SlideShare a Scribd company logo
1 of 75
Download to read offline
Projectile Motion
Projectile Motion
    y




           x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
    y




          /s
        vm
         
               x
Projectile Motion
                     y          maximum range
                                      45




                           /s
                         vm
                          
                                x

Initial conditions
Projectile Motion
                     y            maximum range
                                        45




                           /s
                         vm
                          
                                  x

Initial conditions   when t = 0


          v
      
Projectile Motion
                         y            maximum range
                                            45




                               /s
                             vm
                              
                                      x

Initial conditions       when t = 0


          v          
                     y
      
              
              x
Projectile Motion
                         y                     maximum range
                                                     45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x
          v                          cos
                     
                     y            v
                                 x  v cos
                                  
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
                                     cos        sin 
          v          
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0
Projectile Motion
                         y                      maximum range
                                                       45




                               /s
                             vm
                              
                                               x
Initial conditions       when t = 0

                                  
                                  x            
                                               y
          v                          cos        sin 
                     
                     y            v            v
                                 x  v cos
                                              y  v sin 
                                               
              
              x                     x0        y0
  0
x           g
         y
  0
x           g
         y
x  c1

  0
x           g
         y
x  c1
        y   gt  c2
         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
  0
       x                    g
                         y
      x  c1
                        y   gt  c2
                         
when t  0, x  v cos
                        y  v sin 
                         
   c1  v cos
    x  v cos
    
  0
       x                      g
                           y
      x  c1
                          y   gt  c2
                           
when t  0, x  v cos
                          y  v sin 
                           
   c1  v cos              c2  v sin 
    x  v cos
                        y   gt  v sin 
                         
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
  0
       x                        g
                             y
      x  c1
                            y   gt  c2
                             
when t  0, x  v cos
                            y  v sin 
                             
   c1  v cos                c2  v sin 
    x  v cos
                          y   gt  v sin 
                           

                              1 2
   x  vt cos  c3      y   gt  vt sin   c4
                              2
    when t  0, x  0          y0
       c3  0
    x  vt cos
  0
       x                          g
                               y
      x  c1
                             y   gt  c2
                              
when t  0, x  v cos
                             y  v sin 
                              
   c1  v cos                 c2  v sin 
    x  v cos
                           y   gt  v sin 
                            

                               1 2
   x  vt cos  c3       y   gt  vt sin   c4
                               2
    when t  0, x  0           y0
       c3  0                   c4  0
    x  vt cos               1
                         y   gt 2  vt sin 
                              2
Common Questions
Common Questions
(1) When does the particle hit the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
    i  find when y  0
                   
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
     i  find when y  0
    ii  substitute into y
                          
Common Questions
(1) When does the particle hit the ground?
    Particle hits the ground when y  0
(2) What is the range of the particle?
    i  find when y  0
    ii  substitute into x
(3) What is the greatest height of the particle?
     i  find when y  0
                      
    ii  substitute into y
(4) What angle does the particle make with the ground?
    i  find when y  0
   ii  substitute into y
                                    
                                     y
   iii  tan  
                  y
                                                   
                 
                 x                             
                                               x
Summary
Summary
 A particle undergoing projectile motion obeys
Summary
 A particle undergoing projectile motion obeys
              0
            x           and            g
                                    y
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions
Summary
 A particle undergoing projectile motion obeys
               0
             x             and         g
                                    y

 with initial conditions

           x  v cos
                          and    y  v sin 
                                  
Summary
   A particle undergoing projectile motion obeys
                  0
                x            and             g
                                          y

   with initial conditions

             x  v cos
                            and        y  v sin 
                                        

e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                 3
        tan 1 to the ground. Determine;.
                 4
Summary
    A particle undergoing projectile motion obeys
                  0
                x             and             g
                                           y

    with initial conditions

              x  v cos
                             and        y  v sin 
                                         

 e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                  3
         tan 1 to the ground. Determine;.
                  4
a) greatest height obtained
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions                                       5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                            3
                                                                    3
                                                         tan 1
                                                                    4
                                                               4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4
                     x  25 
                                                       tan 1
                                                                 3
                           5                                   4
                        20m/s                                4
Summary
    A particle undergoing projectile motion obeys
                   0
                 x             and            g
                                           y

     with initial conditions

               x  v cos
                              and       y  v sin 
                                         

  e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of
                   3
          tan 1 to the ground. Determine;.
                   4
 a) greatest height obtained
Initial conditions x  v cos
                                   y  v sin 
                                                        5
                                                                          3
                            4            3
                     x  25 
                                  y  25 
                                                       tan 1
                                                                 3
                           5            5                    4
                        20m/s         15m/s                 4
  0
x          10
         y
  0
x          10
         y
x  c1

  0
x          10
         y
x  c1
        y  10t  c2
         
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20
   x  20
   
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  0
    x                  10
                     y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
   x  20t  c3      y  5t 2  15t  c4
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
  0
    x                   10
                      y
   x  c1
                    y  10t  c2
                     
when t  0, x  20
                      y  15
                       
  c1  20                c2  15
   x  20
                    y  10t  15
                     
  x  20t  c3       y  5t 2  15t  c4
 when t  0, x  0      y0
   c3  0
   x  20t
  0
    x                    10
                       y
   x  c1
                      y  10t  c2
                       
when t  0, x  20
                        y  15
                         
  c1  20                  c2  15
   x  20
                      y  10t  15
                       
  x  20t  c3        y  5t 2  15t  c4
 when t  0, x  0       y0
   c3  0               c4  0
   x  20t           y  5t 2  15t
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
  0
          x                             10
                                      y
         x  c1
                                     y  10t  c2
                                      
      when t  0, x  20
                                       y  15
                                        
        c1  20                           c2  15
          x  20
                                     y  10t  15
                                      
        x  20t  c3                 y  5t 2  15t  c4
       when t  0, x  0                y0
         c3  0                        c4  0
         x  20t                    y  5t 2  15t
greatest height occurs when y  0
                            
           10t  15  0
                   3
              t
                   2
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
          x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                           3
                                                            2
                                                       3   15 3 
           10t  15  0            when t  , y  5          
                                            2          2       2
                   3                               45
              t                                 
                   2                               4
  0
          x                                   10
                                            y
         x  c1
                                           y  10t  c2
                                            
      when t  0, x  20
                                             y  15
                                              
        c1  20                                 c2  15
         x  20
                                           y  10t  15
                                            
        x  20t  c3                       y  5t 2  15t  c4
       when t  0, x  0                      y0
         c3  0                              c4  0
         x  20t                          y  5t 2  15t
greatest height occurs when y  0
                                              3         3
                                                             2
                                                                3
           10t  15  0             when t  , y  5   15 
                                               2         2    2
                   3                                 45
              t                                   
                   2                                 4
                                 1
           greatest height is 11 m above the ground
                                 4
b) range
b) range
  time of flight is 3 seconds
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
b) range
  time of flight is 3 seconds
  when t  3, x  203
                 60
   range is 60m
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                           1
c) velocity and direction of the ball after second
                                           2
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                           
             2                    2
                              10
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
                                                         20
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                    10 5
             2                    2                         10
                              10                    
         1
 tan                                                   20
         2
       2634
b) range
   time of flight is 3 seconds
   when t  3, x  203
                  60
   range is 60m
                                            1
c) velocity and direction of the ball after second
                                            2
             1
   when t  , x  20               1   15
                         y  10 
                                                       10 5
             2                    2                              10
                              10                      
         1
 tan                                                     20
         2
       2634
                       1
                after second, velocity  10 5m/s and it is traveling at
                       2
                  an angle of 2634 to the horizontal
d) cartesian equation of the path
d) cartesian equation of the path

        x  20t
             x
        t
            20
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4
d) cartesian equation of the path

        x  20t              y  5t 2  15t
                                         2
             x
                             y  5   15 
        t                            x       x
                                          
            20                      20    20 
                                  x 2 3x
                             y       
                                  80     4




          Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18

                   Exercise 3H; 2, 4, 6, 7, 10, 11

More Related Content

Viewers also liked

Presentation 2
Presentation 2Presentation 2
Presentation 2skocdar
 
Wdsi 3G Wi Fi Data Offloading Dashboard Features
Wdsi 3G Wi Fi Data Offloading Dashboard FeaturesWdsi 3G Wi Fi Data Offloading Dashboard Features
Wdsi 3G Wi Fi Data Offloading Dashboard FeaturesAndy Coney
 
Cost reduction techniques 2016
Cost reduction techniques 2016Cost reduction techniques 2016
Cost reduction techniques 2016Urmi Trivedi
 
Pulverized coal fired boiler startup procedure
Pulverized coal fired boiler startup procedurePulverized coal fired boiler startup procedure
Pulverized coal fired boiler startup procedureAshvani Shukla
 
Sustainable Cost Reduction Primer
Sustainable Cost Reduction PrimerSustainable Cost Reduction Primer
Sustainable Cost Reduction PrimerMichael D'heur
 
Aproximaciones metodológicas del Diseño Curricular
Aproximaciones metodológicas del Diseño CurricularAproximaciones metodológicas del Diseño Curricular
Aproximaciones metodológicas del Diseño Curricularsitton29
 

Viewers also liked (8)

Presentation 2
Presentation 2Presentation 2
Presentation 2
 
Wdsi 3G Wi Fi Data Offloading Dashboard Features
Wdsi 3G Wi Fi Data Offloading Dashboard FeaturesWdsi 3G Wi Fi Data Offloading Dashboard Features
Wdsi 3G Wi Fi Data Offloading Dashboard Features
 
Cost reduction techniques 2016
Cost reduction techniques 2016Cost reduction techniques 2016
Cost reduction techniques 2016
 
Pulverized coal fired boiler startup procedure
Pulverized coal fired boiler startup procedurePulverized coal fired boiler startup procedure
Pulverized coal fired boiler startup procedure
 
Sustainable Cost Reduction Primer
Sustainable Cost Reduction PrimerSustainable Cost Reduction Primer
Sustainable Cost Reduction Primer
 
Aproximaciones metodológicas del Diseño Curricular
Aproximaciones metodológicas del Diseño CurricularAproximaciones metodológicas del Diseño Curricular
Aproximaciones metodológicas del Diseño Curricular
 
Hoa presentation
Hoa presentationHoa presentation
Hoa presentation
 
Sindrome hepatorrenal
Sindrome hepatorrenalSindrome hepatorrenal
Sindrome hepatorrenal
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 

Recently uploaded (20)

Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 

12X1 T07 03 projectile motion (2010)

  • 3. Projectile Motion y /s vm  x
  • 4. Projectile Motion y /s vm  x
  • 5. Projectile Motion y maximum range   45 /s vm  x Initial conditions
  • 6. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v 
  • 7. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0 v  y   x
  • 8. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x v  cos  y v  x  v cos   x
  • 9. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x
  • 10. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y  cos  sin  v  y v v  x  v cos  y  v sin    x x0
  • 11. Projectile Motion y maximum range   45 /s vm  x Initial conditions when t = 0  x  y v  cos  sin   y v v  x  v cos  y  v sin    x x0 y0
  • 12.   0 x    g y
  • 13.   0 x    g y x  c1 
  • 14.   0 x    g y x  c1  y   gt  c2 
  • 15.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin  
  • 16.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos x  v cos 
  • 17.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin  
  • 18.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2
  • 19.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0
  • 20.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 x  vt cos
  • 21.   0 x    g y x  c1  y   gt  c2  when t  0, x  v cos  y  v sin   c1  v cos c2  v sin  x  v cos  y   gt  v sin   1 2 x  vt cos  c3 y   gt  vt sin   c4 2 when t  0, x  0 y0 c3  0 c4  0 x  vt cos 1 y   gt 2  vt sin  2
  • 23. Common Questions (1) When does the particle hit the ground?
  • 24. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0
  • 25. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle?
  • 26. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0
  • 27. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x
  • 28. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle?
  • 29. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0 
  • 30. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y
  • 31. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground?
  • 32. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0
  • 33. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y 
  • 34. Common Questions (1) When does the particle hit the ground? Particle hits the ground when y  0 (2) What is the range of the particle? i  find when y  0 ii  substitute into x (3) What is the greatest height of the particle? i  find when y  0  ii  substitute into y (4) What angle does the particle make with the ground? i  find when y  0 ii  substitute into y   y iii  tan   y   x  x
  • 36. Summary A particle undergoing projectile motion obeys
  • 37. Summary A particle undergoing projectile motion obeys   0 x and    g y
  • 38. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions
  • 39. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin  
  • 40. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4
  • 41. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained
  • 42. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions
  • 43. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions 5 3 3   tan 1 4 4
  • 44. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3 3   tan 1 4 4
  • 45. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 46. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4 x  25     tan 1 3 5 4  20m/s 4
  • 47. Summary A particle undergoing projectile motion obeys   0 x and    g y with initial conditions x  v cos  and y  v sin   e.g. A ball is thrown with an initial velocity of 25 m/s at an angle of 3   tan 1 to the ground. Determine;. 4 a) greatest height obtained Initial conditions x  v cos  y  v sin   5 3  4  3 x  25   y  25     tan 1 3 5 5 4  20m/s  15m/s 4
  • 48.   0 x   10 y
  • 49.   0 x   10 y x  c1 
  • 50.   0 x   10 y x  c1  y  10t  c2 
  • 51.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15 
  • 52.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 x  20 
  • 53.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15 
  • 54.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3
  • 55.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4
  • 56.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0
  • 57.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 x  20t
  • 58.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t
  • 59.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0 
  • 60.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0   10t  15  0 3 t 2
  • 61.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3 2  3   15 3   10t  15  0 when t  , y  5    2  2  2 3 45 t  2 4
  • 62.   0 x   10 y x  c1  y  10t  c2  when t  0, x  20  y  15  c1  20 c2  15 x  20  y  10t  15  x  20t  c3 y  5t 2  15t  c4 when t  0, x  0 y0 c3  0 c4  0 x  20t y  5t 2  15t greatest height occurs when y  0  3  3 2  3  10t  15  0 when t  , y  5   15  2  2  2 3 45 t  2 4 1  greatest height is 11 m above the ground 4
  • 64. b) range time of flight is 3 seconds
  • 65. b) range time of flight is 3 seconds when t  3, x  203  60
  • 66. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m
  • 67. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2
  • 68. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   2 2  10
  • 69. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  20
  • 70. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634
  • 71. b) range time of flight is 3 seconds when t  3, x  203  60  range is 60m 1 c) velocity and direction of the ball after second 2 1 when t  , x  20  1   15  y  10   10 5 2 2 10  10  1 tan   20 2   2634 1  after second, velocity  10 5m/s and it is traveling at 2 an angle of 2634 to the horizontal
  • 72. d) cartesian equation of the path
  • 73. d) cartesian equation of the path x  20t x t 20
  • 74. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4
  • 75. d) cartesian equation of the path x  20t y  5t 2  15t 2 x y  5   15  t x x     20  20   20   x 2 3x y  80 4 Exercise 3G; 1ac, 2ac, 4, 6, 8, 9, 11, 13, 16, 18 Exercise 3H; 2, 4, 6, 7, 10, 11