SlideShare a Scribd company logo
1 of 70
Download to read offline
Resisted Motion
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                      (Newton’s 3rd Law)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                m
                 x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x

         R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)

       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m
        x

             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                          R
        x                                   g 
                                         x
                                                    m
             mg R
Resisted Motion
Resistance is ALWAYS in the OPPOSITE direction to the motion.
                         (Newton’s 3rd Law)
Case 1 (horizontal line)
                  mx                      m   R
                                             x
                                                    R
                                               
                                             x
          R                                         m

 Case 2 (upwards motion)
                                        m   mg  R
                                         x
       m                                          R
        x                                   g 
                                         x
                                                    m
             mg R
                              NOTE: greatest height still occurs
                                    when v = 0
Case 3 (downwards motion)
Case 3 (downwards motion)
Case 3 (downwards motion)




      m
       x
Case 3 (downwards motion)




      m
       x    mg
Case 3 (downwards motion)

            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R

      m
       x    mg
Case 3 (downwards motion)
                            m  mg  R
                             x
            R                         R
                               g 
                             x
                                      m
      m
       x    mg
Case 3 (downwards motion)
                                      m  mg  R
                                       x
            R                                   R
                                         g 
                                       x
                                                m
      m
       x    mg
                            NOTE: terminal velocity occurs
                                  when   0
                                        x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x

               mg kv 2

                    x  0, v  u
Case 3 (downwards motion)
                                                m  mg  R
                                                 x
                R                                         R
                                                   g 
                                                 x
                                                          m
         m
          x     mg
                                    NOTE: terminal velocity occurs
                                              when   0
                                                    x
e.g. (i) A particle is projected vertically upwards with a velocity of u m/s
         in a resisting medium.
         Assuming that the retardation due to this resistance is equal to kv 2
         find expressions for the greatest height reached and the time
         taken to reach that height.

        m
         x                                m   mg  kv 2
                                           x
                                                     k 2
               mg kv 2                        g  v
                                           x
                                                     m
                    x  0, v  u
dv  mg  kv 2
v 
 dx     m
dv  mg  kv 2
v 
 dx     m
 dx    mv
    
 dv  mg  kv 2
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


     logmg  kv 0
     m            2 u

     2k
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


     logmg  kv 0
      m             2 u

     2k
     logmg  ku 2   logmg 
     m
     2k
     m    mg  ku 2 
     log           
     2k   mg 
     m    ku 2 
     log1    
     2k   mg 
dv  mg  kv 2
v 
 dx        m
 dx      mv
    
 dv  mg  kv 2
         o
             vdv
  x  m 
         u
           mg  kv 2
         u
      m     2kvdv
      2k  mg  kv 2
    
         0


     logmg  kv 0
      m            2 u

     2k
     logmg  ku 2   logmg 
     m
     2k
     m    mg  ku 2               the greatest height
     log           
     2k      mg                       m      ku 2 
                                      is log1         metres
     m    ku 2                        2k     mg 
     log1     
     2k   mg 
k 2
   g  v
x
          m
k 2
    g  v
 x
           m
dv  mg  kv 2
    
dt         m
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
    m      dv
    
    k 0 mg  v 2
         k
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
    m      dv
    
    k 0 mg  v 2
         k
                              u
    m k         1   k 
           tan    mg v 
                           
    k  mg                 0
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
    
     k 0 mg  v 2
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                         
       kg                        
     m     1   k 
       tan   mg u 
                     
     kg             
k 2
    g  v
 x
            m
dv  mg  kv 2
    
dt          m
          0
               dv
  t  m 
          u
            mg  kv 2
        u
     m      dv
    
     k 0 mg  v 2
          k
                               u
     m k         1   k 
            tan    mg v 
                            
     k  mg                 0
       m  1  k               1 
         tan  mg u   tan 0
                                                 m      1   k 
       kg                          it takes     tan    mg u  seconds
                                                                   
                                                  kg              
     m     1   k 
       tan   mg u 
                                       to reach the greatest height.
     kg             
(ii) A body of mass 5kg is dropped from a height at which the
     gravitational acceleration is g.
     Assuming that air resistance is proportional to speed v, the
     constant of proportion being 1 , find;
                                    8
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.




      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8
a) the velocity after time t.

             1
               v
             8
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
      5
       x    5g
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                    1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
(ii) A body of mass 5kg is dropped from a height at which the
      gravitational acceleration is g.
      Assuming that air resistance is proportional to speed v, the
      constant of proportion being 1 , find;
                                     8               1
a) the velocity after time t.            5  5 g  v
                                          x
                                                     8
               1                                     1
                 v                          g  v
                                          x
               8                                    40
                                         dv 40 g  v
       5
         x    5g                             
                                         dt        40
                                                   v
                                                       dv
                                            t  40 
                                                   0
                                                     40 g  v
                                             40log40 g  v 0
                                                                   v


                                             40log40 g  v   log40 g 
                                                     40 g 
                                             40 log          
                                                     40 g  v 
t       40 g 
    log          
40       40 g  v 
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
          e 40
40 g  v
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
          e 40
40 g  v
40 g  v
               t
             
          e 40
 40 g
t       40 g 
         log          
     40       40 g  v 
             t
 40 g
          e 40
40 g  v
40 g  v
               t
             
          e 40
 40 g              t
                 
40 g  v  40 ge 40
                               t
                          
       v  40 g  40 ge       40


                      
                        t
       v  40 g 1  e 40 
                         
                         
t       40 g 
           log          
       40       40 g  v 
              t
  40 g
           e 40
 40 g  v
 40 g  v
                t
              
           e 40
  40 g              t
                  
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
t       40 g 
           log          
       40       40 g  v 
              t
  40 g
           e 40
 40 g  v
 40 g  v
                t
              
           e 40
  40 g              t
                  
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                          
                          
b) the terminal velocity
   terminal velocity occurs when   0
                                 x
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
            e 40
  40 g  v
  40 g  v
                 t
               
            e 40
   40 g              t
                   
  40 g  v  40 ge 40
                                 t
                            
         v  40 g  40 ge       40


                        
                          t
         v  40 g 1  e 40 
                           
                           
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
            e 40
  40 g  v
  40 g  v
                 t
               
            e 40
   40 g              t
                   
  40 g  v  40 ge 40
                                 t
                            
         v  40 g  40 ge       40


                        
                          t
         v  40 g 1  e 40 
                                         OR
                           
b) the terminal velocity
   terminal velocity1 occurs when   0
                                  x
         i.e.0  g  v
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
               t
   40 g
            e 40
  40 g  v
  40 g  v
                 t
               
            e 40
   40 g              t
                   
  40 g  v  40 ge 40
                                 t
                            
         v  40 g  40 ge       40


                        
                          t
         v  40 g 1  e 40 
                                                  OR
                           
                                                                  
                                                                    t
b) the terminal velocity                   lim v  lim 40 g 1  e 40 
                                                                     
                                           t     t 
   terminal velocity1 occurs when   0
                                  x                                  
         i.e.0  g  v                            40 g
                     40
             v  40 g
t       40 g 
           log          
       40       40 g  v 
              t
  40 g
           e 40
 40 g  v
 40 g  v
                t
              
           e 40
  40 g              t
                  
 40 g  v  40 ge 40
                                t
                           
        v  40 g  40 ge       40


                       
                         t
        v  40 g 1  e 40 
                                                     OR
                          
                                                                     
                                                                       t
b) the terminal velocity                      lim v  lim 40 g 1  e 40 
                                                                        
                                              t     t 
   terminal velocity1 occurs when   0
                                  x                                     
         i.e.0  g  v                               40 g
                     40
             v  40 g                     terminal velocity is 40 g m/s
c) The distance it has fallen after time t
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                      t
                             
                                 t
                                     
          x  40 g t  40e     40
                                     
                                    0
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                       t
                           
                               t
                                
          x  40 g t  40e  40

                               0
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                        t
                                   
          x  40 gt  1600 ge          40
                                             1600 g
c) The distance it has fallen after time t

        dx              
                          t
            40 g 1  e 40 
                           
        dt                 
                   t
                           
                             t
          x  40 g  1  e 40 dt
                              
                   0          
                                       t
                           
                               t
                                
          x  40 g t  40e  40                            Exercise 8C;
                               0                     2, 4, 5, 6, 8, 10, 13, 16
                          
                              t
                                    
          x  40 g t  40e  0  40
                             40

                                   
                                        t
                                   
          x  40 gt  1600 ge          40
                                             1600 g

More Related Content

What's hot

Lu decomposition
Lu decompositionLu decomposition
Lu decompositiongilandio
 
Newton's Method in Calculus
Newton's Method in CalculusNewton's Method in Calculus
Newton's Method in CalculusAditiPawaskar5
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringshubham211
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equationGermán Ceballos
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errorsmaheej
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...Ceni Babaoglu, PhD
 

What's hot (10)

Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Lu decomposition
Lu decompositionLu decomposition
Lu decomposition
 
Newton's Method in Calculus
Newton's Method in CalculusNewton's Method in Calculus
Newton's Method in Calculus
 
Eigen values and eigen vectors engineering
Eigen values and eigen vectors engineeringEigen values and eigen vectors engineering
Eigen values and eigen vectors engineering
 
Numerical approximation
Numerical approximationNumerical approximation
Numerical approximation
 
The two dimensional wave equation
The two dimensional wave equationThe two dimensional wave equation
The two dimensional wave equation
 
03 truncation errors
03 truncation errors03 truncation errors
03 truncation errors
 
Impact of water jet
Impact of water jet Impact of water jet
Impact of water jet
 
Chapter6
Chapter6Chapter6
Chapter6
 
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
5. Linear Algebra for Machine Learning: Singular Value Decomposition and Prin...
 

Viewers also liked

Soluciones Numérica de Ecuaciones Diferenciales Ordinarias Recurso
Soluciones Numérica de Ecuaciones Diferenciales Ordinarias RecursoSoluciones Numérica de Ecuaciones Diferenciales Ordinarias Recurso
Soluciones Numérica de Ecuaciones Diferenciales Ordinarias Recursocareto12
 
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICO
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICOAPUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICO
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICOJulio Ruano
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedSlideShare
 

Viewers also liked (6)

Soluciones Numérica de Ecuaciones Diferenciales Ordinarias Recurso
Soluciones Numérica de Ecuaciones Diferenciales Ordinarias RecursoSoluciones Numérica de Ecuaciones Diferenciales Ordinarias Recurso
Soluciones Numérica de Ecuaciones Diferenciales Ordinarias Recurso
 
resisted exercises
resisted exercisesresisted exercises
resisted exercises
 
Resistance exercise
Resistance exerciseResistance exercise
Resistance exercise
 
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICO
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICOAPUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICO
APUNTES Y EJERCICIOS RESUELTOS DE ANALISIS NUMERICO
 
Metodos numericos con matlab
Metodos numericos con matlabMetodos numericos con matlab
Metodos numericos con matlab
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-Presented
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)Nigel Simmons
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)Nigel Simmons
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)11 x1 t01 01 algebra & indices (2014)
11 x1 t01 01 algebra & indices (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)X2 t02 03 roots & coefficients (2013)
X2 t02 03 roots & coefficients (2013)
 
X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)X2 t02 02 multiple roots (2013)
X2 t02 02 multiple roots (2013)
 
X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)X2 t02 01 factorising complex expressions (2013)
X2 t02 01 factorising complex expressions (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 

Recently uploaded

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 

Recently uploaded (20)

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 

X2 t06 02 resisted motion (2012)

  • 2. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion.
  • 3. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law)
  • 4. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 5. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line)
  • 6. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x
  • 7. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) m x R
  • 8. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R
  • 9. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m
  • 10. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 11. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion)
  • 12. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x
  • 13. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg
  • 14. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m x mg R
  • 15. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m x mg R
  • 16. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x    g  x m mg R
  • 17. Resisted Motion Resistance is ALWAYS in the OPPOSITE direction to the motion. (Newton’s 3rd Law) Case 1 (horizontal line) mx m   R x R    x R m Case 2 (upwards motion) m   mg  R x m R x    g  x m mg R NOTE: greatest height still occurs when v = 0
  • 18. Case 3 (downwards motion)
  • 19. Case 3 (downwards motion)
  • 20. Case 3 (downwards motion) m x
  • 21. Case 3 (downwards motion) m x mg
  • 22. Case 3 (downwards motion) R m x mg
  • 23. Case 3 (downwards motion) m  mg  R x R m x mg
  • 24. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg
  • 25. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x
  • 26. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 27. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height.
  • 28. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x
  • 29. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg
  • 30. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2
  • 31. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x mg kv 2 x  0, v  u
  • 32. Case 3 (downwards motion) m  mg  R x R R   g  x m m x mg NOTE: terminal velocity occurs when   0 x e.g. (i) A particle is projected vertically upwards with a velocity of u m/s in a resisting medium. Assuming that the retardation due to this resistance is equal to kv 2 find expressions for the greatest height reached and the time taken to reach that height. m x m   mg  kv 2 x k 2 mg kv 2    g  v x m x  0, v  u
  • 33. dv  mg  kv 2 v  dx m
  • 34. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2
  • 35. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0
  • 36. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  logmg  kv 0 m 2 u 2k
  • 37. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  logmg  kv 0 m 2 u 2k  logmg  ku 2   logmg  m 2k m  mg  ku 2   log  2k  mg  m  ku 2   log1   2k  mg 
  • 38. dv  mg  kv 2 v  dx m dx mv  dv  mg  kv 2 o vdv x  m  u mg  kv 2 u m 2kvdv 2k  mg  kv 2  0  logmg  kv 0 m 2 u 2k  logmg  ku 2   logmg  m 2k m  mg  ku 2   the greatest height  log  2k  mg  m  ku 2  is log1   metres m  ku 2  2k  mg   log1   2k  mg 
  • 39. k 2    g  v x m
  • 40. k 2    g  v x m dv  mg  kv 2  dt m
  • 41. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv   k 0 mg  v 2 k
  • 42. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv   k 0 mg  v 2 k u m k 1  k    tan   mg v   k  mg   0
  • 43. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv   k 0 mg  v 2 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  kg     m 1  k   tan   mg u   kg  
  • 44. k 2    g  v x m dv  mg  kv 2  dt m 0 dv t  m  u mg  kv 2 u m dv   k 0 mg  v 2 k u m k 1  k    tan   mg v   k  mg   0 m  1  k  1   tan  mg u   tan 0  m 1  k  kg      it takes tan   mg u  seconds  kg   m 1  k   tan   mg u   to reach the greatest height. kg  
  • 45. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8
  • 46. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 47. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t.
  • 48. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x
  • 49. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 5 x 5g
  • 50. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 a) the velocity after time t. 1 v 8 5 x 5g
  • 51. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 5 x 5g
  • 52. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40
  • 53. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v
  • 54. (ii) A body of mass 5kg is dropped from a height at which the gravitational acceleration is g. Assuming that air resistance is proportional to speed v, the constant of proportion being 1 , find; 8 1 a) the velocity after time t. 5  5 g  v x 8 1 1 v   g  v x 8 40 dv 40 g  v 5 x 5g  dt 40 v dv t  40  0 40 g  v  40log40 g  v 0 v  40log40 g  v   log40 g   40 g   40 log   40 g  v 
  • 55. t  40 g   log  40  40 g  v 
  • 56. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v
  • 57. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g
  • 58. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40     
  • 59. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity
  • 60. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity occurs when   0 x
  • 61. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40      b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 62. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR   b) the terminal velocity terminal velocity1 occurs when   0 x i.e.0  g  v 40 v  40 g
  • 63. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g
  • 64. t  40 g   log  40  40 g  v  t 40 g  e 40 40 g  v 40 g  v t   e 40 40 g t  40 g  v  40 ge 40 t  v  40 g  40 ge 40    t v  40 g 1  e 40    OR      t b) the terminal velocity lim v  lim 40 g 1  e 40    t  t  terminal velocity1 occurs when   0 x   i.e.0  g  v  40 g 40 v  40 g  terminal velocity is 40 g m/s
  • 65. c) The distance it has fallen after time t
  • 66. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt  
  • 67. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0 
  • 68. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e 40   0
  • 69. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e  40  0   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g
  • 70. c) The distance it has fallen after time t dx    t  40 g 1  e 40    dt   t    t x  40 g  1  e 40 dt   0  t   t  x  40 g t  40e  40 Exercise 8C;  0 2, 4, 5, 6, 8, 10, 13, 16   t  x  40 g t  40e  0  40 40   t  x  40 gt  1600 ge 40  1600 g