rbs;ssrebtugGarem:rgbnÞúkBIrTis dUcenAkñúgrUbTI 8>34. viFI

enHk¾dUcKñanwg reciprocal load method Edr vaTamTarnUvkarKNnaticCagviFIBIrepSgeTot.
        smIkar interaction sMrab;bnÞúk nigm:Umg;Bt;eFobnwgG½kSBIrKW
                                              :
                                                               1.5
                      ⎛ Pn − Pnb ⎞ ⎛ M nx ⎞
                                                1.5
                                                       ⎛ M ny ⎞
                      ⎜
                      ⎜P −P ⎟+⎜M ⎟
                                 ⎟ ⎜      ⎟           +⎜       ⎟     = 1.0                         (8.37)
                      ⎝ no    nb ⎠ ⎝  nbx ⎠
                                                       ⎜ M nby ⎟
                                                       ⎝       ⎠
Edl       Pn =  kMlaMgsgát;tamG½kS nominal ¬viC¢man¦ b¤kMlaMgTaj ¬GviC¢man¦
          M nx , M ny = m:Um:g;Bt; nominal eFobG½kS x nigG½kS y erogKña

          Pno = kMlaMgsgát;tamG½kS nominal Gtibrma ¬viC¢man¦ b¤kMlaMgTajtamG½kS ¬GviC¢man¦

                            (            )
               = 0.85 f 'c Ag − Ast + f y Ast

          Pnb =  kMlaMgsgát;tamG½kSeRkamlkçxNÐ balanced strain
          M nbx , M nby = m:Um:g;Bt; nominal eFobG½kS x nigG½kS y erogKña eRkamlkçxNÐ balanced
                                strain
eKGacTTYl)antMélrbs;sßanPaBbMErbMrYlragkMNt; Pnb nig M nb BI
                     Pnb = 0.85 f 'c β1cbb + Apsf ' ps − Aps f ps                                  (8.38a)
                                        ⎛          ⎞
nig                  M nb = Pnb eb = Cc ⎜ d − − d "⎟ + C s (d − d '− d ") + Ts d "
                                        ⎝
                                             a
                                             2     ⎠
                                                                                                   (3.38b)

Edl       ab =   kMBs;rbs;bøúksmmUl = β1cb = (Aps / f ps )/(0.85 f 'c b)
          a = β1c
               kugRtaMgenAkñúgEdkrgkarsgát;EdlenAEk,rbnÞúkCageK = f py RbsinebI f ps ≥ f py
          f ' ps =

        Ts = kMlaMgenAkñúgEdkxagTaj

        Step-by-step operational procedure

sMrab;karsikSaKNnassrrgbnÞúkBIrTisGnuvtþeTAtamdMeNIrkarenAkñúgcMnuc 11>K. viFIenHTamTarkar
KNnatickñúgkaredaHRsayssrrgm:Um:g;BIrTis.

      k> EdkxagsMrab;ssr                      Lateral Reinforcement for Columns
]TahrN_ 8>4³ snμt;muxkat;ssrcak;Rsab;enAkñúg]TahrN_ 8>2 CassrxøIEdlrgm:Um:g;BIrTis Etmin
man sidesway. sikSaKNnassrsMrab;m:Um:g;Bt;xageRkam³

Prestressed Compression and Tension Members                                                            540
Department of Civil Engineering                                                                         NPIC




                     M ux = M uy = 825,000in. − lb(93.7kN .m )      nig Pu = 300,000lb(1334kN )
eKeGay³               f 'c = 6,000 psi (41.4MPa )        ebtugTMgn;Fmμta
                      f pu = 270,000 psi (1863MPa )

                      f ps = 240,000 psi (1565MPa )

muxkat;RtUv)anBRgwgCamYynwg 7-wire tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 5 EdleGay tendon
srubcMnYn 16.
dMeNaHRsay³
                     Pu = 300,000lbs
                     M ux = Pu e y = 825,000in. − lb eFobnwgG½kS x
                     M uy = Pu e x = 825,000in. − lb eFobnwgG½kS y

                      f 'c = 6,000 psi
                      f ps = 240,000 psi

dUcenH               ex =
                          M ux 825,000
                          Pu
                              =
                                300,000
                                        = 2.75in.

                          M uy 825,000
                     ey =     =         = 2.75in.
                           Pu    300,00
                     x=  G½kSRsbeTAnwgRCugxøI b
                      y = G½kSRsbeTAnwgRCugEvg h

muxkat;ssrKW 15in. × 15in.
                     b = 15in.           h = 15in.       d ' = 2.5in.
enAelIRCugnImYy² As = 5 × 0.153 = 0.765in.           2


EdlBRgwgsrub Ast = 16 × 0.153 = 2.448in.2
cMNakp©itEdltUcCageKKW 2.75in. . ]bmafava)ak;edaykarsgát;. sakl,g φ = 0.65 .
               Pn Cak;Esþg =
                              300,000
                                       = 461,538lb
                                0.65
               M n Cak;Esþg =
                              825,000
                                       = 1,269,231lb − in.
                                0.65
BI]TahrN_ 8>2/ sMrab;sßanPaBbMErbMrYlrageFobkMNt;rgkarsgát; ¬ ε t = 0.002 ¦
                     Pnb = 229,310lb

                     M nb = Pnb eb = 2,103,124in. − lb(237kN .m )



Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                                              541
T.Chhay                                                                                viTüasßanCatiBhubec©keTskmú<Ca
                           M nb 2,103,124
                    eb =       =          = 9.17in.
                           Pnb   229,310
                    eb > e = 2.75in.      dUcenHkMlaMgsgát;RKb;RKgsßanPaB ehIyemKuNkat;bnßyersIusþg;
                                                                                                      φ = 0.65
                                      (         )
                    Pno = 0.85 f 'c Ag − Ast + Ast f ps

                         = 0.85 × 6,000(225 − 2.448) + 1.53 × 240,000

                         = 1,502,205lb
edayeRbIsmIkar 8.37 (interaction surface) sMrab; biaxial bending
                                                              1.5
                   ⎛ Pn − Pnb ⎞ ⎛ M nx ⎞
                                               1.5
                                                      ⎛ M ny ⎞         461,538 − 229,310 ⎛ 1,269,231 ⎞
                                                                                                                1.5
                   ⎜
                   ⎜P −P ⎟+⎜M ⎟
                              ⎟ ⎜      ⎟             +⎜       ⎟     =                    +⎜           ⎟
                   ⎝ no    nb ⎠ ⎝  nbx ⎠
                                                      ⎜ M nby ⎟       1,502,205 − 229,310 ⎝ 2,103,124 ⎠
                                                      ⎝       ⎠
                                                                                    1.5
                                                                       ⎛ 1,269,231 ⎞
                                                                      +⎜           ⎟
                                                                       ⎝ 2,103,124 ⎠

                                                                    = 0.182 + 0.468 + 0.468 = 1.118 > 1.0
                                                                  ¬muxkat;enH overdesigned bnþicbnþÜc¦
TTYlykkarsikSaKNna Edl
          b = 15in.          h = 15in.          d = 12.5in.
          As = 7-wire strand tendon  Ggát;p©it 1 / 2in. cMnYn 5 tamRCugnImYy² dUckñúgrUbTI 8>15 Edl
                 eGay tendon srubTaMgGs; 16 .

15> Ggát;rgkarTajeRbkugRtaMg                                      Prestressed Tension Members

  k> kugRtaMgbnÞúkesvakmμ                                Service-Load Stresses
        RbB½n§ nigGgát;rgkarTajdUcCa railroad ties, bridge truss tension members, foundation
anchors sMrab;CBa¢aMgTb;dI nig ties enAkñúgCBa¢aMgén liquid-retaining tank pSMeLIgeday prestressing

strand EdlmanersIusþg;x<s;CamYynwgPaBrwgRkajrbs;ebtug. edaysarEbbenH vapþl;nUversIusþg;Taj

nigkMhUcRTg;RTayEdlfycuH Edlmuxkat;EdksuT§minGacpþl;eGay)andUc sMrab;karRTbnÞúkdUcKña.
eKeRcIneRbIvaCaGgát;cMNg (tie) b¤CaEpñkénRbB½n§eRKOgbgÁúMTaMgmUl.
        rUbTI 8>25 eRbobeFonsac;lUtrbs;Ggát;ebtugeRbkugRtaMgkñúgTisénkMlaMgTajCamYYynwgGgát;
eRKOgbgÁúMEdkEdlmanlT§PaBRTRTg;dUcKña. sac;lUtrbs;Ggát;rgkarTajEdl)anBIkarGnuvtþénkMlaMg

Prestressed Compression and Tension Members                                                              542
Department of Civil Engineering                                                        NPIC




xageRkA F xN³Edlsac;lUtrbs; unstressed tendon enAkñúgEpñk (a) EdlbNþalBIkMlaMg F
KW)anBIRTwsþIemkanicmUldæan
                                    FL
                     ΔL ps =                                                  (8.39)
                                  Aps E ps

RbsinebIeKCMnYs tendon eday rolled structural member karERbRbYllkçN³énmuxkat;eFVIeGay
kMhUcRTg;RTay
                                 ⎛ A ps E ps     ⎞
                     ΔLs = ΔL ps ⎜
                                 ⎜ AE            ⎟
                                                 ⎟                            (8.40)
                                 ⎝ s s           ⎠
Edl As FMCag Aps . dUcenH kMhUcRTg;RTayEdlfycuHy:ageRcInRtUv)anbgðajenAkñúgrUbTI 8>25b.
RkLaépÞebtugbMElgrbs;ebtugenAkñúgrUbTI 8>25 c KW
                                     (
                     At1 = Ag + n p − 1 Aps  )                                (8.41)

ehIy RbsinebIbMErbMrYlkugRtaMgenAkñúgkugRtaMgKW

Ggát;rgkarsgát; nigkarTajeRbkugRtaMg                                            543
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member
Viii. prestressed compression and tension member

More Related Content

Viewers also liked

X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete elementChhay Teng
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength designChhay Teng
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeChhay Teng
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlChhay Teng
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsChhay Teng
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsChhay Teng
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofChhay Teng
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stressChhay Teng
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design Chhay Teng
 
7.simple connections
7.simple connections7.simple connections
7.simple connectionsChhay Teng
 
6.beam columns
6.beam columns6.beam columns
6.beam columnsChhay Teng
 
3.tension members
3.tension members3.tension members
3.tension membersChhay Teng
 
Xii slender column
Xii slender columnXii slender column
Xii slender columnChhay Teng
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining wallsChhay Teng
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness methodChhay Teng
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy methodChhay Teng
 

Viewers also liked (20)

X. connections for prestressed concrete element
X. connections for prestressed concrete elementX. connections for prestressed concrete element
X. connections for prestressed concrete element
 
V. shear and torsional strength design
V. shear and torsional strength designV. shear and torsional strength design
V. shear and torsional strength design
 
Xii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridgeXii.lrfd and stan dard aastho design of concrete bridge
Xii.lrfd and stan dard aastho design of concrete bridge
 
Appendix
AppendixAppendix
Appendix
 
Vii. camber, deflection, and crack control
Vii. camber, deflection, and crack controlVii. camber, deflection, and crack control
Vii. camber, deflection, and crack control
 
Ix. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systemsIx. two way prestressed concrete floor systems
Ix. two way prestressed concrete floor systems
 
Iv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elementsIv.flexural design of prestressed concrete elements
Iv.flexural design of prestressed concrete elements
 
Xi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roofXi. prestressed concrete circular storage tanks and shell roof
Xi. prestressed concrete circular storage tanks and shell roof
 
5.beams
5.beams5.beams
5.beams
 
Appendix b structural steel design based on allowable stress
Appendix  b structural steel design based on allowable stressAppendix  b structural steel design based on allowable stress
Appendix b structural steel design based on allowable stress
 
Computer aided achitecture design
Computer aided achitecture design Computer aided achitecture design
Computer aided achitecture design
 
7.simple connections
7.simple connections7.simple connections
7.simple connections
 
6.beam columns
6.beam columns6.beam columns
6.beam columns
 
3.tension members
3.tension members3.tension members
3.tension members
 
Xii slender column
Xii slender columnXii slender column
Xii slender column
 
Euro l
Euro lEuro l
Euro l
 
Euron fl
Euron flEuron fl
Euron fl
 
Xiv retaining walls
Xiv retaining wallsXiv retaining walls
Xiv retaining walls
 
14. truss analysis using the stiffness method
14. truss analysis using the stiffness method14. truss analysis using the stiffness method
14. truss analysis using the stiffness method
 
9. deflection using energy method
9. deflection using energy method9. deflection using energy method
9. deflection using energy method
 

More from Chhay Teng

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_studentsChhay Teng
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countriesChhay Teng
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix designChhay Teng
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelinesChhay Teng
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto contentChhay Teng
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-camChhay Teng
 
Concrete basics
Concrete basicsConcrete basics
Concrete basicsChhay Teng
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryoutChhay Teng
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapesChhay Teng
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shapeChhay Teng
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shapeChhay Teng
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shapeChhay Teng
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shapeChhay Teng
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shapeChhay Teng
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipnChhay Teng
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angleChhay Teng
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upeChhay Teng
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upnChhay Teng
 

More from Chhay Teng (20)

Advance section properties_for_students
Advance section properties_for_studentsAdvance section properties_for_students
Advance section properties_for_students
 
Representative flower of asian countries
Representative flower of asian countriesRepresentative flower of asian countries
Representative flower of asian countries
 
Composition of mix design
Composition of mix designComposition of mix design
Composition of mix design
 
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
2009 ncdd-csf-technical-manual-vol-i-study-design-guidelines
 
Type of road
Type of roadType of road
Type of road
 
Technical standard specification auto content
Technical standard specification auto contentTechnical standard specification auto content
Technical standard specification auto content
 
Available steel-section-list-in-cam
Available steel-section-list-in-camAvailable steel-section-list-in-cam
Available steel-section-list-in-cam
 
Concrete basics
Concrete basicsConcrete basics
Concrete basics
 
Rebar arrangement and construction carryout
Rebar arrangement and construction carryoutRebar arrangement and construction carryout
Rebar arrangement and construction carryout
 
Mix design
Mix designMix design
Mix design
 
1 dimension and properties table of w shapes
1 dimension and properties table of w shapes1 dimension and properties table of w shapes
1 dimension and properties table of w shapes
 
2 dimension and properties table of s shape
2 dimension and properties table of s shape2 dimension and properties table of s shape
2 dimension and properties table of s shape
 
3 dimension and properties table of hp shape
3 dimension and properties table of hp shape3 dimension and properties table of hp shape
3 dimension and properties table of hp shape
 
4 dimension and properties table c shape
4 dimension and properties table c shape4 dimension and properties table c shape
4 dimension and properties table c shape
 
5 dimension and properties table l shape
5 dimension and properties table l shape5 dimension and properties table l shape
5 dimension and properties table l shape
 
6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape6 dimension and properties table of ipe shape
6 dimension and properties table of ipe shape
 
7 dimension and properties table ipn
7 dimension and properties table ipn7 dimension and properties table ipn
7 dimension and properties table ipn
 
8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle8 dimension and properties table of equal leg angle
8 dimension and properties table of equal leg angle
 
9 dimension and properties table of upe
9 dimension and properties table of upe9 dimension and properties table of upe
9 dimension and properties table of upe
 
10 dimension and properties table upn
10 dimension and properties table upn10 dimension and properties table upn
10 dimension and properties table upn
 

Viii. prestressed compression and tension member

  • 1. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca VIII. Ggát;rgkarTaj nigrgkarsgát;eRbkugRtaMg Prestressed Compression and Tension Members 1> esckþIepþIm Introduction eTaHCaeKeRbIebtugeRbkugRtaMgy:ageRcInsMrab;Ggát;rgkarBt;begáag dUcCaFñwm nigkMralxNÐk¾ eday k¾vaRtUv)aneKeRbIsMrab;Ggát;rgkMlaMgtamG½kS (axially loaded member) dUcCa ssrEvg ¬Ggát; rgkarsgát;¦ nigGgát;cMNg (tie) sMrab;Ggát;ragFñÚ (arch) nig truss elements ¬Ggát;rgkarTaj¦. b:uEnþ minTan;maneCIgtageRbIeRbkugRtaMgTajCamun b¤TajCaeRkayeT. RTwsþI/ karviPaK nigkarsikSaKNnaGgát;rgkarsgát;eRbkugRtaMgKWmanlkçN³RsedogKñanwgGgát; ebtugGarem:rgkarsgát;Edr. kMlaMgeRbkugRtaMgtamG½kSxagkñúgenAkñúg bonded tendon min)anbegáIt column action eT dUcenHminman buckling GacekItmaneT elIkElgEtEdkeRbkugRtaMg nigebtugEdl B½T§CMuvijb:HKñaedaypÞal;tambeNþayRbEvgsrubrbs;Ggát;. edaysarEtEbbenHehIy eTIbPaBcg;ekag rbs;ebtugenAkNþalRtUv)aneFVIeGayNWtedaysarT§iBlsNþkrbs;EdkeRbkugRtaMgEdlbgáb;tam beNþayG½kS. CaFmμtassrEtgEtrgkarBt;begáagbEnßmBIelIbnÞúktamG½kS edaysarbnÞúkxageRkAkMrcMp©it Nas;. CalT§pl muxkat;ebtugrgkarTajenARtg;RCugEdlenAq¶ayBIExSskmμrbs;bnÞúktambeNþay CageK. sñameRbHekItmaneLIg b:uEnþeKGackarBarva)antamry³kareRbIkMlaMgeRbkugRtaMgenAkñúgssr. RbsinebIbnÞúkGnuvtþn_CabnÞúkcMp©it enaHkMlaMgeRbkugRtaMgminmansar³sMxan;eT edaysareKminRtUvkar eGaykugRtaMgsgát;enAelImuxkat;ebtugekIneLIg. eKGacBicarNaGgát;rgkarsgát;rgeRbkugRtaMgeBjtambeNþayRbEvgrbs;vaRbsinebIminmankM hatbg;eRbkugRtaMgenAxagcugrbs;vaeTenaH. RbsinebIekItmankMhatbg;edayEpñk (partial loss) eK RtUvBicarNakMNat;EdkenAkñúg development zone minmanrgeRbkugRtaMg ehIyeKRtUvKitmuxkat;enA tMbn;xagcugCamuxkat;ebtugGarem:rgbnÞúkcakp©it. CaFmμtaGgát;rgkarTajEtgrgEtkMlaMgTajedaypÞal;Etb:ueNÑaH. Ggát;TaMgenHPaKeRcInCag Ggát;ragCabnÞat; dUcCa railroad ties, restraining tie sMrab; arch bridges, Ggát;rgkarTajenAkñúg truss nig foundation anchorage sMrab;eRKOgbgÁúMTb;dI. Ggát;rgkarTajk¾GacmanragrgVg; b¤)a:ra:bUl pgEdr dUcCa witness prestressed circular container b¤ catenary-shaped bridge elements. tYnaTI Prestressed Compression and Tension Members 492
  • 2. Department of Civil Engineering NPIC cMbgrbs;Ggát;rgkarTajKWkarkarBarsñameRbHrbs;vaeRkamGMeBI service load nigGacTb;Tl; service load xageRkA nig overload. karEdlminmansñameRbHKWkarBarERcHsIuEdk niglkçxNÐbrisßanepSg². 2> Ggát;rgkarsgát;eRbkugRtaMg³ GnþrGMeBIrvagbnÞúk nigm:Um:g;enAkñúgssr nigssrRKWH Prestressed Compression Members: Load-Moment Interaction in Columns and Piles edIm,IkMNt; nominal strength rbs;ssreRkamGMeBIbnÞúkcMNakp©itepSg² eKcaMcaMKNnanUv lT§PaBepSgénbnSMrvag ultimate nominal loads Pn nig ultimate nominal moments M n Edl eGayeday M n = Pn ei (8.1) Edl ei CacMNakp©itrbs;bnÞúkeRkamGMeBIénbnSMrvagbnÞúk nigm:Um:g;epSg². düaRkaménTMnak;TMngrvag Pn nig M n RtUv)anbgðajenAkñúgdüaRkam interaction énrUbTI 8>1 sMrab;ssrminRsav ¬)ak;edaysar sMPar³¦ nigssrRsav ¬)ak;edassaresßrPaB¦. enAkñúgssrxøI kar)ak;ekItmanedaysarbnÞúkQaneTA dl;cMnuc A tambeNþayKnøg OA ehIy concrete arches enARtg;RCugrgkarsgát;. sMrab;ssrRsav tMélrbs;bnÞúkGtibrmaQaneTAdl;cMnuc B tambeNþayKnøg OBC Edlkat;nwg interaction diagram enARtg;cMnuc C . GesßrPaBekItmanenAeBlEdlbnÞúkQaneTAdl;bnÞúkeRKaHfñak; (critical load). karsnμt;CamUldæansMrab;ssrebtugeRbkugRtaMgmanlkçN³RsedogKñanwgkarsnμt;sMrab;ssr ebtugGarem:Edr. karsnμt;TaMgenaHmandUcxageRkam³ !> karBRgaybMErbMrYlrageFobenAkñúgebtugERbRbYlCalkçN³bnÞat;eTAtamkMBs;muxkat;. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 493
  • 3. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca @> karBRgaykugRtaMgenAkñúgtMbn;rgkarsgát;manrag)a:ra:bUl ehIyRtUv)anCMnYsedaybøúk ctuekaNsmamaRtenAkñúgkarviPaK nigkarsikSaKNna. #> eKsÁal;düaRkamTMnak;TMngkugRtaMg nigbMErbMrYlrageFobrbs;ebtug nigrbs;EdkeRbkugRtaMg. $> Crushing strain rbs;ebtugedaysarbnSMkarBt;begáag nigkMlaMgtamG½kSenARtg;srésxag eRkAbMputKW ε c = 0.003in. / in. ehIy crushing strain mFümenARtg;Bak;kNþalkMBs;rbs; muxkatEdlrgbnÞúktamG½kSCasMxan;KW ε 0 = 0.002in. / in. . %> eKKitfamuxkat;)ak;enAeBlEdlbMErbMrYlrageFobenAkñúgebtugenARtg;srésrgkarsgát;xag eRkAbMputQaneTAdl; ε c = 0.003in. / in. b¤ ε 0 = 0.002in. / in. enARtg;Bak;kNþalkMBs; rbs;muxkat;. cMNaMfa ε c = 0.003in. / in. CatMélEdleRbIenAkñúg ACI Code b:uEnþ code déTeToteRbItMélFMCagenHKW 0.0035 b¤ 0.0038 . ^> eKsnμt;famanPaBRtUvKñaénbMErbMrYlrageFob (compatibility of strain) rvagebtug nigEdkeRbkugRtaMg. TMrg;énkar)ak;k¾manlkçN³RsedogKñanwgkar)ak;rbs;ssrebtugGarem:pgEdr³ !> kar)ak;edaykarsgát;dMbUg (initial compression failure), cMNakp©ittUc. TMrgénkar)ak;enH ekItmanenAeBlbMErbMrYlrageFobenAkñúgebtugenARtg;RCugEdlrgbnÞúkQandl; ε cu = 0.003in. / in. xN³EdlbMErbMrYlrageFobenAkñúgEdkeRbkugRtaMgEdlenARCugq¶aymçageTot mantMélTabCag yield strain. cMNakp©it e rbs;bnÞúktamG½kSmantMéltUcCag balanced eccentricity eb . @> kar)ak;edaykarTajdMbUg (initial tension failure), cMNakp©itFM. TMrg;énkar)ak;enHbRBa©as BITMrg;énkar)ak;elIkmun. ebtugenARCugq¶ay yield munebtugEbkRtg;RCugEdlrgbnÞúk. cM Nakp©it e rbs;bnÞúktamG½kSFMCag balanced eccentricity eb . #> Balanced state of strain, ε t = 0.002in. / in. , balanced eccentricity. TMrg;enHkMNt;nUv lkçxNÐéntMélm:Um:g;Gtibrma M nb enAelIExSekagGnþrGMeBIEdlRtUvKñanwg maximum tensile strain enAkñúgRsTab;rgkarTajesμInwg strain increment Δε ps = 0.0012 eTA 0.002in. / in. bnÞab;BI service load. cMNakp©itrbs;bnÞúktamG½kSRtUv)ankMNt;Ca balanced eccentricity eb . Prestressed Compression and Tension Members 494
  • 4. Department of Civil Engineering NPIC cMnucsMxan;bIenAelIdüaRkam interaction KW³ !> M u = 0 EdlRtUvKñaeTAnwg ε 0 = 0.002in. / in. enAeBl)ak;edaysarbnÞúkcMp©it Pu . TItaMgG½kSNWtKWenAGnnþ. @> KμankarTajenARtg;srésrgkarTajxageRkAbMputrbs;ebtug ehIy ε cu = 0.003in. / in. enA Rtg;srésrgkarsgát;xageRkAbMputrbs;ebtug. TItaMgG½kSNWtsßitenAelIsrésrgkarTaj xageRkAbMput. #> Pu = 0 nig ε cu = 0.003in. / in. enARtg;srésrgkarsgát;xageRkAbMput. G½kSNWtsßitenA xagkñúgmuxkat; ehIyRtUv)ankMNt;eday trail and adjustment edaysnμt;kMBs; c . rUbTI 8>2 bgðajBIkarEbgEckkugRtaMg nigbMErbMrYlrageFobsMrab;krNITaMgbIxagelI. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 495
  • 5. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca cMnucEdlenAesssl;enAelIdüaRkam interaction KWsMrab;krNIEdlsßitenAcenøaHdMNak;kal (a), (b) nig (c) rbs;rUbTI 8>2 b¤BIbnÞúkcMputeTAdl;karBt;begáagsuT§ (pure bending). kñúgkrNIrbs; ssr pure bending kMNt;sßanPaBEdlminKitBIpleFobrbs;bnÞúktamG½kSemKuN Pu elIm:Um:g;Bt; begáag M u . karBRgaykugRtaMgrag)a:ra:bUlsMrab;krNI (b) nig (c) RtUv)anCMnYsedaybøúkctuekaN smamaRt EdlkMBs;rbs;bøúk a = β1c dUckrNIsMrab;FñwmrgkarBt;begáagEdr. Prestressed Compression and Tension Members 496
  • 6. Department of Civil Engineering NPIC krNIKMrUénGgát;rgkarsgát;KWsßitenAcenøaHdMNak;kal (b) nig (c) rbs;rUbTI 8>2. bMErbMrYl rageFob kugRtaMg nigkMlaMgsMrab;krNIEbbenHRtUv)anbgðajenAkñúgrUbTI 8>3 sMrab;muxkat;eRKaHfñak; eRkamsßanPaBkMNt;én ultimate load edaykar)ak;edaysMPar³. kat;düaRkamGgÁesrI (free-body diagram) enARtg;Bak;kNþalkMBs;rbs;ssrRtg;muxkat; 1-1 muxkat;rbs;Ggát;RtUv)anbgðajenAkñúg cMnuc (b) rbs;rUb ehIybMErbMrYlrageFob nigkugRtaMgenAeBl)ak;manenAkñúgcMnuc (c) nig (d) erogKña. bMErbMrYlrageFob ε ce CabMErbMrYlrageFob uniform enAkñúgebtugeRkamGMeBIeRbkugRtaMgRbsiT§PaB eRkayeBl creep, shrinkage nig relaxation losses EdleGayerogKñadUcxageRkam³ Ccn = 0.85 f 'c ba (8.2a) T 'sn = A' ps f ' ps (8.2b) nig Tsn = f ps Aps1 (8.2c) smIkarlMnwgrbs;kMlaMgKW Pn = Ccn − T 'sn −Tsn (8.3) RbsinebIkMlaMgeRbkugRtaMgRbsiT§PaBeRkayeBlkMhatbg;TaMgGs;Ca Pe enaHbMErbMrYlrag eFobenAkñúg tendon munnwgkarGnuvtþrbs;bnÞúkxageRkAKW f pe Pe ε pe = = E ps (Aps ) − A' ps E ps (8.4a) eKGackMNt;karERbRbYlénbMErbMrYlrageFobenAkñúgRkLaépÞEdkeRbkugRtaMg A' ps enAeBl EdlGgát;rgkar sgát;qøgkat;BIdMNak;kalkMlaMgeRbkugRtaMgRbsiT§PaBeTAdl; ultimate load dUc xageRkam³ ⎛ c − d'⎞ Δε ' ps = ε cu ⎜ ⎟ − ε ce (8.4b) ⎝ c ⎠ ⎛d −c⎞ Δε ps = ε cu ⎜ ⎟ + ε ce (8.4c) ⎝ c ⎠ Δε p = Δ ps − ε ce (8.4d) ( T 'sn = A' ps f ' ps = A' ps E ps ε pe − Δε ' ps ) ⎡ ⎛ c − d'⎞ ⎤ b¤ T 'sn = A' ps E ps ⎢ε pe − ε cu ⎜ ⎝ c ⎠ ⎟ + ε ce ⎥ (8.5) ⎣ ⎦ dUcKña ( Tsn = Aps f ps = Aps E ps ε pe + Δε ps ) ⎡ ⎛d −c⎞ ⎤ b¤ Tsn = A' ps E ps ⎢ε pe + ε cu ⎜ ⎝ c ⎠ ⎟ + ε ce ⎥ (8.6) ⎣ ⎦ Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 497
  • 7. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca edayKitm:Um:g;eFobnwgTMRbCMuTMgn;FrNImaRt cgc rbs;muxkat;eK)an (8.7) BIsmIkar 8.2a, 8.5, 8.6 ni 8.7 eKGackMNt; nominal strength Pu nig M u sMrab;cMNakp©it ei epSg² edIm,Isg;düaRkam interaction P − M sMrab;muxkat;NamYy b¤begáIt nondimensional series éndüaRkam interaction P − M sMrab;ersIusþg;ebtugepSg². ersIusþg;KNna (design strength) RtUv)anKNnaBItMél nominal strength Pu = φPn nig M u = φM n = φPn e Edl φ CaemKuNkat;bnßyersIusþg;rbs;Ggát;rgkarsgát;. cMNaMfa tMél Pu nig M u KNnaRtUvman tMélEk,r EtminRtUvtUcCagtMél Pu nig M u emKuNeT. rUbTI 8>4 bgðajBIdüaRkamTMnak;TMngbnÞúk nigm:Um:g;EdlmancMNakp©it. Prestressed Compression and Tension Members 498
  • 8. Department of Civil Engineering NPIC 3> emKuNkat;bnßyersIusþg; φ Strength Reduction Factor φ sMrab;Ggát;rgkarBt;begáag nigrgbnÞúktamG½kStUc enaHGgát;rgkar)ak;eday tension rein- forcement eFVIkardl; yield ehIykareFVIkarCalkçN³sVit (ductile) rbs;Ggát;mankarekIneLIg. dUc enH sMrab;bnÞúktamG½kStUc eKGnuBaØateGaybegáInemKuN φ BIGVIEdleK)antMrUvsMrab;Ggát;rgkarsgát; suT§. enAeBlEdlminmanbnÞúktamG½kS Ggát;RbQmnwgkarBt;begáagsuT§ (pure flexure) ehIyemKuN kat;bnßyersIusþg; φ esμInwg 0.90 . rUbTI 4>45 bgðajBI transition zone EdlenAkñúgenaHeKGacbegáInemKuNkat;bnßyersIusþg; φ BI 0.65 sMrab; tied column eTA 0.70 sMrab; spirally reinforced column eTAdl; 0.90 sMrab; pure flexure enAkñúg strain limits approach. Balanced limit strain sMrab; compression-controlled state RtUv)ankMNt;eday limiting strain ε t = 0.002in. / in. b¤pleFobkMBs;G½kSNWt c / dt = 0.60 sMrab; Ggát;rgkarsgát;. eKGacBicarNatMél φPn = 0.10 f 'c Ag Ca design axial load EdltMé;ltUcCagenH eKGacbegáIntMél φ edaysuvtßiPaBsMrab;Ggát;rgkarsgát;PaKeRcInEdlsßitenAkñúg transition zone én rUbTI 4>45. eKGaceFVI interpolation éntMél φ sMrab; transition zone BI limit stain state rgkar sgát; (ε t = 0.002) eTA limit strain state rgkarTaj (ε t = 0.005) dUcenAkñúgsmIkar 4.36 (a) nig 4.36 (b) dUcxageRkam³ (a) φ CaGnuKmn_énbMErbMrYlrageFob Tied section³ 0.65 ≤ [φ = 0.48 + 83ε t ] ≤ 0.90 (8.8a) Spirally-reinforced section: 0.70 ≤ [φ = 0.57 + 67ε t ] ≤ 0.90 (8.8b) (b) φ CaGnuKmn_énpleFobkMBs;G½kSNWt Tied section³ ⎡ 0.25 ⎤ 0.65 ≤ ⎢φ = 0.23 + ⎥ ≤ 0.90 (8.9a) ⎣ c / dt ⎦ Spirally-reinforced section: ⎡ 0.20 ⎤ 0.70 ≤ ⎢φ = 0.37 + ⎥ ≤ 0.90 (8.9b) ⎣ c / dt ⎦ Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 499
  • 9. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca cMNaMfa balanced strain condition enAkñúgGgát;rgkarsgát;ebtugeRbkugRtaMgmandWeRkminkM- Nt;x<s;. eKGaceRbIviFIsmrmü (trial and adjustment) edIm,IedaHRsayedaysnμt;tMél Δ ps = 0.0012 eTA 0.0020in. / in. bnÞab;BIrg service load nigedayKNnakMBs;bøúkkugRtaMg a rbs;muxkat;ebtug. eKRtUvepÞógpÞat;karsnμt;enH ehIyeKRtUvEktMrUv nominal moment sMrab; limit stain condition ε 't = 0.002 eRkayeBlsg;düaRkam interaction rYc. tamviFIenH eKGaceFVIeGaytMélm:Um:g;Gtibrmaman lkçN³RbesIreLIgsMrab; balanced strain limit state rgkarsgát; EdlsMEdgedaykMBs;G½kSNWt cb RbsinebIcaM)ac;. 4> dMeNIrkarsMrab;sikSaKNnaGgát;xøIrgkarsgát;ebtugeRbkugRtaMg Operational Procedure for the Design of Nonslender Prestressed Compression Members eKGacGnuvtþCMhanxageRkamsMrab;sikSaKNnassrxøIEdlkareFVIkarrbs;vaRKb;RKgedaykar)ak; edaysMPar³ !> KNnabnÞúktamG½kSxageRkAemKuN Pu nigm:Um:g;emKuN M u . KNnacMNakp©itEdlGnuvtþ e = M u / Pu . @> snμt;muxkat; nigRbePTrbs;EdkxagEdlRtUveRbI dUcCa tied b¤ spiral. eKminRtUveRCIserIs muxkat;tUc. #> snμt;cMnYn nigTMhMrbs; strand. $> snμt;fabMErbMrYlrageFobenAsrésrgkarTajxageRkAbMputesμInwgbMErbMrYlrageFobEdlsnμt; ε ps rbs;EdkeRbkugRtaMg nigbnÞab;mkbnþKNna balanced limit strain axial load Pnb nig m:Um:g; M nb enARtg; limit strain ε t = 0.002 . CMhanenHk¾GaceGayeKepÞógpÞat;tMélrbs; emKuNkat;bnßyersIusþg;pgEdr. m:Um:g; M nb )anBItMél strain ε ps EdkeGaym:Um:g;Gtibrma enAkñúgdüaRkam interaction. %> snμt;kMBs;G½kSNWt c ehIykMNt;rk Pn nig M n . bnÞab;mkRtYtBinitüPaBRKb;RKan;rbs;mux kat;Edlsnμt; eday φPn > Pu emKuN nig φM n > M u . RbsinebImuxkat;minGacRTbnÞúkem KuN b¤vamanmuxkat;FMeBk eKRtUveRCIserIsmuxkat; nigEdkeLIgvijtamry³ trial and adjust- ment edayGnuvtþCMhan $ nig% eLIgvij edayrYmTaMgkarsg;düaRkam interaction. ^> sikSaKNnaEdkxag (lateral reinforcement). rUbTI 8>5 bgðajBI flowchart énCMhan trial-and-adjustment kñúgkarviPaK nigsikSaKNna. Prestressed Compression and Tension Members 500
  • 10. Department of Civil Engineering NPIC Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 501
  • 11. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca 5> sg;düaRkamGnþrGMeBIrvagbnÞúk nigm:Um:g; Construction of Nominal Load-Moment (Pn − M n ) and Design (Pu − M u ) Interaction Diagram ]TahrN_ 8>1³ sg;düaRkam interaction én nominal load-moment sMrab;Ggát;rgkarsgát;eRbkug RtaMgEdlmanmuxkat;kaer: EdlRCugrbs;vaesμInwg 14in.(356mm) . Ggát;RtUv)anBRgwgeday 7-wire stress-relieved 270-K strands Ggát;p©it 1 / 2in.(12.7 mm ) cMnYn 8 EdlBak;kNþalenAelIRCugnImYy² rbs;épÞTaMgBIrEdlRsbnwgG½kSNWtEdlbgðajenAkñúgrUbTI 8>6. düaRkamTMnak;TMngkugRtaMg nigbMEr bMrYlrageFobsMrab; strain RtUv)anbgðajenAkñúgrUbTI 8>7. kMlaMgeRbkugRtaMgRbsiT§PaBeRkaykMhat bg;TaMgGs;KW f pe = 150,000 psi(1,034MPa) . elIsBIenH sd;düaRkam design interaction edayeRbI tMélemKuNkat;bnßyersIusþg;Edlsmrmü. eKeGay f 'c = 6,000 psi(47.5MPa ) ebtugTMgn;Fmμta E ps = 29 × 10 6 psi (200 × 103 MPa ) f ps = 240,000 psi(1,655MPa ) ε cu = 0.003in. / in. enAeBl)ak; (failure) ⎛ e2 ⎞ ε ce = 0.0005in. / in. enAeBl Pe eFVIGMeBIenAelImuxkat; = e P ⎜1 + ⎟ AE ⎜ r2 ⎟ c c ⎝ ⎠ BIrUbTI 8>9. ε py = strand yield strain ≅ 0.012in. / in. snμt;tMélsmrmüén ε p nigeFVIkarEktMrUvRbsinebIcaM)ac;. Prestressed Compression and Tension Members 502
  • 12. Department of Civil Engineering NPIC dMeNaHRsay³ düaRkam nominal strength Pn − M n !> kMlaMgsgát;tamG½kS³ M u = 0 / c = ∞ ¬eRbI ε cu = 0.003 edaysarvaminGacmankarsgát;tamG½kS l¥tex©aH¦ kMBs;bøúkrgkarsgát; a = 14in.(356mm) ehIykMBs;RbsiT§PaB d = 14 − 2 = 12in.(305mm) . dUcenH eyIgman Ccn = 0.85 f 'c ba = 0.85 × 6000 ×14 ×14 = 999,600lb(4,446kN ) BIsmIkar 8.5 ⎡ ⎛ c − d'⎞ ⎤ T ' sn = A' ps E ps ⎢ε pe − ε cu ⎜ ⎟ + ε ce ⎥ ⎣ ⎝ c ⎠ ⎦ ( A' ps = 4 × 0.153 = 0.612in.2 3.95cm 2 ) BIsmIkar 8.7/ sMrab; E ps = 29 ×106 psi (200 ×10 MPa ) / ε 3 pe = 0.0052in. / in. ehIy ε cu = 0.003 dUcenH ⎡ ⎛∞−2⎞ ⎤ T ' sn = 0.612 × 29 ⋅10 6 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ ∞ ⎠ ⎦ = 0.612 × 29 ⋅10 6 (0.0052 − 0.003 + 0.0005) = 47,920lb(213kN ) Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 503
  • 13. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca BIsmIkar 8.6 ⎡ ⎛ d −c⎞ ⎤ Tsn = A ps E ps ⎢ε pe + ε cu ⎜ ⎟ + ε ce ⎥ ⎣ ⎝ c ⎠ ⎦ ⎡ ⎛ 12 − ∞ ⎞ ⎤ = 0.612 × 29 ⋅10 6 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ ∞ ⎠ ⎦ = 47,920lb(213kN ) BIsmIkar 8.2 Pn = Ccn − T ' sn −Tsn = 999,600 − 47,920 − 47,920 = 903,760lb(4,020kN ) BIsmIkar 8.7 ⎛ 14 14 ⎞ ⎛ 14 ⎞ ⎛ 14 ⎞ = 999,600⎜ − ⎟ − 47,920⎜ − 2 ⎟ + 47,920⎜12 − ⎟ ⎝2 2⎠ ⎝2 ⎠ ⎝ 2⎠ =0 M e1 = n = 0 Pn @> kMlaMgTajsUnüenARtg;épÞrgkarTaj/ c = 14in. 0.05( f 'c −4,000) β1 = 0.85 − = 0.75 1,000 a = β1c = 0.75 × 14 = 10.5in.(267 mm ) Ccn = 0.85 × 6,000 × 14 × 10.5 = 749,700lb(3,335kN ) ⎡ ⎛ 14 − 2 ⎞ ⎤ T ' sn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 14 ⎠ ⎦ = 55,526lb(247 kN ) ⎡ ⎛ 12 − 14 ⎞ ⎤ Tsn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 14 ⎠ ⎦ = 93,557lb(416kN ) Pn = Ccn − T ' sn −Tsn = 749,700 − 55,526 − 93,557 = 600,617lb(2,672kN ) = 1,502,130in. − lb(170kN .m ) Prestressed Compression and Tension Members 504
  • 14. Department of Civil Engineering NPIC = 2.50in.(63.5mm ) 1,502,130 e2 = 600,617 #> karBt;begáagsuT§ (pure bending): Pu = 0 edayecalT§iBlrbs;Edkrgkarsgát; A' ps eyIgman A ps f ps 0.612 × 240,000 a= = = 2.06in.(52.3mm ) 0.85 f 'c b 0.85 × 6,000 × 14 = 2.75in.(69.9mm ) 2.06 c= 0.75 ⎛ a⎞ ⎛ 2.06 ⎞ M n = A ps f ps ⎜ d − ⎟ = 0.612 × 240,000⎜12 − ⎟ ⎝ 2⎠ ⎝ 2 ⎠ = 1,611,274in. − lb 1,611,274 e3 = =∞ 0 $> Limit strain condition: Pn / M n / e snμt;fabMErbMrYlrageFobenAkñúg tensile strand Aps RtUvesμInwg incremental strain Δε p bnÞab;BIrg service load Pe . edayKittMél Δε p ≅ 0.0014 RtUv)anEkERbeday trial and adjustment nigBIrUbTI 8>8/ ¬RtIekaNdUc¦ eyIg)an c ε 0.003 = cu = (d − c ) Δε p 0.0014 dUcenH c = 8.15in.(207mm) . Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 505
  • 15. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca a = β1c = 0.75 × 8.15 = 6.11in.(155mm ) Ccn = 0.85 × 6,000 × 6.10 × 14 = 435,540lb(1,937kN ) ⎡ ⎛ 8.13 − 2 ⎞ ⎤ T ' sn = 0.612 × 29 ⋅ 10 6 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 8.13 ⎠ ⎦ = 61,018lb(271kN ) ⎡ ⎛ 12 − 8.13 ⎞ ⎤ Tsn = 0.612 × 29 ⋅ 10 − 6 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 8.13 ⎠ ⎦ = 126,509lb(563kN ) Limit strain state sMrab; Pn / M n nig e mandUcxageRkam Pn = 435.540 − 61,018 − 126,509 = 248,013lb(1,103kN ) = 2,047,838in. − lb(272kN .m ) = 8.26in.(210mm ) 2,047,838 e4 = e = 248,013 kUGredaensMrab;krNITaMgbYnBIelIkmunCacMnucGegátenAelIdüaRkam interaction Pn − M n . eK k¾RtUvKNnacMnucepSgeTotpgEdr edIm,ITTYl)andüaRkamsuRkitEdlRKbdNþb;elIkardak;bnÞúkRKb;Ebb y:ag. Ca]TahrN_ eKRtUvkMNt;cMnucbEnßmrvagkUGredaenenAcenøaHkrNITIBIr nigkrNITIbI edaysnμt;tM élbEnßménkMBs;G½kSNWt c nigkMNt; Pn / M n nig e sMrab;tMél c Edl)ansnμt;. tarag 8>1 segçb BItMélénkUGredaenEdleRbIsMrab;sg;düaRkam interaction Pn − M n k¾dUcCadüaRkam interaction Pu − M u . BIdüaRkam eyIgeXIjfaGredaenénm:Um:g;GtibrmamantMélEk,rnwg M n = 2,047,838in. − lb dUcenHkarsnμt; cb = 8.15in. KWepÞógpÞat;. Prestressed Compression and Tension Members 506
  • 16. Department of Civil Engineering NPIC düaRkam design load-moment (P − M ) . sg;düaRkam interaction P − M sMrab;kUGr- u u edaen EdlmanrayenAkñúgtarag 8>1. sMrab;CMhan 7 enAkñúgdüaRkam ssrsßitenAkñúg transition zone Edl c / dt = 6.0 / 12.0 = 0.50 < 0.60 sMrab; limit balanced strain rgkarsgát; BIsmIkar 8.9 (a)/ φ = 0.23 + (c0/.25 ) = 0.23 + 0..50 = 0.73 dt 0 25 dUcenH Pu = 101.2 ⋅ 103 × 0.73 = 73.7 ⋅103 lb M u = 1969.9 ⋅ 103 × 0.73 = 1438.0 ⋅ 103 in. − lb M u3 sMrab;karBt;begáagsuT§ = φM n3 = 0.90 × 1,611,274 = 1,450,147in. − lb(164kN .m ) ¬minGaceRbI)an¦ Pu1 = φPn = 0.65 × 903,760 = 587,444lb ACI Code TamTareGay design axial load strength Gtibrma φPn sMrab; tied prestressed column minRtUvFMCag 0.80φPn ehIysMrab; spirally reinforced prestressed columns minRtUvFMCag 0.85φPn eT. dUcenH eyIgman Pu max = 0.82φPn = 0.80 × 587,444 = 469,955lb(2090kN ) Pu 5 = 0.65 × 826,648 = 537,321(2,574kN ) Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 507
  • 17. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca tMélEdlenAsl;énkUGredaenRtUv)ansegçbenAkñúgtarag 8>1. düaRkam interaction sMrab; nominal strength (Pn − M n ) ehIy design strength (Pu − M u ) RtUv)anbgðajenAkñúgrUbTI 8>9. 6> sßanPaBkMNt;enAeBl)ak;eday Buckling rbs;ssrEvgeRbkugRtaMg Limit State at Buckling Failure of Slender (long) Prestressed Columns RbsibebIpleFobrlas; (slenderness ration) rbs;ssrFMCagEdnkMNt;sMrab;ssrxøI Ggát; rgkarsgát;nwgekagmunnwgQaneTAdl;sßanPaBénkar)ak;edaysMPar³. bMErbMrYlragenAkñúgépÞrgkar sgát;rbs;ebtugeRkamGMeBI buckling load RtUvtUcCag 0.003in. / in. EdlbgðajenAkñúgrUbTI 8>10. ssrEbbenHGacCaGgát;RsavEdlrgbnSMkMlaMgtamG½kS nigkarBt; EdleFVIeGayxUcRTg;RTayxag nigedaybegáItm:Um:g;bEnßmEdlbNþaledaysarT§iBl PΔ Edl P CabnÞúktamG½kS nig Δ CaPaBdab rbs;rUbragekagrbs;ssrenARtg;muxkat;EdlBicarNa. eKmanssrRsavEdlrgkMlaMgtamG½kS Pu enARtg;cMNakp©it e . T§iBl buckling begáItm:Um:g; bEnßm Pu Δ . m:Um:g;enHkat;bnßylT§PaBrbs;bnÞúkBIcMnuc C eTAcMnuc B enAkñúgdüaRkam interaction én rUbTI 8>10. m:Um:g;srub Pu e + Pu Δ RtUv)antMNagedaycMnuc B enAkñúgdüaRkam ehIyeKGacsikSa Prestressed Compression and Tension Members 508
  • 18. Department of Civil Engineering NPIC KNnassrsMrab;m:Um:g;FMCagenH b¤sMrab; magnified moment M c dUcssrxøI. RbEvgRbsiT§PaB klu EdlbgðajenAkñúgrUbTI 8>11 RtUv)aneRbICa modified length rbs;ssr EdlKitPaBTb;xagcug (end restraint) EdlxusBITMr pinned. klu tMNageGayRbEvgrbs;ssrEdl manTMr pinned Fmμta Edlman Euler buckling load esμInwgbnÞúkrbs;ssreRkamkarBicarNa. müa:g vijeTot vaCacMgayrvagcMnucrbt;rbs;Ggát;kñúgTMrg;ekagrbs;va. tMélrbs;emKuNRbEvgRbsiT§PaBEdlTb;xagcug (end restraint effective length factor) k ERbRbYlcenøaH 0.5 nig 2.0 GaRs½yeTAnwgRbePTén restraint dUcxageRkam³ cugssrTaMgsgçag pinned/ minmancl½txag k = 1.0 cugssrTaMgsgçag fixed k = 0 .5 cugmçag fixed nigcugmçageTotTMenr k = 2 .0 cugTaMgsgçag fixed/ Gaccl½txag k = 1 .0 RbePTkrNIEdlbgðajBIragekagrbs;ssrsMrab;lkçxNÐcugepSg² nigemKuNRbEvg k RtUv)anbgðaj enAkñúgrUbTI 8>11. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 509
  • 19. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca Prestressed Compression and Tension Members 510
  • 20. Department of Civil Engineering NPIC sMrab;Ggát;enAkñúgeRKOgbgÁúMeRKag end restraint sßitenAcenøaHlkçxNÐ hinged nig fixed. eK GackMNt;tMél k Cak;EsþgBI Jackson nig Moreland alignment chart enAkñúgrUbTI 8>12. CMnYs eGay chart TaMgenH eKGaceRbIsmIkarxageRkamEdl)anesñIeLIgenAkñúg ACI Code commentary sMrab;KNna k ³ !> Braced Compression members³ eKGacykEdnkMNt;rbs;emKuNRbEvgRbsiT§PaBCatMél tUcCageKénsmIkar k = 0.7 + 0.05(ψ A +ψ B ) ≤ 1.0 (8.10a) nig k = 0.85 + 0.05ψ min ≤ 1.0 (8.10b) Edl ψ A nig ψ B CatMélrbs;cugrbs; ψ enARtg;cugTaMgBIrrbs;ssr ehIy ψ min CatMél tUcCageKkñúgcMeNamtMélTaMgBIr. ψ CapleFobénPaBrwgRkajrbs;Ggát;rgkarsgát;TaMg Gs;elIPaB rwgRkajénGgát;rgkarBt;TaMgGs;enAkñúgbøg;enARtg;cugmçagrbs;ssr. ∑ EI / lu columns ψ= (8.11) ∑ EI / ln beams Edl lu CaRbEvgminmanTMrrbs;ssr nig ln Ca clear span rbs;Fñwm. @> Unbraced compression members restrained at both ends³ eKGacKitRbEvgRbsiT§PaB dUcxageRkam³ sMrab; ψ m < 2 20 −ψ m k= 1 +ψ m (8.12a) 20 sMrab; ψ m ≥ 2 k = 0.9 1 + ψ m (8.12b) Edl ψ m CatMélmFümrbs;tMél ψ enARtg;cugTaMgBIrrbs;Ggát;rgkarsgát;. #> Unbraced compression members hinged at one end³ eKGacKitRbEvgRbsiT§PaB dUcxageRkam³ k = 2.0 + 0.3ψ (8.13) Edl ψ CatMélenAxagcugEdlTb; (restrained end). eKGacykkaMniclPaB (radius of gyration) r = I g / Ag Ca r = 0.3h sMrab;muxkat;ctuekaN Edl h CaTMhMrbs;muxkat;ssrEdlEkgeTAnwgG½kSénkarBt;. sMrab;muxkatrgVg; eKyk r = 0.25h . Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 511
  • 21. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca k> karBicarNaBI Buckling Buckling Considerations eRKagEdlminmankarBRgwgxag (lateral bracing) dUcCag shear walls, diaphragms b¤ diagonal coupling beams manlkçN³rlas; (flexible) CageRKagEdlman lateral braced. Lateral flexibility GacbgáeGayeRKOgbgÁúMTaMgmYlbMlas;TItamTisedkRKb;RKan; EdleRKOgbgÁúMGac)at;bg; esßrPaBedaysarm:Um:g;eFVIeGayRkLab; (overturning moment) bEnßmEdlmantMélFM. lkçN³eFVIkar enHmaneRKaHfñak;enAeBlEdlssrxøIRTkMral. ACI 318 Code kMNt;viFIbIsMrab;KNnakMlaMgenAelIssrEvg nigGgát;enAkñúgeRKagEdlTb;Tl; kMlaMgxag (lateral force) EdlbEnßmBIelIbnÞúkTMnaj (vertical gravity load). b:uEnþ sMrab;kardak;bnÞúk TMnajEdlminman side-sway enaH first-order analysis EdleRbIemKuNbEnßmm:Um:g; (moment magni- fycation factors) δ ns KWmanlkçN³RKb;RKan;. sMrab;karbnSMkMlaMgTMnaj nig side-sway forces Edl bgáeGayemanT§iBl P − Δ / viFITaMgbIenaHKW³ (a) kmμviFIkMuBüÚT½rEdleRbI second-order analysis EdlkMNt;TMhMrbs; overturning moment bEnßmenAkñúgeRKag. (b) emKuNbEnßmm:Um:g; (moment magnification factore) EdlKNnaedayEp¥kelIeKal karN_ first-order lateral displacements nig m:as;enABIelInIv:UnImYy². (c) Moment magnification relationship EdlmanTMrg;RsedogKñaeTAnwgGVIEdlRtUvkarsMrab; KNna no-sway magnifier δ ns sMrab;ssrenAkñúg braced frame edayeRbI stability index Q . eKmincaM)ac;kMNt;bMlas;TItamTisedk (horizontal displacement) enAkñúg viFIenHeT b:uEnþeKRtUvEtKNnam:Um:g;EdlTb;Tl;nwg lateral forces. viFIenHmanlkçN³sμúK sμaj nigminsUvsuRkit. viFIEdlmanlkçN³suRkitKWviFI (a) EdleRbIkmμviFIkMuBüÚT½rdUcCa PCA’s Frame Program, STAAD Pro, CSI Sap 2000 nigkmμviFIdéTeTot. eKmanssrEvgEdlRbQmnwgbnÞúktamG½kS enARtg;cMNakp©it e . T§iBl buckling begáIt m:Um:g;bEnßm Pu Δ Edl Δ CabMlas;TIxagGtibrmarbs;ssrrgkarsgát;rvag cugTaMgBIreTATItaMgedIm. m:Um:g;bEnßmenHkat;bnßy load capacity BIcMnuc C eTAcMnuc B enAkñúgdüaRkam interaction enAkñúgrUbTI 8>10. m:Um:g;srub (Pu e + Pu Δ ) RtUv)antMNagedaycMnuc B enAkñúgdüaRkam ehIyssrKYrRtUv)ansikSa KNnasMrab; magnified moment M c EdlFMCag dUcssrxøI eday first-order analysis Fmμta. Prestressed Compression and Tension Members 512
  • 22. Department of Civil Engineering NPIC enAkñúgkarviPaKEbbenH m:Um:g; nigkMlaMgtamG½kSenAkñúgeRKagRtUv)anTTYleday classical elastic procedures. dMeNIrkarviPaKenHminKitBIT§iBlrbs; lateral displacement Δ eTAelIkMlaMg tamG½kS Pu nigm:Um:g;Bt; M c eT. dUcenH TMnak;TMngrvagbnÞúk nigbMlas;TI nigTMnak;TMngrvagbnÞúk nig m:Um:g;KWmanragCabnÞat; (linear). RbsinebIeKKitBIT§iBl P − Δ / second-order analysis køayCacM)ac; CamYynwg nonlinear relationship énbnÞúkCag lateral displacement (deflection) nigm:Um:g;. ACI 318 - 02 Code GnuBaØateGayeRbI first order analysis b¤k¾ second-order analysis sMrab;ssrEdl man intermediate slenderness nigeGayeRbI second-order analysis sMrab;ssrEvgEdlman slenderness ratio FMCagesμI 100. viFI ACI Code EdlminKitT§iBl P − Δ RtUv)aneKeGayeQμaHfa moment magnification method Edlmanerobrab;enAkñúgcMnucxageRkam. 7> viFIm:Um:g;bEnßm³ karviPaKdWeRkTI1 Moment Magnification Method: First-order Analysis bnÞúktamG½kSemKuN Pu / m:Um:g;emKuN M1 nig M 2 manGMeBIenAcugssr ehIyPaBdabRtUv)an kMNt;enAkñúgviFIenHedayeRbI elastic first-order analysis CamYynwg lkçN³muxkat;EdlkMNt;eday KitT§iBlrbs;bnÞúktamG½kS vtþmanrbs;tMbn;EdlmaneRbHtambeNþayRbEvgrbs;Ggát; nigT§iBlén ry³eBlénkardak;bnÞúk. dUcEdl)anerobrab;enAkñúgcMnuc 6xagelI nigtamry³rUbTI 8>10/ m:Um:g; M 2 RtUv)anbEnßmeday magnification factor δ . ssrrgnUvm:Um:g; M 1 nig M 2 enAxagcugrbs;va EdleKKitfa M 2 FMCag M 1 . bnÞúktamG½kS Pu nigm:Um:g;emKuN M1 nig M 2 RtUv)anTb;edaylkçN³muxkat;EdleRCIserIsedaykar viPaK Edlrab;bBa©ÚlTaMgtMbn;EdlmaneRbHtambeNþayRbEvg b¤kMBs;rbs;Ggát;rgkarsgát; nigry³ eBlrbs;bnÞúk. CMnYseGaykarKNnaTaMgenH/ ACI 318-02 Code GnuBaØateGayeRbItMélmFümxag eRkamsMrab;lkçN³rbs;Ggát;enAkñúgeRKOgbgÁúM³ (a) m:UDuleGLasÞic Ec = 33w1.5 f 'c nigsMrab;ebtugEdlmanersIusþg; 5,000 psi < f 'c < 12,000 psi c Ec = (40,000 + 1 × 106 )(wc / 145)1.5 (b) m:Um:g;niclPaB Fñwm 0.35I g ssr 0.70 I g CBa¢aMg ¬KμansñameRbH¦ 0.70 I g Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 513
  • 23. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca CBa¢aMg ¬mansñameRbH¦ 0.35I g Flate plates nig flat slabs 0.25I g (c) RkLaépÞ³ 1.0 Ag (d) kaMniclPaN (radius of gyration) r = 0.3h sMrab;muxkat;ctuekaN Edl h CaTMhMenAkñúgTis EdlKitesßrPaB b¤ r = 0.25D sMrab;muxkat;rgVg; Edl D CaGgát;p©itrbs;Ggát;rgkarsgát;. eKKYrEckm:Um:g;niclPaBCamYynwg (1 + β d ) enAeBlEdl sustained lateral load manGMeBI b¤ sMrab;RtYtBinitüesßrPaB Edl β d CaemKuN creep dUcenH maximum factored sustained axial load βd = total factored axial load eKsnμt;bnÞúkmanGMeBIenARtg;cMNakp©it (e + Δ ) enAkñúgrUbTI 8>10 edIm,IbegáItm:Um:g; M c . pl eFob M c / M 2 RtUv)aneKeGayeQμaHfa magnification factor δ . dWeRkrbs; magnification GaRs½y nwgpleFob slenderness klu / r Edl k CaemKuNRbEvgRbsiT§PaB (effective length factor) sMrab; Ggát;rgkarsgát; ehIyvak¾GaRs½ynwg stiffness enARtg;tMNéncugrbs;Ggát;nImYy². eKRtYtBinitü magnification factor tamRbePTrbs; magnified moment δM 2 nig δM1 Edl manGMeBIenARtg;cugelx 2 nigelx 1 rbs;ssr ¬side-sway rbs;eRKagekItmanb¤Gt;¦. eKKYrcMNaM faenAkñúgkrNIGgát;rgkarsgát;RbQmnwgkarBt;eFobG½kSemTaMgBIrrbs;va eKRtUvKitm:Um:g;eFobG½kS nImYy²dac;edayELkBIKñaedayQrelI restraint condition EdlRtUvnwgG½kSenaH. k> Moment Magnification in Non-Sway Frames enAkñúgkrNIGgát;rgkarsgát;sßitkñúg non-sway frames (braced frame) eKGacykemKuN RbEvgRbsiT§PaB k = 1.0 Tal;EtkarviPaKeGaytMéltUcCag. enAkñúgkrNIEbbenH eKkMNt;tMél k edayEp¥kelItMél EI EdlbgðajenAkñúgcMnucxagelI nig monogram enAkñúgrUbTI 8>12. eKGacminKitBIT§iBl slenderness RbsinebI klu ⎛M ⎞ ≤ 34 − 12⎜ 1 ⎟ ⎜M ⎟ (8.14) r ⎝ 2⎠ klu =RbEvgRbsiT§PaBrvagcMnucrbt; ehIyeKminGacyk [34 − 12(M1 / M 2 )] FMCagEdlkMNt;én smIkar 8.14 eT. tY (M1 / M 2 ) mantMélviC¢manenAeBlEdlGgát;ekagedaykMeNageTal (single curvature) ehIyvamantMélGviC¢manenAeBlGgát;ekagedaykMeNagDub (double curvature) ¬emIlrUb Prestressed Compression and Tension Members 514
  • 24. Department of Civil Engineering NPIC TI 8>12a). RbsinebI non-sway magnification factor Ca δ ns ehIy sway factor δ s = 0 / magnified moment køayCa M c = δ ns M 2 (8.15) Edl δ ns = Cm Pu ≥ 1.0 (8.16a) 1− 0.75Pc π 2 EI Pc = (8.16b) (klu )2 Edl Pc Ca Euler buckling load sMrab; pin-ended column. eKyk stiffness 0.2 Ec I g + Es I se EI = (8.16c) 1 + βd 0.4 Ec I g b¤ EI = 1 + βd Cm = emKuNEdlTak;TgdüaRkamm:Um:g;Cak;EsþgeTAnwg equivalent uniform moment diagram. sMRab;Ggát;EdlKμan transverse load ¬rgEtbnÞúkxagcug¦. M1 Cm = 0.6 + ≥ 0.4 (8.17) M2 Edl M 2 ≤ M1 nig M1 / M 2 > 0 RbsinebIKμancMnucrbt;enAcenøaHcugrbs;ssr rUbTI 8>12 a (single curvature). sMrab;lkçxNÐdéTeTot Ggát;EbbenHEdlman transverse load enAcenøaHTMr Cm = 1.0 . tMélGnuBaØatGb,brmarbs; M 2 KW M 2, min = Pu (0.6 + 0.03h ) (8.18) Edl h KitCa in. . sMrab;xñat SI M 2,min = Pu (15 + 0.03h) Edl h KitCamIlIEm:Rt. müa:gvijeTot cM Nakp©itGb,brmaenAkñúgssrEvgKW emin = 0.6 + 0.03h . RbsinebI M 2,min FMCagmU:m:g;Gnuvtþn_ M 2 eK KYryktMélrbs; Cm enAkñúgsmIkar 8.17 esμInwg 1.0 b¤edayEp¥kelIm:Um:g;cug M1 nig M 2 EdlKNna Cak;Esþg. eRKagEdlBRgwgRbqaMgnwg side-sway b¤BRgwgeday shear wall KYrman lateral deflection tUc Cag hs / 1500 . enAeBlEdl lateral deflection FMCagpleFobenH eKRtUveFVIeGaym:Um:g;bEnßmEdlbgá eday side sway mantMélGb,brma nigkat;bnßy lateral drift BIeRKag nigBIssr. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 515
  • 25. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca x> Moment Magnification in Sway Frames sMrab;Ggát;rgkarsgát;EdlminmankarBRgwgRbqaMgnwg side sway eKGackMNt;emKuNRbEvgRb siT§PaB k BItMél EI EdlbgðajenAkñúgcMnuc 7/ b:uEnþtMélrbs;vaminRtUvFMCag 1.0 eT. eKGacminKitBI T§iBl slenderness RbsinebI klu < 22 (8.19) r eKKYrbegáInm:Um:g;cug M1 nig M 2 dUcxageRkam M 1 = M 1ns + δ s M 1s M 2 = M 2ns + δ s M 2 s (8.20) edayeKsnμt;fa M 2 > M1 / enaH design moment M c = M 2ns + δ s M 2 s (8.21) Edl M 2ns = m:Um:g;cugemKuNenAxagcugrbs;Ggát;rgkarsgát;EdlbNþalBIbnÞúkEdlbgáeGayman side-sway EdlminsMxan; vaRtUv)anKNnaedayeRbI first-order elastic frame analysis. M 2 s = m:Um:g;cugemKuNenAxagcugrbs;Ggát;rgkarsgát;EdlbNþalBIbnÞúkEdlbgáeGayman side-sway Edl sMxan; vaRtUv)anKNnaedayeRbI first-order elastic frame analysis. Ms δsM s = ≥ M s ≤ 2.5 (8.22) ∑ Pu 1− 0.75 ∑ Pc Edl ∑ Pu CaplbUkénbnÞúkbBaÄrTaMgGs;enAkñúgmYyCan; ehIy ∑ Pc CaplbUk Euler buckling load ¬ Pc sMrab; pin-ended column sMrab;ssrEdlTb;nwg sway TaMgGs;enAkñúgmYyCan; [Pc = π 2 EI /(klu )2 ] BIsmIkar 8.16b¦ CamYynwgtMél EI EdlTTYl)anBIsmIkar 8.16c b¤ d. enAkñúgkrNIsMrab;EtGgát;rgkarsgát;EtmYyEdlman lu 35 > r Pu / f 'c Ag eKRtUvsikSaKNnaGgát;sMrab;bnÞúktamG½kSemKuN Pu nig magnified moment M c = δ ns M 2 Edl M 2 enAkñúgkrNIenHKW M 2 = δ ns M 2ns + δ s M 2 s . krNIenHGacekItmanenAkñúgssrEvgEdlrgbnÞúk tamG½kSFM enAeBlEdlm:Um:g;GtibrmaGacekItmanenAcenøaHcugrbs;ssr dUcenHm:Um:g;cugmincaM)ac;Ca m:Um:g;GtibrmaeT. Prestressed Compression and Tension Members 516
  • 26. Department of Civil Engineering NPIC !> Moment Magnification in sway frames using a stability index Q enAkñúgviFIenH ¬viFI c enAkñúgcMnuc 6>k¦ code GnuBaØateGaysnμt;ssrenAkñúgeRKOgbgÁúMEdl BRgwgCa non-sway RbsinebIkarekIneLIgénbnÞúk nigm:Um:g;EdlbNþalBI second-order effect minFM Cag 5% én first-order end moment. eKGacBicarNaCan;enAkñúgeRKOgbgÁúMCa non-sway RbsinebI stability index Q enAkñúgsmIkarxageRkamenHminFMCag 0.05 ∑ Pu Δ o Q= (8.23a) Vu lc Edl ∑ Pu = bnÞúkbBaÄrsrubenAkñúgmYyCan; Vu = kMlaMgkat;tamCan; (story shear) Δ o = first-order relative deflection rvagxagelI nigxageRkamrbs;Can;EdlbNþalBI Vu lc = RbEvgrbs;Ggát;rgkarsgát;enAkñúgeRKagEdlvagBIG½kSrbs;tMN Non-sway magnification factor edayeRbItY Q KW 1 δs = ≥ 1.0 (8.23b) 1− Q enAeBl Q FMCag 0.05 eKRtUvbnþkarKNnaeTA second-order analysis tamry³kareRbIR)as;kmμviFI kMuBüÚT½r. karviPaKedaykMuBüÚT½rEbbenHGaceGayeKKNnatMélsarcuHsareLIgrbs;m:Um:g; nigtMél sway Δ o EdlbNþalBIT§iBl P − Δ manPaBsuRkit nigelOn. eKKYrcMNaMfa stability index Q method manlkçN³sμúKsμaj nigsuRkitsMrab;KNnaT§iBl P − Δ elIm:Um:g;enARtg;tMNssrenAkúñgeRKagEdlBRgwg. Casegçb moment magnification method EdlbegáIteLIgdMbUgsMrab; prismatic column eFIV kar )anl¥CamYynwgssrEdlman slenderness ratio klu / r tUcCag 100 CaBiessRbsinebIeRKag RtUv)anBRgwg. enAkñúgkrNI unbraced frames Edlman slenderness ration Rbhak;RbEhlKña eKKYr KitbBa©ÚlT§iBl P − Δ eTAelIm:Um:g; nigPaBdabtamry³ second-order analysis edIm,ITTYl)an lT§plkan;EtsuRkitCag. karsikSaviPaKGac !> Gnuvtþ first-order analysis Edl lateral load ¬BI hi BIrUbTI 8>13¦ RtUv)anbUkbnþeday ∑ Pu Δ l enAkñúgCMuénkarKNnamþg² ehIycat;TuklT§plcugeRkayCa second-order result b¤ @> eRbIkmμviFIkMuBüÚT½r second-order analysis BitR)akd EdlenAkñúgenaHeKeRbIkarkat;bnßy relative side-sway resistance enAkñúg global stiffness matrix sMrab;Ggát;TaMgBak;B½n§. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 517
  • 27. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca 8> karviPaKeRKagdWeRkTIBIr nigT§iBl P−Δ Second-Order Frames Analysis and the P − Δ Effects Second-order analysis CakarviPaKeRKagEdlrYmbBa©ÚlT§iBlkMlaMgkñúgEdl)anBI lateral dis- placement (deflection) rbs;ssr. enAeBleKGnuvtþkarviPaKEbbenHedIm,IkMNt; δ s M s enAkñúg non- braced frame eKRtUvKNnaPaBdabedayEp¥kelI fully cracked section CamYynwgtMél stiffness EI Edlkat;bnßy. tMélRbhak;RbEhldUckareRbI first-order analysis eRcInCMu ehIykarviPaKGaceFVIeGay prismatic section kan;EtRbesIreLIg. b:uEnþkarviPaKKYrepÞógpÞat;faersIusþg;EdlrMBwgTukrbs;Ggát;rgkar sgát;éneRKageRKOgbgÁúMsßitenAkñúgcenøaH 15% énlT§plsMrab;ssrenAkñúgeRKOgbgÁúMebtugGarem:min kMNt;. lT§plCaragFrNImaRtrbs;Ggát;EdlRtUvviPaKRtUvRsedogKñanwgragFrNImaRtrbs;Ggát;Edl RtUvsagsg;. RbsinebIGgát;enAkñúgeRKOgbgÁúMcugeRkaymanTMhMmuxkat;xusBIGVIEdlva)ansnμt;kñúgkar viPaK 10% eKRtUvGnuvtþkarKNnaCafμI. Second-order analysis CaviFIsarcuHsareLIgénT§iBl P − Δ eTAelIssrRsav EdlrYmbBa©Úl TaMg shear deformation. dUcenH eKGaceRbIkmμviFIkMuBüÚT½rRbesIrCakarKNnaedayédkñúgkarsikSa KNnassrRsavrbs;eRKag. b:uEnþ ssrebtugPaKeRcInenAkñúgeRKagsMNg;minRtUvkarkarviPaKEbbenH eT edaysarpleFob (klu / r ) eRcInEttUcCag 100 . BicarNassrenAcenøaHBIrCan;KW (i − 1) nig (i ) enAkñúgeRKagEdlbgðajenAkñúgrUbTI 8>13. snμt;fa lateral displacement Gtibrma b¤ drift enARtg;cugxagelIrbs;cugkMBUlrbs;ssrenAkñúgeRKag Prestressed Compression and Tension Members 518
  • 28. Department of Civil Engineering NPIC KW xmax nigsnμt;fakMBs;srubrbs;GKarKW hs . Lateral displacement b¤ drift d¾FMrbs;GKarCan;xagelI bgáeGaymansñameRbHdl;CBa¢aMgdæ b¤kargarbegðIyxagkñúg. EdnkMNt;én lateral deflection Gtibrma KW hs / 500 . dUcenH karsnμt;d¾l¥KWkareRCIserIs xmax sßitenAcenøaH hs / 350 eTA hs / 500 EdlKitfa CaFmμta fully braced frame manpleFob drift xmax Gtibrma enAelIkMBs;eRKag hs tUcCag 1 / 1,500 . RbsinebI xi Ca drift enARtg;nIv:UCan; i nig yi CakMBs;rbs;ssrcenøaHCan; (i − 1) nig (i ) enAkñúg rUbTI 8>13 a, eKGacsnμt;fa horizontal drift sMrab;Can;KWsmamaRteTAnwgkaer:énpleFobénkMBs; hi rbs;Can; nigkMBs;srub hs rbs;eRKagTaMgmUl. 2 ⎛h ⎞ xi = xmax ⎜ i ⎟ ⎜h ⎟ (8.24) ⎝ s⎠ eKGacsegçbdMeNIrkarKNnadUcxageRkam³ !> eRCIserIsmuxkat;rbs;eRKag nig stiffness EI rbs;vaedaytMélRbhak;RbEhl @> KNna drift (lateral deflection Δi ¦ nig ultimate load Pu,i enARtg;tMN i = 1,..., n rUbTI 8>13. #> KNnarkkMlaMgtamTisedksmmUl H i BI H i = Pi Δi / hi ¬rUbTI 8>13 b¦. $> bEnßmtMélEdlTTYl)anenAkñúgCMhan # eTAelI lateral load Cak;EsþgenAelIeRKag. %> Gnuvtþ frame analysis edayeRbI kmμviFIkMuBüÚT½rEdlsmRsb. ^> Iterative computer program EdleRbI stiffness EI pþl;eGay Δi EdlRtUveRbobeFobCa mYynwgtMélGnuBaØat xi . &> RbsinebItMélrbs; Δi TaMgGs; ≤ tMélrbs; xi TaMgGs; enaHeKGacTTYlykdMeNaHRsay nigkarsikSaKNnaCadMeNaHRsay second-order. RbsinebImindUecñaHeT eKRtUv run kmμviFI edaybEnßmcMnYnCMuCamYynwg modified stiffness rhUtdl;eKTTYl)anlT§plEdleKcg;)an. eKGaceRbIkmμviFIkMuBüÚT½repSg²edIm,IKitbBa©ÚlT§iBl P − Δ enAkñúgeRKag side-sway. kmμviFI TaMgenaHrYmman Strudel, PCA Frame, STAAD Pro ,or CSI Sap 2000 nigkμviFIdéTeTot. 9> Operational Procedure and Flowchart for the Design of Slender Column !> kMNt;faetIeRKagman side-sway FMb¤Gt;. RbsinebIvaman side-sway FM eRbI magnify- cation factors δ ns nig δ s . RbsinebIeKecal side-sway, snμt;fa δ s = 0 . bnÞab;mk Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 519
  • 29. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca snμt;muxkat; rYcKNnacMNakp©itedayeRbIm:Um:gcugEdlFMCageK ehIyRtYtBinitüemIlfava ; FMCagcMNakp©itGnuBaØatGtibrmab¤k¾Gt; ≥ (0.6 + 0.03h )in. M2 Pu Prestressed Compression and Tension Members 520
  • 30. Department of Civil Engineering NPIC @> KNna ψ A nigψ B edayeRbIsmIkar 8.12 b¤ 8.13 nigbnÞab;mkTTYl)an k edayeRbIrUbTI 8>12 b¤smIkar 8.13. KNna klu / r nigkMNt;favaCassrxøI b¤ssrEvg. RbsinebIssr CassrEvg ehIy klu / r < 100 KNna magnified moment M c . bnÞab;mk edayeRbI tMélEdlTTYl)an KNnacMNakp©itsmmUl edIm,IKNnassrCassrxøI. RbsinebI klu / r > 100 Gnuvtþ second-order analysis. #> KNnassrxøIsmmUl. Flowchart enAkñúgrUbTI 8>14 bgðajBICMhanénkarKNna. smIkar caM)ac;manenAkñúgcMnuc 2 nigenAkñúg flowchart. 10> sikSaKNnassreRbkugRtaMgEvg Design of Slender (Long) Prestressed Column ]TahrN_ 8>2³ Square tied prestressed bonded co,umn CaEpñkrbs;eRKagGKar 5 × 3bays Edlrg nUvkarBt;tamG½kSmYy (uniaxial bending). Clear height rbs;vaKW lu = 15 ft (4.54in.) ehIyvamin RtUv)anBRgwgRbqaMgnwg sidesway eT. bnÞúkxageRkAemKuN Pu = 300,000lb(1,334kN ) nigm:Um:g;cug emKuNKW M1 = 425,000in. − lb(48kN .m) nig M 2 = 750,000in. − lb(84.8kN.m) . sikSaKNnamux kat;ssr nigEdkBRgwgcaM)ac;sMrab;lkçxNÐBIrxageRkam³ !> KitEtbnÞúkTMnajb:ueNÑaH edaysnμt;ecal lateral sidesway EdlbNþalBIxül; @> ]bma sidesway wind effect bgáeGaymanbnÞúkemKuN Pu = 24,000lb(107kN ) nigm:Um:g; emKuN M u = 220,000lb(24.9kN .m) . bnÞúkkñúgmYyCan;énssrTaMgGs;enARtg;nIv:UenaHKW ∑ Pu = 4.5 ⋅ 106 lb(20 ⋅ 103 kN ) nig ∑ Pc = 31.0 ⋅ 106 lb(138 ⋅ 103 kN ). eRbI 270-K stress-relieved prestressing strand Ggát;p©it 1 / 2in. . eKeGayTinñn½ydUcxag eRkam³ β d = 0.4 ψ A = 1 .0 ψ B = 2 .0 f 'c = 6,000 psi (41.4MPa ) f pu = 270,000 psi (1,862MPa ) f pe = 150,000 psi (1,034MPa ) ( E ps = 28 ⋅ 106 psi 200 ⋅ 103 MPa ) Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 521
  • 31. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca ε cu = 0.003in. / in. enAeBl)ak; ε ce = 0.0005in. / in. enAeBl Pe eFVIGMeBIelImuxkat; d ' = 2in.(50.8mm ) f y = 60,000 psi (414MPa )sMrab;Edkkg düaRkamTMnak;TMngrvagkugRtaMg nigbMErbMrYlragrbs;EdkeRbkugRtaMgKWdUcenAkñúgrUbTI 8>7. dMeNaHRsay³ BIdüaRkam stress-strain énrUbTI 8>7 EdlRtUvKñanwg f pe = 150,000 psi . ε pe = 0.0052in. / in. RsedogKña ε py ≅ 0.012in. / in. BIrUbdUcKña EdlRtUvKñanwg f py = 260,000 psi . !> sMrab;EtbnÞúkTMnaj (gravity load only) RtYtBinitüsMrab; no sidesway nigcMNakp©itGtibrma ¬CMhan !¦ edaysareRKagminman sidesway FM/ eyIgyk M 2ns Ca M 2 TaMgmUl ehIyeKyk magnify- cation factor sMrab; sidesway δ s = 0 enAkñúgsmIkar 8.15. tamry³ trial and adjustment, eyIgGac snμt;muxkat;ssr nigeFVIkarsikSaviPaK. dUcenH eyIgsakl,gmuxkat; 15in. × 15in.(381mm × 381mm) dUcbgðajenAkñúgrUbTI 8>15 (a) ehIyeyIg)an cMNakp©itCak;Esþg = MP2ns = 300,,000 = 2.50in.(63.5mm) 750 000 u cMNakp©itGnuBaØatGb,rbma = 0.6 + 0.03h = 0.6 + 0.03 × 15 = 1.05in.(2.67 mm ) < 2.50in. dUcenH yk M 2ns = 750,000in. − lb Cam:Um:g;EdlFMCageKkñúgcMeNam M1 nig M 2 enAelIssr. Prestressed Compression and Tension Members 522
  • 32. Department of Civil Engineering NPIC KNnacMNakp©itEdlRtUveRbIsMrab;ssrxøIsmmUl ¬CMhan @¦ BI chart enAkñúgrUbTI 8.12 (b)/ k = 1.45 nig slenderness ration KW klu 1.45 × 15 × 12 = = 58.0 r 0.3 × 15 edaysar 58 > 22 Et < 100 eRbI moment magnification method. eyIg)an Ec = 33w1.5 f 'c = 33 × 1451.5 6,000 = 4.46 × 106 psi (32 ⋅ 103 MPa ) 15(15)3 Ig = = 4,218.8in.4 12 Ec I g / 2.5 4.46 ⋅ 106 × 4,218.3 1 EI = = × 1 + βd 2.5 1 − 0.4 = 5.34 ⋅ 109 lb. − in 2 (klu )2 = (1.45 × 15 × 12)2 = 68.1× 103 in.2 π 2 EI π 2 × 5.34 ⋅ 109 dUcenH Pc = Euler buckling load = = (klu )2 68.1 ⋅ 103 = 773,132lb = 773.1kips(3,439kN ) Cm = 1.0 sMrab; nonbraced column. snμt; φ = 0.65 . enaHeyIgman Cm 1.0 Moment magnifier δ ns = = = 2.07 Pu 300,000 1− 1− 0.75Pc 0.75 × 773,132 Design moment M c = δ ns M 2 ns = 2.07 × 750,000 = 1,552,500in. − lb(184kN .m ) Pn EdlRtUvkar = Pu = 300.,65 = 461,538lb(2053kN ) φ 0 000 M n EdlRtUvkar = = 2,388.462in. − ln (291kN .m ) 1,552,500 0.65 cMNakp©it e = 2461,538 = 5.18in.(131mm) ,388,462 sikSaKNnassrxøIsmmUl (equivalent nonslender column) ¬CMhan #¦ ssrsmmYlRtUvRT nominal axial load Pn = 461,538lb nig nominal uniaxial moment Gb,brma M n = 2,388,462in. − lb . edIm,IsikSaKNna equivalent nonslender column, eyIgsikSaviPaKmuxkat;ssrEdl)ansnμt; 15in. × 15in. EdleRbI 7-wire stress-relieved strands Ggát;p©it 1 / 2in. cMnYn 5 enAelIépÞnImYy²rbs;mux TaMgBIrEdlRsbeTAnwgG½kSNWt dUceXIjenAkñúg]TahrN_ 8>1. enaH Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 523
  • 33. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca ( Aps = A' ps = 5 × 0.153 = 0.765in.2 4.94cm 2 ) Balanced Limit Strain Failure Condition d = h − 2 = 15 − 2 = 13in.(330mm ) edayeRbobeFobCamYynwg]TahrN_ 8>1 nigedayeRbI trial and adjustment enaHkMBs;G½kSNWtEdl smRsbsMrab; balanced condition KYrmantMél cb = 8.3in.(211mm) . enaH ab = β1 × cb = 0.75 × 8.3 = 6.23in.(158mm ) . BIrUbTI 8>3 Ccn = 0.85 × 6,000 × 15 × 6.23 = 476,595lb(2,119kN ) BIsmIkar 8.5 ⎡ ⎛ 8.3 − 2 ⎞ ⎤ T 'sn = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 8.3 ⎠ ⎦ = 73,318lb(385kN ) BIsmIkar 8.6 ⎡ ⎛ 13 − 8.3 ⎞ ⎤ Tsn = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 8.3 ⎠ ⎦ = 158,482lb(704kN ) BIsmIkar 8.2, sMrabk;krNI “balanced” strain limit ¬ c / dt = 0.60 ¦ Pnb = Ccn − T 'sn −Tsn = 476,595 − 73,318 − 158,482 = 229,310lb(1,020kN ) BIsmIkar 8.7/ sMrabk;krNI “balanced” strain limit ¬ c / dt = 0.60 ¦ ⎛ 15 6.23 ⎞ ⎛ 15 ⎞ ⎛ 15 ⎞ M nb = 476,595⎜ − ⎟ = 73,318⎜ − 2 ⎟ + 158,482⎜13 − ⎟ ⎝2 2 ⎠ ⎝2 ⎠ ⎝ 2⎠ = 2,103,124in. − lb(237.7kN .m ) M eb = nb = Pnb 2,103,124 229,310 Cak;Esþg = 5.18in. = 9.17in.(233mm ) > e ssreRbkugRtaMgEdlrgbnÞúkEdlmancMNakp©ittUcnwg)ak;edaykarsgát;. ehIy φ = 0.65 dUckarsnμt. ; snμt;kMBs;G½kSNWt c = 12in. a = β1c = 0.75 × 12 = 9.0in. BIsmIkar 8.1a Prestressed Compression and Tension Members 524
  • 34. Department of Civil Engineering NPIC Ccn = 0.85 f 'c ba = 0.85 × 6,000 × 15 × 9 = 688,500lb BIsmIkar 8.5 ⎡ ⎛ c − d' ⎞ ⎤ T 'sn = A' ps E ps ⎢ε pe − ε cu ⎜ ⎟ + ε ce ⎥ ⎣ ⎝ c ⎠ ⎦ ⎡ ⎛ 12 − 2 ⎞ ⎤ = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 12 ⎠ ⎦ = 68,544lb BIsmIkar 8.6 ⎡ ⎛d −c⎞ ⎤ Tsn = Aps E ps ⎢ε pe + ε cu ⎜ ⎟ + ε ce ⎥ ⎣ ⎝ c ⎠ ⎦ ⎡ ⎛ 13 − 12 ⎞ ⎤ = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 12 ⎠ ⎦ = 127,449lb BIsmIkar 8.2 Pn = Ccn − T ' sn −Tsn EdlGacman = 688,500 − 68,544 − 127,449 Pn = 492,507lb > Pn EdlRtUvkar = 461,538lb dUcenH eyIgbnþeTA trial-and-adjustment CMuTIBIr snμt;kMBs;G½kSNWt c = 11.2in. a = β1c = 0.75 × 11.2 = 8.4in. Ccn = 0.85 f 'c ba = 0.85 × 6,000 × 15 × 8.4 = 642.600lb ⎡ ⎛ 11.2 − 2 ⎞ ⎤ T 'sn = 0.765 × 28 ⋅ 106 ⎢0.0052 − 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 11.2 ⎠ ⎦ = 69,309lb ⎡ ⎛ 13 − 11.2 ⎞ ⎤ Tsn = 0.765 × 28 ⋅ 106 ⎢0.0052 + 0.003⎜ ⎟ + 0.0005⎥ ⎣ ⎝ 11.2 ⎠ ⎦ = 132,421lb EdlGacman = 642,600 − 69,309 − 132,421 Pn = 440,870lb xN³Edl Pn EdlRtUvkar = 461,538lb O.K. edaysar moment capacity FMCag M n EdlRtUvkar. karekIneLIgd¾tictYcbMputrbs;kMBs;muxkat;Gac ykQñHelIPaBxusKñatictYcrvag Pn EdlRtUvkar nig Pn EdlGacman. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 525
  • 35. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca BIsmIkar 8.7 ⎛ 15 8.4 ⎞ ⎛ 15 ⎞ ⎛ 15 ⎞ = 642,600⎜ − ⎟ − 69,309⎜ − 2 ⎟ + 132,421⎜13 − ⎟ ⎝2 2 ⎠ ⎝2 ⎠ ⎝ 2⎠ = 2,467,696in. − lb > 2,338,462in. − lb(678.8kN .m > 250kN .m ) O.K. e= 2,467,696 448,870 Cak;Esþg = 5.5 ≈ e = 5.18in.TTYlyk)an dUcenH TTYlykmuxkat; 15in. × 15in. CamYynwg 7-wire stress-relieved 270-K strand Ggát;p©it 1 / 2in. cMnYn 5 enARCugnImYy²énépÞEdlenARsbnwgG½kSNWt. bnÞab;mk sikSaKNnaEdkkg (transverse tie) EdlcaM)ac;. @> sMrab;bnÞúkTMnaj nigbnÞúkxül; (gravity and wind loading [sidesway]) BIdMeNaHRsaycMnucTI ! eyIgman Pe = 773,132lb nig U = 1.2 D + 1.0 L + 1.6W . ehIy U = 0.9 D + 1.6W ¬minlub¦. Pu = (300,000 + 24,000) = 324,000lb / M 2b = 750,000in. − lb nig M 2t = 220,000in. − lb . RtYtBinitüfa gravity moment RtUvkarm:Um:g;bEnßmb¤Gt; 35 35 l = = 71.4 > u = 40 Pu 324,000 r f 'c At 6,000 × 225 dUcenH gravity moment M 2b minRtUvkarm:Um:g;bEnßmeT BIsmIkar 8.16(b) 1.0 1.0 δs = = = 1.24 ∑ Pu 4.5 ⋅ 106 1− 1− 0.75 ∑ Pc 0.75 × 31.0 ⋅ 106 BIsmIkar 8.15 M c = M 2ns + δ s M 2 s = 750,000 + 1.24 × 220,000 = 1,022,800in. − lb PnEdlRtUvkar = 324,000 0.65 = 498,462lb MnEdlRtUvkar = 1,022,800 0.65 = 1,573,538in. − lb cMNakp©it e= 1,573,538 498,462 = 3.16in. < eb = 9.17in. < e Cak;Esþg = 5.18in. Prestressed Compression and Tension Members 526
  • 36. Department of Civil Engineering NPIC dUcenH vaekItman initial compression failure. ehIy M n = 1,573,538in. − lb < M n = 2,388,462in. − lb enAkñúgkrNITI !. lkçxNÐsMrab;krNITI @ Edlman sidesway Gt;lub/ edaysarEtvaenAEt)ak;edaysarkar sgát;dEdl. m:Um:g;tMrUvkar M n mantMéltUcCagm:Um:g;sMrab;krNITI ! ehIycMNakp©itk¾mantMéltUcCag krNITI ! Edr. dUcenH TTYlykmuxkat;dUckrNITI ! KW 15in. × 15in. CamYynwg 7-wire stress-relieved 270-K strand Ggát;p©it 1 / 2in. cMnYn 5 enARCugnImYy²énépÞEdlenARsbnwgG½kSNWt. 11> Ggát;rgkarsgát;rgkarBt;BIrTis Compression Members in Biaxial Bending k> Exact Method of Analysis Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 527
  • 37. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca ssrEdlenAkac;RCugrbs;GKarCaGgát;rgkarsgát;EdlRbQmnwgkarBt;BIrTisKWeFobnwgG½kS x nigG½kS y dUcbgðajenAkñúgrUbTI 8>16. m:Um:g;Bt;BIrTisenHekItmanedaysarbnÞúkminesμIKñaenAelI ElVgEk,r ehIyCaBiessvaekItmanenAelIssrs<an (bridge pier). ssrEbbenHrgnUvm:Um:g; M xx eFob nwgG½kS x EdlbegáItcMNakp©it e y nigrgnUvm:Um:g; M yy eFobnwgG½kS y EdlbegáItcMNakp©it ex . dUc enHG½kSNWtsßitenAelIbnÞat;eRTtEdlpÁúM)anmMu θ CamYynwgbnÞat;edk. mMu θ GaRs½ynwg interaction énm:Um:g;Bt;eFobG½kSTaMgBIr CamYynwgTMhMénbnÞúksrub Pu . Rk- LaépÞrgkarsgát; (compressive area) enAkñúgmuxkat;ssrGacmanTMrg;NamYydUcbgðajenAkúñgrUbTI 8>16 (c). edaysarssrEbbenHRtUv)ankMNt;BIeKalkarN_TImYy eKGnuBaØateGayeRbIviFIsaRsþ trial-and-adjustment enAeBlEdl compatibility of strain RtUv)anrkSaenARtg;RKb;nIv:UTaMgGs;rbs; EdkBRgwg. eKRtUvkarkarKNnabEnßmeTot edaysarTItaMgrbs; bøg;G½kSNWteRTt nigTMrg;rbs;RkLa- épÞrgkarsgát;rbs;ebtugGacmanTMrg;bYnxusKña. rUbTI 8>17 bgðajBIkarBRgaybMErbMrYlrageFob nigbgðajBIkMlaMgenAelImuxkat;ssrctuekaN EdlrgbnÞúkBIrG½kS. Gc CaTIRbCMuTMgn;RkLaépÞsgát;rbs;ebtug EdlmankUGredaen xc nig yc BIG½kS NWttamG½kS x nig y erogKña. Gst CaTItaMgpÁÜb (resultant position) rbs;kMlaMgEdkenAkñúgRkLaépÞ rgkarTajEdlmanTItaMgkUGredaen xst nig yst BIG½kSNWttamG½kS x nig y erogKña. BIsmIkarlMnwgén kMlaMgxagkñúg nigxageRkA Pn = 0.85 f 'c Ac + Fsc − Fst (8.25) Edl Ac =RkLaépÞéntMbn;sgát;EdlRKbdNþb;edaybøúkkugRtaMgctuekaN Fsc = kMlaMgpÁÜbrbs;Edksgát; (∑ A's f sc ) Fst = kMlaMgpÁÜbrbs;EdkTaj (∑ As f st ) dUcKña BIsmIkarlMnwgénm:Umg;xagkñúg nigm:Um:g;xageRkA : Pn ex = 0.85 f 'c Ac xc + Fsc xsc + Fst xst (8.26a) Pn e y = 0.85 f 'c Ac yc + Fsc y sc + Fst y st (8.26b) eKRtUvsnμt;TItaMgrbs;G½kSNWtenAkñúgkarsakl,gnImYy² ehIykugRtaMgEdlKNnaenAkúñgEdkBRgwg nImYy²mansmIkardUcxageRkam si f si = Esε si = Ecε c < fy (8.27) c Prestressed Compression and Tension Members 528
  • 38. Department of Civil Engineering NPIC x> Load Contour Method of Analysis viFIEdlpþl;dMeNaHRsayy:agelOnCakarsikSaKNnassrsMrab;plbUkviucT½rén M xx nig M yy ehIyeRbI circular reinforcing cage enAkñúgmuxkat;kaer:sMrab;ssrenARtg;kac;RCug. b:uEnþ viFIsaRsþmin pþl;lkçN³esdækic©enAkñúgkrNIPaKeRcIneT. viFIsikSaKNnaepSgeTotEdlepÞógpÞat;edaykarBiesaFKW karbMElgm:Um:g;BIrTiseGayeTACam:Um:g;mYyTissmmUl )equivalent uniaxial moment) nigcMNakp©it mYyTissmmUl (equivalent uniaxial eccentricity). bnÞab;mk eKGacsikSaKNnamuxkat;sMrab;kar Bt;mYyTis ¬dUckarerobrab;BIxagelIkñúgemeronenH¦ edIm,ITb;nwgm:Um:g;Bt;BIrTisemKuNCak;Esþg. viFIEbbenHBicarNa failure surface CMnYseGay failure planes ehIyCaTUeTAeKeGayeQμaHfa Bresler-Parme contour method. viFIenHkat; three-dimensional failure surfaces enAkñúgrUbTI 8>18 Rtg;tMélefr Pn edIm,ITTYl)an interaction plane EdlTak;Tgnwg M nx nig M ny . müa:gvijeTot contour surface S CaépÞekagEdlrYmbBa©ÚlnUvRKYsarrbs;ExSekag EdleKeGayeQμaHfa load contour. smIkarKμanxñatTUeTA (general nondimensional equation) sMrab; load contour eRkamGMeBI bnÞúkefr Pn KW α1 α2 ⎛ M nx ⎞ ⎛ M ny ⎞ ⎜ ⎜ ⎟ ⎟ +⎜ ⎟ = 1.0 (8.28) ⎝ M ox ⎠ ⎜ M oy ⎟ ⎝ ⎠ Edl M nx = Pn e y Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 529
  • 39. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca M ny = Pn ex M ox = M nx Rtg;bnÞúktamG½kS Pn Edl M ny b¤ ex = 0 M oy = M ny Rtg;bnÞúktamG½kS Pn Edl M nx b¤ e y = 0 m:Um:g; M ox nig M oy CaersIusþg;m:Um:g;EdlTb;Tl;smmUltMrUvkar (required equivalent resis- ting moment strength) eFobG½kS x nigG½kS y erogKña Edl α1 nig α 2 CaniTsSnþEdlGaRs½ynwgrag FrNImaRtmuxkat; PaKryEdk TItaMgrbs;Edk nigkugRtaMgsMPar³ f 'c nig f y . eKGacsMrYlsmIkar 8>28 edayeRbIniTsSnþFmμta nigedaybBa©ÚlemKuN β sMrab;tMélbnÞúk tamG½kSBiess Pn mYy EdlpleFob M nx / M ny KYrmantMéldUcKñanwgpleFob M ox / M oy . kar sMrYlEbbenHnaMeGayeK)an α α ⎛ M nx ⎞ ⎛M ⎞ ⎜ ⎜M ⎟ ⎟ + ⎜ ny ⎟ = 1.0 (8.29) ⎝ ox ⎠ ⎜ M oy ⎟ ⎝ ⎠ Edl α = log 0.5 / log β . rUbTI 8>19 bgðajBIdüaRkam contour ABC BIsmIkar 8.27. sMrab;karsikSaKNna/ eKKitExS contour CabnÞat;Rtg; AB nig BC edaytMélRbhak;RbEhl/ ehIyeKGacsMrYlsmIkar 8.29 CaBIrkrNI³ Prestressed Compression and Tension Members 530
  • 40. Department of Civil Engineering NPIC !> sMrab; AB enAeBlEdl M ny / M oy < M nx / M ox M nx M ny ⎡1 − β ⎤ + = 1 .0 M ox M oy ⎢ β ⎥ (8.30a) ⎣ ⎦ @> sMrab; BC enAeBlEdl M ny / M oy > M nx / M ox M ny M nx ⎡1 − β ⎤ + = 1 .0 M ox ⎢ β ⎥ (8.30b) M oy ⎣ ⎦ enAkñúgsmIkarTaMgBIrxagelIenH ersIusþg;m:Um:g;tamG½kSmYysmmUlEdllubCak;Esþg (actual control- ling equivalent uniaxial moment strength) M oxn b¤ M oyn y:agehacNas;RtUvsmmUleTAnwg required controlling moment strength M ox nig M oy énmuxkat;ssrEdleRCIserIs. sMrab;muxkat;ctuekaNEdleKBRgayEdkedaybrimaNesμIKñaRKb;RCugTaMgGs;rbs;muxkat;ssr enaHeKGacykpleFob M oy / M ox RbEhlesμInwg b / h . enAkñúgkrNIenH eKGacsMrYlsmIkar 8.30 dUcxageRkam !> sMrab; M ny > b M h nx Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 531
  • 41. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca b 1− β M ny + M nx ≅ M oy (8.31a) h β @> sMrab; M ny ≤ b M h nx h 1− β M nx + M ny ≅ M ox (8.31b) b β Controlling required moment strength M ox b¤ M oy sMrab;karsikSaKNnamuxkat;KWCatMélEdlFM CageKkñúgcMeNamtMélTaMgBIrEdlkMNt;enAkñúgsmIkar 8.31. eKeRbIdüaRkamenAkñúgrUbTI 8>20 kñúgkareRCIserIs β kñúgkarviPaK nigsikSaKNnassr. Cakar Bit eKGacniyayfa modified load-contour enAkñúgsmIkar 8.31 CaviFIsMrab;kMNt; equivalent required moment strength M ox nig M oy sMrab;sikSaKNnassr RbsinebIvargkMlaMgtamTismYy. Prestressed Compression and Tension Members 532
  • 42. Department of Civil Engineering NPIC K> Step-by-Step Operational Procedure for the Design of Biaxially Loaded Columns eKGaceRbICMhanxageRkamCaeKalkarN_ENnaMsMrab;sikSaKNnassrEdlrgkarBt;tamTis x nigTis y . viFIsaRsþsnμt;RkLaépÞEdkenARKb;RCugTaMgbYnrbs;ssrmanbrimaNesμIKña. !> KNna uniaxial bending moment edaysnμt;cMnYnEdkenAelIRCugnImYy²rbs;ssresμIKña. snμt;tMélrbs; interaction contour factor β enAcenøaH 0.50 nig 0.70 nigpleFobrbs; h / b . pleFobenHGacmantMélRbhak;RbEhlnwg M nx / M ny . edayeRbIsmIkar 8.31 kMNt; equivalent required uniaxial moment M ox b¤ M oy . RbsinebI M nx FMCag M ny yk M ox sMrab;karKNna nigpÞúymkvij. @> snμt;muxkat;sMrab;ssr nigpleFobEdk ρ = ρ ' ≅ 0.01 eTA 0.02 enAelIRCugnImYy²rbs; RCugTaMgBIrEdlRsbnwgG½kSénkarBt;rbs; equivalent moment NaEdlFMCag. bnÞab;mk eRCIserIsmuxkat;dMbUgrbs;Edk nigepÞógpÞat;lT§PaB Pn énmuxkat;ssrEdlsnμt;. sMrab;kar sikSaKNnaEdlmanlçN³eBjelj eKeRbIbrimaNEdkbeNþaydUcKñaenAelIRCugTaMgbYn. #> KNna actual nominal moment strength M oxn sMrab; equivalent uniaxial bending eFobG½kS x enAeBl M ox = 0 . vaRtUvmantMély:agehacNas;smmUlnwg required moment strength M ox . $> KNna actual nominal moment strength M oyn sMrab; equivalent uniaxial bending moment eFobG½kS y enAeBlEdl M oy = 0 . %> kMNt; M ny edaybBa©Úl M nx / M oxn nigtMélsakl,g β eTAkñúgdüaRkamExSekagemKuN β énrUbTI 8>20. ^> Gnuvtþ trial and adjustment elIkTIBIr edaybegáIntMélsnμt; β RbsinebItMél M ny Edl TTYl)anBIkarbBa©ÚleTAkñúg chart tUcCagtMél required M ny . GnuvtþCMhanenHeLIgvij rhUtdl;tMélén M ny xitCitKña tamry³karpøas;bþÚr β b¤pøas;bþÚrmuxkat;. &> sikSaKNa lateral ties niglMGitmuxkat;. Flowchart sMrab;CMhandMbUgkñúgkarkMNt;tMél controlling moment enAkñúg biaxially loaded column RtUv)aneGayenAkñúgrUbTI 8>21. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 533
  • 43. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca 12> karBicarNakñúgkarsikSaKNnaGnuvtþn_ Practical Design Considerations xageRkamCaeKalkarN_ENnaMsMrab;karsikSaKNna nigkartMerobEdkenAkñúgkarsikSaKNna Gnuvtþn_. k> EdkbeNþay b¤Edkem Longitudinal or Main Reinforcement kugRtaMgRbsiT§PaBmFümenAkñúgebtugenAkñúgGgát;rgkarsgát;eRbkugRtaMgminKYrtUcCag 225 psi (1.55MPa ) . tMrUvkarrbs; code kMNt;pleFobEdkGb,brmaEbbNaeGayGgát;rgkarsgát;Edlrg kMlaMgeRbkugRtaMgtUc nigmanpleFobEdkminrgeRbkugRtaMgGb,brma1% . Prestressed Compression and Tension Members 534
  • 44. Department of Civil Engineering NPIC x> EdkxagsMrab;ssr Lateral Reinforcement for Columns !> EdkcMNgxag Lateral ties eKRtUvkar lateral reinforcement edIm,IkarBar spalling rbs; concrete cover b¤ local buckling rbs;EdkbeNþay. EdkBRgwgxagRtUvmanTMrg;Ca ties EdlBRgayedaycenøaHesIμtamkMBs;rbs;ssr. EdlbeNþayEdlmanKMlatBIKña 6in. KYrRtUv)anTb;eday lateral ties dUcbgðajenAkñúgrUbTI 8>22. eKRtUvGnuvtþtameKalkarN_ENnaMxageRkamsMrab;kareRCIserIsTMhM nigKMlatrbs; ties: !> TMhMrbs;EdkcMNg b¤Edjkg (tie) minRtUvtUcCag #3(9.5mm) . @> KMlatbBaÄrsMrab; tie minRtUvFMCag (a) 48 dgénGgát;p©itrbs; tie (b) 16 dgénGgát;p©itrbs;EdkbeNþay (c) TMhMxagtUcCageKrbs;ssr rUbTI 8>22 bgðajBIkartMerob tie sMrab;EdkbeNþay 4, 6 nig 8 enAkñúgmuxkat;ssr. @> EdkkgvNÐ Spirals RbePTepSgeTotrbs; lateral reinforcement KW spiral b¤ helical lateral reinforcement dUc bgðajenAkñúgrUbTI 8>23. Spiral manRbeyaCn_BiesskñúgkarbegáIn ductility b¤ PaBrwgrbs;Ggát; dUcenHeKesñIeGayeRbI spiral sMrab;tMbn;EdlRbQmnwgrBa¢ÜydIx<s;. CaTUeTA ebtugEdlB½T§CMuvij confined core énssrEdlBRgwgeday spiral Gac spall eRkamGMeBI lateral force minFmμta nigPøam² dUcCakMlaMgrBa¢ÜydI. ssrRtUvmanlT§PaBTb;Tl;nwgbnÞúkPaKeRcInbnÞab;BIebtugkarBar spall edIm,I karBarkardYlrlMGKar. dUcenH eKRtUvsikSaKNnaKMlat nigTMhMrbs; spiral edIm,IrkSalT§PaBRTbnÞúk PaKeRcInrbs;ssr eTaHbICaeRkamlkçxNÐbnÞúkeRKaHfñak;EbbenHk¾eday. Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 535
  • 45. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca EdlmanKMlatCit²begáIn ultimate-load capacity rbs;ssr. eKRtUv Spiral reinforcement eRCIserIsKMlat (spacing b¤ pitch) rbs; spacing edIm,IeGay load capacity Edl)anBI confining spiral action GacTb;Tl;nwgkar)at;bg;muxkat;ebtugedaysar spalling. edayeGaykarekIneLIgénersIusþg;EdlbNþalBI confinement esμInwgkar)at;bg; capacity edaysar spalling ehIybBa©ÚlemKuNsuvtßiPaB 1.2 eyIgTTYl)anpleFob spiral reinforcement Gb,brma ⎛ Ag ⎞ f' ρ s = 0.45⎜ ⎜− 1⎟ c ⎟ f (8.32) ⎝ Ac ⎠ sy Edl ρ= volume of the spiral steel per one revolution volume of concrete core contained in one revolution πD 2 Ac = c (8.33a) 4 πh 2 Ag = (8.33b) 4 h= Ggát;p©itrbs;ssr as = RkLaépÞmuxkat;rbs; spiral d b = nominal diameter rbs; spiral Dc = Ggát;rbs;sñÚlebtug (concrete core) EdlKitBIépÞxageRkArbs; spiral f sy = yield strength rbs; spiral reinforcement Prestressed Compression and Tension Members 536
  • 46. Department of Civil Engineering NPIC edIm,IkMNt; pitch s rbs; spiral/ KNna ρ s edayeRbIsmIkar 8.33/ eRCIserIsGgát;p©it db sMrab; spiral/ KNna as nigbnÞab;mkTTYl)an pitch b edayeRbIsmIkar 8.35b xageRkam. eKGacsresrpleFob spiral reinforcement ρ s dUcxageRkam asπ (Dc − d b ) ρs = (8.34a) (π / 4)Dc2 s dUcenH eKTTYl)an pitch asπ (Dc − d b ) s= (8.35a) (π / 4)Dc2 ρ s 4 a (D − d b ) b¤ s= s c Dc ρ s 2 (8.35b) EdnkMNt;énKMlat b¤ pitch rbs; spiral sßitenAcenøaH 1in.(25.4mm) eTA 3in.(76.2mm) ehIyGgát;p©itminRtUvtUcCag 3 / 8in.(9.53mm) . eKRtUvbRBa¢Üsy:agehacNas;mYyCMuknøH RbsinebIeK mineRbItMNpSar. #> sikSaKNna Spiral Lateral Reinforcement ]TahrN_ 8>3³ sikSaKNna lateral spiral reinforcement sMrab;ssrebtugeRbkugRtaMgmUlEdl manGgát;p©it h = 20in.(508mm) nig clear cover dc = 1.5in.(38mm) nigman f y = 60,000 psi (414MPa ) . dMeNaHRsay³ edayeRbIsmIkar 8.32 ⎛ Ag ⎞ f' ρ s EdlRtUvkar = 0.45⎜ ⎜ − 1⎟ c ⎟ f A ⎝ c ⎠ sy edayeRbI spiral #3 Edlman yield strength f y = 60,000 psi eyIgman clear concrete cover d c = 1.5in.(38mm ) f sy = 60,000 psi Dc = h − 2d c = 20.0 − 2 × 1.5 = 17in.(432mm ) π (17.0)2 Ac = = 226.98in.2 4 Ag = 314.0in.2 ⎛ 314 ⎞ 4,000 ρ s = 0.45⎜ − 1⎟ = 0.0115 ⎝ 226.98 ⎠ 60,000 sMrab; spiral #3 / as = 0.11in.2 . dUcenHedayeRbIsmIkar 8.35b eyIg)an Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 537
  • 47. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca 4as (Dc − d b ) 4 × 0.11(17.0 − 0.375) pitch s = = = 2.20in.(56mm ) Dc ρ s 2 (17.0)2 × 0.0115 dUcenH eRbI spiral #3 CamYynwg pitch 2 14 in. ¬spiral Ggát;p©it 9.53mm CamYynwg pitch 54.0mm ¦. 13> Reciprocal Load Method for Biaxial Bending viFIenHRtUv)anbegáIteLIgeday Bressler. viFIenHP¢ab;TMnak;TMngrvagtMélbnÞúktamG½kSEdl cg;)an Pu eTAnwgtMélbIepSgeTotEdl reciprocial eTAnwg failure surface. snμt; S1 CakUGredaen enAelI failure surface énrUbTI 8>18 EdltMélénbnÞúk nigcMNakp©itCa Pu / ex nig e y . RbsinebI S 2 CacMnucenAelI compatible reciprocal surface eTAnwgGVIenAkñúgrUbTI 8>18 enaH S 2 nwgkMNt;kUGr- edaenéncMnucenaHCa 1 / Pu / ex nig e y Edl Pu = φPn EdlCabnÞúkemKuN. RbsinebI desired axial load Pu eRkam biaxial loading eFobG½kS x nigG½kS y RtUvTak;Tg eTAnwgtMél Pu EdleGayeday Puy / Pux nig Puo enaH 1 1 1 1 = + − (8.36a) Pu Pux Puy Puo b¤ 1 = 1 + 1 − 1 φPn φPnxo φPnyo φPno (8.36b) Edl Pux = φPnxo = design strength rbs;ssrEdlmancMNakp©it ex RbsinebI e y = 0 Puy = φPnyo = design strength rbs;ssrEdlmancMNakp©it e y RbsinebI ex = 0 Puo = φPno = axial load design strength tamRTwsþIsMrab;ssrEdlmancMNakp©it ex = e y = 0 M ux = m:Um:g;eFobG½kS x = Pu e y M uy = m:Um:g;eFobG½kS y = Pu ex ex = cMNakp©itvas;RsbeTAnwgG½kS y dUcenAkñúgrUbTI 8>24 Edl ex = M uy / Pu = Pu ex / Pu e y = cMNakp©itEdlvas;RsbeTAnwgG½kS x = Pu e y / Pu x = TMhMrbs;muxkat;ssrEdlRsbeTAnwgG½kS x y = TMhMrbs;muxkat;ssrEdlRsbeTAnwgG½kS y Prestressed Compression and Tension Members 538
  • 48. Department of Civil Engineering NPIC Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 539
  • 49. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca 14> Modified Load Contour Method for Biaxial Bending CMnYseGaysmIkar 8.32, Hsu )anesñInYvsmIkarEdlEktMrUvEdlGacCMnYseGay strength inter- action diagram nig failure surface rbs;ssrebtugGarem:rgbnÞúkBIrTis dUcenAkñúgrUbTI 8>34. viFI enHk¾dUcKñanwg reciprocal load method Edr vaTamTarnUvkarKNnaticCagviFIBIrepSgeTot. smIkar interaction sMrab;bnÞúk nigm:Umg;Bt;eFobnwgG½kSBIrKW : 1.5 ⎛ Pn − Pnb ⎞ ⎛ M nx ⎞ 1.5 ⎛ M ny ⎞ ⎜ ⎜P −P ⎟+⎜M ⎟ ⎟ ⎜ ⎟ +⎜ ⎟ = 1.0 (8.37) ⎝ no nb ⎠ ⎝ nbx ⎠ ⎜ M nby ⎟ ⎝ ⎠ Edl Pn = kMlaMgsgát;tamG½kS nominal ¬viC¢man¦ b¤kMlaMgTaj ¬GviC¢man¦ M nx , M ny = m:Um:g;Bt; nominal eFobG½kS x nigG½kS y erogKña Pno = kMlaMgsgát;tamG½kS nominal Gtibrma ¬viC¢man¦ b¤kMlaMgTajtamG½kS ¬GviC¢man¦ ( ) = 0.85 f 'c Ag − Ast + f y Ast Pnb = kMlaMgsgát;tamG½kSeRkamlkçxNÐ balanced strain M nbx , M nby = m:Um:g;Bt; nominal eFobG½kS x nigG½kS y erogKña eRkamlkçxNÐ balanced strain eKGacTTYl)antMélrbs;sßanPaBbMErbMrYlragkMNt; Pnb nig M nb BI Pnb = 0.85 f 'c β1cbb + Apsf ' ps − Aps f ps (8.38a) ⎛ ⎞ nig M nb = Pnb eb = Cc ⎜ d − − d "⎟ + C s (d − d '− d ") + Ts d " ⎝ a 2 ⎠ (3.38b) Edl ab = kMBs;rbs;bøúksmmUl = β1cb = (Aps / f ps )/(0.85 f 'c b) a = β1c kugRtaMgenAkñúgEdkrgkarsgát;EdlenAEk,rbnÞúkCageK = f py RbsinebI f ps ≥ f py f ' ps = Ts = kMlaMgenAkñúgEdkxagTaj Step-by-step operational procedure sMrab;karsikSaKNnassrrgbnÞúkBIrTisGnuvtþeTAtamdMeNIrkarenAkñúgcMnuc 11>K. viFIenHTamTarkar KNnatickñúgkaredaHRsayssrrgm:Um:g;BIrTis. k> EdkxagsMrab;ssr Lateral Reinforcement for Columns ]TahrN_ 8>4³ snμt;muxkat;ssrcak;Rsab;enAkñúg]TahrN_ 8>2 CassrxøIEdlrgm:Um:g;BIrTis Etmin man sidesway. sikSaKNnassrsMrab;m:Um:g;Bt;xageRkam³ Prestressed Compression and Tension Members 540
  • 50. Department of Civil Engineering NPIC M ux = M uy = 825,000in. − lb(93.7kN .m ) nig Pu = 300,000lb(1334kN ) eKeGay³ f 'c = 6,000 psi (41.4MPa ) ebtugTMgn;Fmμta f pu = 270,000 psi (1863MPa ) f ps = 240,000 psi (1565MPa ) muxkat;RtUv)anBRgwgCamYynwg 7-wire tendon Ggát;p©it 1 / 2in.(12.7mm) cMnYn 5 EdleGay tendon srubcMnYn 16. dMeNaHRsay³ Pu = 300,000lbs M ux = Pu e y = 825,000in. − lb eFobnwgG½kS x M uy = Pu e x = 825,000in. − lb eFobnwgG½kS y f 'c = 6,000 psi f ps = 240,000 psi dUcenH ex = M ux 825,000 Pu = 300,000 = 2.75in. M uy 825,000 ey = = = 2.75in. Pu 300,00 x= G½kSRsbeTAnwgRCugxøI b y = G½kSRsbeTAnwgRCugEvg h muxkat;ssrKW 15in. × 15in. b = 15in. h = 15in. d ' = 2.5in. enAelIRCugnImYy² As = 5 × 0.153 = 0.765in. 2 EdlBRgwgsrub Ast = 16 × 0.153 = 2.448in.2 cMNakp©itEdltUcCageKKW 2.75in. . ]bmafava)ak;edaykarsgát;. sakl,g φ = 0.65 . Pn Cak;Esþg = 300,000 = 461,538lb 0.65 M n Cak;Esþg = 825,000 = 1,269,231lb − in. 0.65 BI]TahrN_ 8>2/ sMrab;sßanPaBbMErbMrYlrageFobkMNt;rgkarsgát; ¬ ε t = 0.002 ¦ Pnb = 229,310lb M nb = Pnb eb = 2,103,124in. − lb(237kN .m ) Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 541
  • 51. T.Chhay viTüasßanCatiBhubec©keTskmú<Ca M nb 2,103,124 eb = = = 9.17in. Pnb 229,310 eb > e = 2.75in. dUcenHkMlaMgsgát;RKb;RKgsßanPaB ehIyemKuNkat;bnßyersIusþg; φ = 0.65 ( ) Pno = 0.85 f 'c Ag − Ast + Ast f ps = 0.85 × 6,000(225 − 2.448) + 1.53 × 240,000 = 1,502,205lb edayeRbIsmIkar 8.37 (interaction surface) sMrab; biaxial bending 1.5 ⎛ Pn − Pnb ⎞ ⎛ M nx ⎞ 1.5 ⎛ M ny ⎞ 461,538 − 229,310 ⎛ 1,269,231 ⎞ 1.5 ⎜ ⎜P −P ⎟+⎜M ⎟ ⎟ ⎜ ⎟ +⎜ ⎟ = +⎜ ⎟ ⎝ no nb ⎠ ⎝ nbx ⎠ ⎜ M nby ⎟ 1,502,205 − 229,310 ⎝ 2,103,124 ⎠ ⎝ ⎠ 1.5 ⎛ 1,269,231 ⎞ +⎜ ⎟ ⎝ 2,103,124 ⎠ = 0.182 + 0.468 + 0.468 = 1.118 > 1.0 ¬muxkat;enH overdesigned bnþicbnþÜc¦ TTYlykkarsikSaKNna Edl b = 15in. h = 15in. d = 12.5in. As = 7-wire strand tendon Ggát;p©it 1 / 2in. cMnYn 5 tamRCugnImYy² dUckñúgrUbTI 8>15 Edl eGay tendon srubTaMgGs; 16 . 15> Ggát;rgkarTajeRbkugRtaMg Prestressed Tension Members k> kugRtaMgbnÞúkesvakmμ Service-Load Stresses RbB½n§ nigGgát;rgkarTajdUcCa railroad ties, bridge truss tension members, foundation anchors sMrab;CBa¢aMgTb;dI nig ties enAkñúgCBa¢aMgén liquid-retaining tank pSMeLIgeday prestressing strand EdlmanersIusþg;x<s;CamYynwgPaBrwgRkajrbs;ebtug. edaysarEbbenH vapþl;nUversIusþg;Taj nigkMhUcRTg;RTayEdlfycuH Edlmuxkat;EdksuT§minGacpþl;eGay)andUc sMrab;karRTbnÞúkdUcKña. eKeRcIneRbIvaCaGgát;cMNg (tie) b¤CaEpñkénRbB½n§eRKOgbgÁúMTaMgmUl. rUbTI 8>25 eRbobeFonsac;lUtrbs;Ggát;ebtugeRbkugRtaMgkñúgTisénkMlaMgTajCamYYynwgGgát; eRKOgbgÁúMEdkEdlmanlT§PaBRTRTg;dUcKña. sac;lUtrbs;Ggát;rgkarTajEdl)anBIkarGnuvtþénkMlaMg Prestressed Compression and Tension Members 542
  • 52. Department of Civil Engineering NPIC xageRkA F xN³Edlsac;lUtrbs; unstressed tendon enAkñúgEpñk (a) EdlbNþalBIkMlaMg F KW)anBIRTwsþIemkanicmUldæan FL ΔL ps = (8.39) Aps E ps RbsinebIeKCMnYs tendon eday rolled structural member karERbRbYllkçN³énmuxkat;eFVIeGay kMhUcRTg;RTay ⎛ A ps E ps ⎞ ΔLs = ΔL ps ⎜ ⎜ AE ⎟ ⎟ (8.40) ⎝ s s ⎠ Edl As FMCag Aps . dUcenH kMhUcRTg;RTayEdlfycuHy:ageRcInRtUv)anbgðajenAkñúgrUbTI 8>25b. RkLaépÞebtugbMElgrbs;ebtugenAkñúgrUbTI 8>25 c KW ( At1 = Ag + n p − 1 Aps ) (8.41) ehIy RbsinebIbMErbMrYlkugRtaMgenAkñúgkugRtaMgKW Ggát;rgkarsgát; nigkarTajeRbkugRtaMg 543