SlideShare a Scribd company logo
1 of 10
Download to read offline
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

         On The Number of Zeros of a Polynomial inside the Unit Disk

                                                                                       M. H. Gulzar
                                         Department of Mathematics University of Kashmir, Srinagar 190006

Abstract: In this paper we find an upper bound for the number of zeros of a polynomial inside the unit disk, when the
coefficients of the polynomial or their real and imaginary parts are restricted to certain conditions.

Mathematics Subject Classification:                                30C10, 30C15

Key-words and phrases: Polynomial, Unit disk, Zero.

                                                              I. Introduction and Statement of Results
        Regarding the number of zeros of a polynomial inside the unit disk, the following results were recently proved by
M. H. Gulzar [2]:
                                   n
Theorem A: Let P (z) =            a z
                                  j 0
                                          j
                                               j
                                                     be a polynomial of degree n such that for some   0 ,

                    a n  a n1  ......  a1  a0 .
                                                              a0
Then the number of zeros of P (z) in                                    z   ,0    1 does not exceed
                                                              M1
          1             2  a n  a n  a0  a0
                  log                                                          ,
              1                                a0
        log
              
Where      M 1  2  a n  a n  a0 .
                                                     n
TheoremB:         Let        P     (z)        =    a z
                                                   j 0
                                                              j
                                                                   j
                                                                          be       a        polynomial          of   degree   n   with   complex   coefficients   .If

Re a j   j , Im a j   j , j  0,1,..., n, and for some   0,
                   n   n1  ...  1   0 ,
                                    a0
then the number of zeros of P(z) in M
                                         z   ,0    1,                                                does not exceed
                                      2
                                                                                             n
                              2    n   n   0   0  2  j
              1                                                                             j 0
                       log                                                                             ,
                  1                                                a0
           log
                  
                                                                                       n
Where M 2  2                   n   n   0   0  2  j                                    .
                                                                                   j 1
                                               n
Theorem       C:        Let       P(z)=       a z
                                              j 0
                                                          j
                                                              j
                                                                        be     a           polynomial         of     degree   n   with   complex   coefficients   .If

Re a j   j , Im a j   j , j  0,1,..., n, and for some   0,
                   n   n1  ...  1   0 ,
                                    a0
                                         z   ,0    1,
then the number of zeros of P(z) in M                                                                      does not exceed
                                      3




                                                                                             www.ijmer.com                                                240 | Page
International Journal of Modern Engineering Research (IJMER)
                        www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

                                                                                      n
                                  2    n   n   0   0  2  j
                    1                                                                j 0
                            log                                                                     ,
                        1                                       a0
                log
                        
                                                                            n
Where M 3  2                    n   n   0   0  2  j                          .
                                                                            j 1
                                     n
Theorem D. Let P (z) =              a z
                                    j 0
                                             j
                                                     j
                                                         be a polynomial of degree n with complex coefficients such that

                                             
                arg a j                          , j  0,1,...n, for some real 
                                                 2
and
                  a n  a n1  ...  a1  a0                      ,for some       0.
                                                                                                          a0
Then            the         number               of         zeros      of          P(z)            in           z   ,0    1, does   not      exceed
                                                                                                         M4
                                                                                                                       n 1
                    (   a n )(cos   sin   1)  a 0 (cos   sin   1)  2 sin   a j
   1                                                                                                                   j 1
           log                                                                                                                    ,
       1                                                                a0
log
       
where
                                                                                                                  n 1
           M 4  (   a n )(cos   sin   1)  a 0 (cos   sin  )  2 sin   a j
                                                                                                                   j 1
In this paper, we prove certain generalizations of the above results. In fact, we prove the following :
                                         n
Theorem 1: Let P( z )               a
                                     j 0
                                                 j   z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If

for some real numbers   ,   0 , 1  k  n,  nk  0,  nk 1   nk ,
                 n   n1  ... nk 1   nk   nk 1  ...  1   0 ,
                                    a0
then the number of zeros of P(z) in      z   ,0    1 , does not exceed
                                    M5
                                                                                                                       n
                            2    n   n  (  1) n  k    1  n  k   0   0  2  j
            1                                                                                                       j 0
                    log                                                                                                           ,
                1                                                            a0
         log
                
                                                                                                                   n
where M 5  2                 n   n  (  1) n  k    1  n  k   0   0  2  j                                ,
                                                                                                                   j 1

                                                                                              a0
and if      nk   nk 1 ,       then the number of zeros of P(z) in                             z   ,0    1 , does not exceed
                                                                                              M6
                                                                                                                       n
                            2    n   n  (1   ) n  k  1    n k   0   0  2  j
            1                                                                                                       j 0
                    log                                                                                                           ,
                1                                                            a0
         log
                
                                                                                                                   n
where M 6  2                 n   n  (1   ) n  k  1    n  k   0   0  2  j                               .
                                                                                                                   j 1

                                                                                   www.ijmer.com                                                241 | Page
International Journal of Modern Engineering Research (IJMER)
                     www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

Remark 1: Taking   1 , Theorem 1 reduces to Theorem B.
Remark 2: If a j are real i.e.  j  0 for all j , Theorem 1 gives the following result which reduces to Theorem A by
taking     1:
                                         n
Theorem 2: Let               P( z )   a j z j       be a polynomial of degree n .If for some real numbers                  ,  0,
                                        j 0

1  k  n, ank  0, ank 1  ank ,
                      an  an1  ...ank 1  ank  ank 1  ...  a1  a0 ,
                                                a0
then the number of zeros of P(z) in                   z   ,0    1 , does not exceed
                                                M7
          1              2   a n  a n  (  1)a n k    1 a n k  a0  a0
                   log                                                                    ,
               1                                         a0
         log
               
where M 7  2  a n  a n  (  1)a n  k                    1 a nk  a0 ,
                                                                        a0
and if ank  ank 1 , then the number of zeros of P(z) in                    z   ,0    1 , does not exceed
                                                                       M8
          1              2   a n  a n  (1   )a n k  1   a n k  a0  a0
                   log                                                                    ,
               1                                         a0
         log
               
where M 8  2  a n  a n  (1   )a n  k  1   a n  k  a0 .
Applying Theorem 1 to the polynomial –iP(z), we get the following result, which reduces to Theorem C by taking               1:
                                  n
Theorem 3: Let P( z )           a
                                 j 0
                                         j   z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If

for some real numbers   ,   0 , 1  k  n,  nk  0,  n k 1   n k ,
                 n   n1  ... nk 1   nk   nk 1  ...  1   0 ,
                                    a0
then the number of zeros of P(z) in       z   ,0    1 , does not exceed
                                    M9
                                                                                                       n
                         2    n   n  (  1)  n  k    1  n  k   0   0  2  j
           1                                                                                          j 0
                   log                                                                                               ,
               1                                                  a0
         log
               
                                                                                               n
where M 9  2              n   n  (  1)  n  k    1  n  k   0   0  2  j                 ,
                                                                                              j 1

                                                                         a0
and if    n k   n k 1 ,   then the number of zeros of P(z) in             z   ,0    1 , does not exceed
                                                                        M 10
                                                                                                       n
                         2    n   n  (1   )  n  k  1    n  k   0   0  2  j
           1                                                                                          j 0
                   log                                                                                               ,
               1                                                  a0
         log
               
                                                                                                n
where M 10  2              n   n  (1   )  n  k  1    n  k   0   0  2  j                   .
                                                                                               j 1




                                                                   www.ijmer.com                                            242 | Page
International Journal of Modern Engineering Research (IJMER)
                     www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

                                      n
Theorem 4: Let P( z )              a
                                     j 0
                                                 j   z j be a polynomial of degree n .If for some real numbers   0 ,   0 ,

1  k  n, ank  0,
                 an  an1  ...  ank 1   ank  ank 1  ...  a1  a0 ,
                                       
and for some real  , arg a j      , j  0,1,......, n and an k 1  an k , i.e.   1 ,then the number of zeros of
                                                             2
            a0
P(z) in          z   ,0    1 , does not exceed
           M 11
              [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1)
                                                                               n 1


   1
                  a 0 (cos   sin   1)  2 sin                            a
                                                                        j 1, j  n  k
                                                                                          j   ]
           log
       1                                                                           a0
log
       


where M11  (   an (cos   sin   1)  an  k (cos   sin    cos    sin     1)
                                                                 n 1
            a 0 (cos   sin  )  2 sin                       a
                                                             j 1, j  n  k
                                                                               j


                                                                                                          a0
and if an k  a n k 1 , i.e.       1 , then the number of zeros of P(z) in                                   z   ,0    1 , does not exceed
                                                                                                          M 12

                 [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin   1   )
                                                                                   n 1


   1
                  a 0 (cos   sin   1)  2 sin                                a
                                                                               j 1, j  n  k
                                                                                                  j   ]
           log                                                                                                                           Where
       1                                                                                a0
log
       

M 12  (   a n (cos   sin   1)  a nk (cos   sin    cos    sin   1   )
                                                                 n 1
            a 0 (cos   sin  )  2 sin                       a
                                                             j 1, j  n  k
                                                                               j   .

Remark 4: Taking              1 , Theorem 4 reduces to Theorem D.
                                                                                       II. Lemmas
For the proofs of the above results, we need the following results:
                                            n
Lemma 1:.               Let P(z)=         a z
                                          j 0
                                                     j
                                                         j
                                                              be a polynomial of degree n with complex coefficients such that

                            
arg a j                  , j  0,1,...n, for some real  ,then for some t>0,
                            2
            ta j  a j 1                                         
                             t a j  a j 1 cos   t a j  a j1 sin  .                        
The proof of lemma 1 follows from a lemma due to Govil and Rahman [1].




                                                                                        www.ijmer.com                                              243 | Page
International Journal of Modern Engineering Research (IJMER)
                            www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

Lemma 2.If p(z) is regular ,p(0)  0 and                      p( z )  M in z  1, then the number of zeros of p(z) in z   ,0    1, does
                        1              M
not exceed                      log        (see[4],p171).
                            1         p(0)
                  log
                            
                                                                  III. Proofs of Theorems
Proof of Theorem 1: Consider the polynomial
     F ( z)  (1  z) P( z)
           (1  z )(a n z n  a n1 z n 1  ......  a1 z  a0 )
             a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a n k ) z n k 1  (a nk  a nk 1 ) z n k
                 (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0
             ( n  i n ) z n 1  ( n   n 1 ) z n  ......  ( n  k 1   n k ) z n  k 1
             ( n  k   n  k 1 ) z n  k  ( n k 1   n  k  2 ) z n  k 1  ......  ( 1   0 ) z   0
                  n
             i  (  j   j 1 ) z j  i 0
                 j 1

If    nk 1   nk , then
         F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1

                             ( n k   n k 1 ) z n k  (  1) n k z n k  ( n k 1   n k 2 ) z n k 1  ......
                                                          n
                             (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 .
                                                         j 1

For z  1 ,
 F ( z )   n       n   n1  ......   nk 1   nk +  nk   nk 1    1  nk
                                                                                   n
                   nk 1   nk 2  ......  1   0   0  2  j
                                                                                  j 0
                                                                                                        n
                 2    n   n  (  1) nk    1  nk   0   0  2  j
                                                                                                       j 0

Hence by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed
                                                                                                               n
                        2    n   n  (  1) n  k    1  n k   0   0  2  j
        1                                                                                                     j 0
                log                                                                                                     .
            1                                                       a0
     log
            
On the other hand, let
                        n 1
 Q (z)=  an z                   (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk
                 (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z
For z  1 ,
Q( z )   n       n   n1  ......   nk 1   nk   nk   nk 1    1  nk
                                                                                  n
                   k 1   n  k  2  ......   1   0   0  2  j
                                                                                  j 1
                                                                                                n
          2    n   n  (  1)    1  n  k   0   0  2  j  M 5 .
                                                                                               j 1


                                                                            www.ijmer.com                                          244 | Page
International Journal of Modern Engineering Research (IJMER)
                         www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

Since Q(0)=0, we have, by Rouche’s theorem,
Q( z )  M 5 z , for z  1 .
Thus
 F ( z )  a0  Q( z )

         a 0  Q( z )
         a0  M 5 z
           0
            a0
if z             .
           M5
                                                            a0
This shows that F(z) has no zero in z                           . Consequently it follows that the number of zeros of F(z) and hence P(z) in
                                                            M5
 a0
        z   ,0    1 , does not exceed
M5
                                                                                                             n
                      2    n   n  (  1) n  k    1  n k   0   0  2  j
       1                                                                                                    j 0
               log
           1                                                       a0
     log
           

If    nk   nk 1 , then
      F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1
                       ( n k   n k 1 ) z n k  (1   ) n k z n k   ( n k 1   n k 2 ) z n k 1  ......
                                                     n
                       ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0 .
                                                     j 1

For z  1 ,
 F ( z )   n       n   n1  ......   nk 1   nk +  nk   nk 1  1    nk
                                                                                 n
                  nk 1   nk 2  ......  1   0   0  2  j
                                                                                j 0
                                                                                                      n
                2    n   n  (1   ) nk  1    nk   0   0  2  j
                                                                                                     j 0

Hence by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed
                                                                                                             n
                      2    n   n  (1   ) n  k  1    n k   0   0  2  j
       1                                                                                                    j 0
               log                                                                                                 .
           1                                                       a0
     log
           
On the other hand, let
                       n 1
 Q(z)=  an z                  (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk
                (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z




                                                                         www.ijmer.com                                            245 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

        ( n  i n ) z n 1  z n  (    n   n 1 ) z n  ......  ( n  k 1   n  k ) z n k 1
        ( n k   n  k 1 ) z n  k  (1   )a n  k z n k 1  ( n  k 1   n k  2 ) z n k 1  ......
                                   n
        ( 1   0 ) z  i  (  j   j 1 ) z j
                                  j 1

For z  1 ,
Q( z )   n       n   n1  ......   nk 1   nk   nk   nk 1  1    nk
                                                                            n
                 k 1   nk 2  ......   1   0   0  2  j
                                                                           j 1
                                                                                            n
        2    n   n  (1   )  1    n  k   0   0  2  j  M 6 .
                                                                                            j 1
Since Q(0)=0, we have, by Rouche’s theorem,
Q( z )  M z , for z  1 .
Thus
 F ( z )  a0  Q( z )

        a 0  Q( z )
       a0  M 6 z
       0
        a0
if z      .
       M6
                                                      a0
This shows that F(z) has no zero in z                      . Consequently it follows that the number of zeros of F(z) and hence P(z) in
                                                     M6
 a0
        z   ,0    1, does not exceed
M6
                                                                                                        n
                     2    n   n  (1   ) n  k  1    n k   0   0  2  j
       1                                                                                               j 0
               log                                                                                               .
           1                                                   a0
   log
           
That proves Theorem 1.

Proof of Theorem 4: Consider the polynomial
   F ( z)  (1  z) P( z)
         (1  z )(a n z n  a n1 z n 1  ......  a1 z  a0 )
            a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a n k ) z n k 1  (a nk  a nk 1 ) z n k
                (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0
If an k 1  an k , i.e.         1 , then
   F ( z )  a n z     n 1
                                z n  (   an  an1 ) z n  ......  (ank 1  ank ) z nk 1
                  (ank  ank 1 ) z nk  (  1)ank z nk  (ank 1  ank 2 ) z nk 1  ......
                (a1  a0 ) z  a0
so that for z  1 , we have by using Lemma 1,
 F ( z )  an      an  an1  ......  ank 1  ank  ank  ank 1
                                                                       www.ijmer.com                                          246 | Page
International Journal of Modern Engineering Research (IJMER)
                        www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

                 1 ank  ank 1  ank 2  ......  a1  a0  a0


           an    (   an  an1 ) cos   (   an  an1 ) sin   ......
                ( a n  k 1  a n  k ) cos   ( a n  k 1  a n  k ) sin   (  1) a n  k
                ( a n  k  a n  k 1 ) cos   ( a n  k  a n  k 1 ) sin 
                ( a n  k 1  a n  k  2 ) cos   ( a n  k 1  a n  k  2 ) sin   ......
                ( a1  a 0 ) cos   ( a1  a 0 ) sin   a 0
           (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin     1)
                                                                     n 1
                a0 (cos   sin   1)  2 sin                    a
                                                                j 1, j  n  k
                                                                                     j


Hence, by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed
                    [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1)
                                                                                   n 1


      1
                     a 0 (cos   sin   1)  2 sin                             a
                                                                               j 1, j  n  k
                                                                                                 j   ]
              log                                                                                                                  On the other hand,
          1                                                                              a0
log
          

let
                      n 1
 Q(z)=  an z                 (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk
                 (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z
For z  1 ,
Q(z )  (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin     1)
                                                             n 1
                a0 (cos   sin  )  2 sin                a
                                                         j 1, j  n  k
                                                                           j


       M 11 .
Since Q(0)=0 , we have , by Rouche’s Theorem,
              Q( z )  M 11 z , for z  1 .
Thus, for z  1 ,
 F ( z )  a0  Q( z )
           a 0  Q( z )
           a 0  M 11 z
     0
       a0
if z       .
       M 11
                                                                                                         a0
This shows that F(z) has all its zeros z with z  1 in z                                                     .
                                                                                                     M 11
                                                                                   a0
Thus, the number of zeros of F(z) and hence P(z) in                                          z   ,0    1 , does not exceed
                                                                                 M 11


                                                                                         www.ijmer.com                                      247 | Page
International Journal of Modern Engineering Research (IJMER)
                      www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

                 [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1)
                                                                                 n 1


   1
                  a 0 (cos   sin   1)  2 sin                              a
                                                                             j 1, j  n  k
                                                                                               j   ]
           log
       1                                                                               a0
log
       
If an k  a n k 1 , i.e.         1 , then
    F ( z)  an z n1  z n  (   an  an1 ) z n  ......  (ank 1  ank ) z nk 1
                  (ank  ank 1 ) z nk  (1   )ank z nk 1  (ank 1  ank 2 ) z nk 1  ......
              (a1  a0 ) z  a0
so that for z  1 , we have by Lemma 1,
 F ( z )  an      an  an1  ......  ank 1  ank  ank  ank 1
            1   ank  ank 1  ank 2  ......  a1  a0  a0


        an    (   an  an1 ) cos   (   an  an1 ) sin   ......
             ( a n k 1   a n  k ) cos   ( a n  k 1   a n  k ) sin   1   a n k
             ( a n k  a n  k 1 ) cos   ( a n  k  a n k 1 ) sin 
             ( a n k 1  a n  k  2 ) cos   ( a n  k 1  a n  k  2 ) sin   ......
             ( a1  a 0 ) cos   ( a1  a 0 ) sin   a 0
        (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin   1   )
                                                                   n 1
             a0 (cos   sin   1)  2 sin                     a
                                                              j 1, j  n  k
                                                                                   j


Hence , by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed
                  [(   an (cos   sin   1)  an  k (cos   sin    cos    sin   1   )
                                                                               n 1
   1
           log
                   a0 (cos   sin   1)  2 sin                           a
                                                                     j 1, j  n  k
                                                                                         j     ]
       1
log                                                                                a0
       

On the other hand, let
                    n 1
 Q(z)=  an z               (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk
              (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z
For z  1 , by using Lemma 1,
Q(z )  (   a n )(cos   sin   1)  a n k (cos   sin    cos    sin   1   )
                                                           n 1
             a0 (cos   sin  )  2 sin                 a
                                                       j 1, j  n  k
                                                                         j


        M 12 .
Since Q(0)=0 , we have , by Rouche’s Theorem,
           Q( z )  M 12 z , for z  1 .
Thus, for z  1 ,


                                                                                       www.ijmer.com            248 | Page
International Journal of Modern Engineering Research (IJMER)
                       www.ijmer.com          Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249      ISSN: 2249-6645

 F ( z )  a0  Q( z )
           a 0  Q( z )
           a 0  M 12 z
     0
       a0
if z       .
       M 12
                                                                                    a0
This shows that F(z) has all its zeros z with z  1 in z                                  .
                                                                                    M 12
                                                                 a0
Thus, the number of zeros of F(z) and hence P(z) in                              z   ,0    1 , does not exceed
                                                               M 12
                    [(   an (cos   sin   1)  an  k (cos   sin    cos    sin   1   )
                                                              n 1


      1
                     a0 (cos   sin   1)  2 sin         a
                                                          j 1, j  n  k
                                                                            j   ]
              log                                                                                                      .
          1                                                       a0
log
          
That proves Theorem 4.

                                                                     References
[1]       N.K.Govil and Q.I.Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J.20 (1968), 126-136.
[2]       M. H. Gulzar, on the number of Zeros of a polynomial in a prescribed Region, Research Journal of Pure Algebra-2(2), 2012, 1-11.
[3]       E C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, London, 1939.




                                                                     www.ijmer.com                                              249 | Page

More Related Content

What's hot

11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)Nigel Simmons
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesLeonardo Uieda
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...vcuesta
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...dishii
 
Agu2011 udara senanayake1
Agu2011 udara senanayake1Agu2011 udara senanayake1
Agu2011 udara senanayake1Sérgio Sacani
 
Formulas optica
Formulas opticaFormulas optica
Formulas opticaFranklinz
 
Thalesian_Monte_Carlo_NAG
Thalesian_Monte_Carlo_NAGThalesian_Monte_Carlo_NAG
Thalesian_Monte_Carlo_NAGelviszhang
 

What's hot (11)

11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)11X1 T11 07 chord of contact (2010)
11X1 T11 07 chord of contact (2010)
 
Robust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densitiesRobust 3D gravity gradient inversion by planting anomalous densities
Robust 3D gravity gradient inversion by planting anomalous densities
 
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
Quantum Transitions And Its Evolution For Systems With Canonical And Noncanon...
 
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
D. Ishii, K. Ueda, H. Hosobe, A. Goldsztejn: Interval-based Solving of Hybrid...
 
Agu2011 udara senanayake1
Agu2011 udara senanayake1Agu2011 udara senanayake1
Agu2011 udara senanayake1
 
Math 21a Midterm I Review
Math 21a Midterm I ReviewMath 21a Midterm I Review
Math 21a Midterm I Review
 
Formulas optica
Formulas opticaFormulas optica
Formulas optica
 
Thalesian_Monte_Carlo_NAG
Thalesian_Monte_Carlo_NAGThalesian_Monte_Carlo_NAG
Thalesian_Monte_Carlo_NAG
 
Introductionto Analysis Of Algorithms
Introductionto Analysis Of AlgorithmsIntroductionto Analysis Of Algorithms
Introductionto Analysis Of Algorithms
 
Introductionto analysis of algorithms
Introductionto analysis of algorithmsIntroductionto analysis of algorithms
Introductionto analysis of algorithms
 
09 trial johor_p2
09 trial johor_p209 trial johor_p2
09 trial johor_p2
 

Viewers also liked

Trough External Service Management Improve Quality & Productivity
Trough External Service Management Improve Quality & ProductivityTrough External Service Management Improve Quality & Productivity
Trough External Service Management Improve Quality & ProductivityIJMER
 
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...IJMER
 
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...IJMER
 
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...IJMER
 
A survey on Inverse ECG (electrocardiogram) based approaches
A survey on Inverse ECG (electrocardiogram) based approachesA survey on Inverse ECG (electrocardiogram) based approaches
A survey on Inverse ECG (electrocardiogram) based approachesIJMER
 
A044010114
A044010114A044010114
A044010114IJMER
 
F0502 01 2831
F0502 01 2831F0502 01 2831
F0502 01 2831IJMER
 
Punching Shear Strength of High Strength Fibre Reinforced Concrete Slabs
Punching Shear Strength of High Strength Fibre Reinforced  Concrete SlabsPunching Shear Strength of High Strength Fibre Reinforced  Concrete Slabs
Punching Shear Strength of High Strength Fibre Reinforced Concrete SlabsIJMER
 
𝒈 ∗S-closed sets in topological spaces
𝒈 ∗S-closed sets in topological spaces𝒈 ∗S-closed sets in topological spaces
𝒈 ∗S-closed sets in topological spacesIJMER
 
C04010 01 1831
C04010 01 1831C04010 01 1831
C04010 01 1831IJMER
 
Skyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentSkyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentIJMER
 
Repairing of Concrete by Using Polymer-Mortar Composites
Repairing of Concrete by Using Polymer-Mortar CompositesRepairing of Concrete by Using Polymer-Mortar Composites
Repairing of Concrete by Using Polymer-Mortar CompositesIJMER
 
Multiple Intelligence Analysis
Multiple Intelligence AnalysisMultiple Intelligence Analysis
Multiple Intelligence AnalysisSEEMAS ACADEMY
 
Ijmer 46065964
Ijmer 46065964Ijmer 46065964
Ijmer 46065964IJMER
 
High Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETHigh Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETIJMER
 
A Novel Computing Paradigm for Data Protection in Cloud Computing
A Novel Computing Paradigm for Data Protection in Cloud ComputingA Novel Computing Paradigm for Data Protection in Cloud Computing
A Novel Computing Paradigm for Data Protection in Cloud ComputingIJMER
 
Multiexposure Image Fusion
Multiexposure Image FusionMultiexposure Image Fusion
Multiexposure Image FusionIJMER
 
Java script calc by karan chanana
Java script calc by karan chananaJava script calc by karan chanana
Java script calc by karan chananakarnchanana
 
Does risk reversal work
Does risk reversal workDoes risk reversal work
Does risk reversal workdenise2228
 

Viewers also liked (20)

Trough External Service Management Improve Quality & Productivity
Trough External Service Management Improve Quality & ProductivityTrough External Service Management Improve Quality & Productivity
Trough External Service Management Improve Quality & Productivity
 
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...
Customized IVR Implementation Using Voicexml on SIP (Voip) Communication Plat...
 
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...
Prospective Evaluation of Intra operative Nucleus 22-channel cochlear implant...
 
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...
Wavelet Based Analysis of Online Monitoring of Electrical Power by Mobile Tec...
 
A survey on Inverse ECG (electrocardiogram) based approaches
A survey on Inverse ECG (electrocardiogram) based approachesA survey on Inverse ECG (electrocardiogram) based approaches
A survey on Inverse ECG (electrocardiogram) based approaches
 
A044010114
A044010114A044010114
A044010114
 
F0502 01 2831
F0502 01 2831F0502 01 2831
F0502 01 2831
 
Punching Shear Strength of High Strength Fibre Reinforced Concrete Slabs
Punching Shear Strength of High Strength Fibre Reinforced  Concrete SlabsPunching Shear Strength of High Strength Fibre Reinforced  Concrete Slabs
Punching Shear Strength of High Strength Fibre Reinforced Concrete Slabs
 
𝒈 ∗S-closed sets in topological spaces
𝒈 ∗S-closed sets in topological spaces𝒈 ∗S-closed sets in topological spaces
𝒈 ∗S-closed sets in topological spaces
 
C04010 01 1831
C04010 01 1831C04010 01 1831
C04010 01 1831
 
Skyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed EnvironmentSkyline Query Processing using Filtering in Distributed Environment
Skyline Query Processing using Filtering in Distributed Environment
 
Repairing of Concrete by Using Polymer-Mortar Composites
Repairing of Concrete by Using Polymer-Mortar CompositesRepairing of Concrete by Using Polymer-Mortar Composites
Repairing of Concrete by Using Polymer-Mortar Composites
 
Multiple Intelligence Analysis
Multiple Intelligence AnalysisMultiple Intelligence Analysis
Multiple Intelligence Analysis
 
Ijmer 46065964
Ijmer 46065964Ijmer 46065964
Ijmer 46065964
 
High Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFETHigh Performance Germanium Double Gate N-MOSFET
High Performance Germanium Double Gate N-MOSFET
 
Question 1
Question 1Question 1
Question 1
 
A Novel Computing Paradigm for Data Protection in Cloud Computing
A Novel Computing Paradigm for Data Protection in Cloud ComputingA Novel Computing Paradigm for Data Protection in Cloud Computing
A Novel Computing Paradigm for Data Protection in Cloud Computing
 
Multiexposure Image Fusion
Multiexposure Image FusionMultiexposure Image Fusion
Multiexposure Image Fusion
 
Java script calc by karan chanana
Java script calc by karan chananaJava script calc by karan chanana
Java script calc by karan chanana
 
Does risk reversal work
Does risk reversal workDoes risk reversal work
Does risk reversal work
 

Similar to Bo31240249

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...ijceronline
 
On The Zeros of Polynomials
On The Zeros of PolynomialsOn The Zeros of Polynomials
On The Zeros of PolynomialsIJMER
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceresearchinventy
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Scienceinventy
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
Modulation & d emodul tion
Modulation & d emodul tionModulation & d emodul tion
Modulation & d emodul tionMurali Krishna
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)ijceronline
 

Similar to Bo31240249 (14)

IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
On The Zeros of Polynomials
On The Zeros of PolynomialsOn The Zeros of Polynomials
On The Zeros of Polynomials
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
J1066069
J1066069J1066069
J1066069
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
Ak03102250234
Ak03102250234Ak03102250234
Ak03102250234
 
Zeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given CircleZeros of a Polynomial in a given Circle
Zeros of a Polynomial in a given Circle
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
4th semester Civil Engineering (2012-December) Question Papers
4th semester Civil Engineering   (2012-December) Question Papers 4th semester Civil Engineering   (2012-December) Question Papers
4th semester Civil Engineering (2012-December) Question Papers
 
Modulation & d emodul tion
Modulation & d emodul tionModulation & d emodul tion
Modulation & d emodul tion
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 

More from IJMER

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...IJMER
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingIJMER
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreIJMER
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)IJMER
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...IJMER
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...IJMER
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...IJMER
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...IJMER
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationIJMER
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless BicycleIJMER
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIJMER
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemIJMER
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesIJMER
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...IJMER
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningIJMER
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessIJMER
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersIJMER
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And AuditIJMER
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLIJMER
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyIJMER
 

More from IJMER (20)

A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...A Study on Translucent Concrete Product and Its Properties by Using Optical F...
A Study on Translucent Concrete Product and Its Properties by Using Optical F...
 
Developing Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed DelintingDeveloping Cost Effective Automation for Cotton Seed Delinting
Developing Cost Effective Automation for Cotton Seed Delinting
 
Study & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja FibreStudy & Testing Of Bio-Composite Material Based On Munja Fibre
Study & Testing Of Bio-Composite Material Based On Munja Fibre
 
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
Hybrid Engine (Stirling Engine + IC Engine + Electric Motor)
 
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
Fabrication & Characterization of Bio Composite Materials Based On Sunnhemp F...
 
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
Geochemistry and Genesis of Kammatturu Iron Ores of Devagiri Formation, Sandu...
 
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
Experimental Investigation on Characteristic Study of the Carbon Steel C45 in...
 
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
Non linear analysis of Robot Gun Support Structure using Equivalent Dynamic A...
 
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works SimulationStatic Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
Static Analysis of Go-Kart Chassis by Analytical and Solid Works Simulation
 
High Speed Effortless Bicycle
High Speed Effortless BicycleHigh Speed Effortless Bicycle
High Speed Effortless Bicycle
 
Integration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise ApplicationsIntegration of Struts & Spring & Hibernate for Enterprise Applications
Integration of Struts & Spring & Hibernate for Enterprise Applications
 
Microcontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation SystemMicrocontroller Based Automatic Sprinkler Irrigation System
Microcontroller Based Automatic Sprinkler Irrigation System
 
On some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological SpacesOn some locally closed sets and spaces in Ideal Topological Spaces
On some locally closed sets and spaces in Ideal Topological Spaces
 
Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...Intrusion Detection and Forensics based on decision tree and Association rule...
Intrusion Detection and Forensics based on decision tree and Association rule...
 
Natural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine LearningNatural Language Ambiguity and its Effect on Machine Learning
Natural Language Ambiguity and its Effect on Machine Learning
 
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcessEvolvea Frameworkfor SelectingPrime Software DevelopmentProcess
Evolvea Frameworkfor SelectingPrime Software DevelopmentProcess
 
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded CylindersMaterial Parameter and Effect of Thermal Load on Functionally Graded Cylinders
Material Parameter and Effect of Thermal Load on Functionally Graded Cylinders
 
Studies On Energy Conservation And Audit
Studies On Energy Conservation And AuditStudies On Energy Conservation And Audit
Studies On Energy Conservation And Audit
 
An Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDLAn Implementation of I2C Slave Interface using Verilog HDL
An Implementation of I2C Slave Interface using Verilog HDL
 
Discrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One PreyDiscrete Model of Two Predators competing for One Prey
Discrete Model of Two Predators competing for One Prey
 

Bo31240249

  • 1. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 On The Number of Zeros of a Polynomial inside the Unit Disk M. H. Gulzar Department of Mathematics University of Kashmir, Srinagar 190006 Abstract: In this paper we find an upper bound for the number of zeros of a polynomial inside the unit disk, when the coefficients of the polynomial or their real and imaginary parts are restricted to certain conditions. Mathematics Subject Classification: 30C10, 30C15 Key-words and phrases: Polynomial, Unit disk, Zero. I. Introduction and Statement of Results Regarding the number of zeros of a polynomial inside the unit disk, the following results were recently proved by M. H. Gulzar [2]: n Theorem A: Let P (z) = a z j 0 j j be a polynomial of degree n such that for some   0 ,   a n  a n1  ......  a1  a0 . a0 Then the number of zeros of P (z) in  z   ,0    1 does not exceed M1 1 2  a n  a n  a0  a0 log , 1 a0 log  Where M 1  2  a n  a n  a0 . n TheoremB: Let P (z) = a z j 0 j j be a polynomial of degree n with complex coefficients .If Re a j   j , Im a j   j , j  0,1,..., n, and for some   0,    n   n1  ...  1   0 , a0 then the number of zeros of P(z) in M  z   ,0    1, does not exceed 2 n 2    n   n   0   0  2  j 1 j 0 log , 1 a0 log  n Where M 2  2    n   n   0   0  2  j . j 1 n Theorem C: Let P(z)= a z j 0 j j be a polynomial of degree n with complex coefficients .If Re a j   j , Im a j   j , j  0,1,..., n, and for some   0,    n   n1  ...  1   0 , a0  z   ,0    1, then the number of zeros of P(z) in M does not exceed 3 www.ijmer.com 240 | Page
  • 2. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 n 2    n   n   0   0  2  j 1 j 0 log , 1 a0 log  n Where M 3  2    n   n   0   0  2  j . j 1 n Theorem D. Let P (z) = a z j 0 j j be a polynomial of degree n with complex coefficients such that  arg a j      , j  0,1,...n, for some real  2 and   a n  a n1  ...  a1  a0 ,for some   0. a0 Then the number of zeros of P(z) in  z   ,0    1, does not exceed M4 n 1 (   a n )(cos   sin   1)  a 0 (cos   sin   1)  2 sin   a j 1 j 1 log , 1 a0 log  where n 1 M 4  (   a n )(cos   sin   1)  a 0 (cos   sin  )  2 sin   a j j 1 In this paper, we prove certain generalizations of the above results. In fact, we prove the following : n Theorem 1: Let P( z )  a j 0 j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If for some real numbers  ,   0 , 1  k  n,  nk  0,  nk 1   nk ,    n   n1  ... nk 1   nk   nk 1  ...  1   0 , a0 then the number of zeros of P(z) in  z   ,0    1 , does not exceed M5 n 2    n   n  (  1) n  k    1  n  k   0   0  2  j 1 j 0 log , 1 a0 log  n where M 5  2    n   n  (  1) n  k    1  n  k   0   0  2  j , j 1 a0 and if  nk   nk 1 , then the number of zeros of P(z) in  z   ,0    1 , does not exceed M6 n 2    n   n  (1   ) n  k  1    n k   0   0  2  j 1 j 0 log , 1 a0 log  n where M 6  2    n   n  (1   ) n  k  1    n  k   0   0  2  j . j 1 www.ijmer.com 241 | Page
  • 3. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 Remark 1: Taking   1 , Theorem 1 reduces to Theorem B. Remark 2: If a j are real i.e.  j  0 for all j , Theorem 1 gives the following result which reduces to Theorem A by taking   1: n Theorem 2: Let P( z )   a j z j be a polynomial of degree n .If for some real numbers  ,  0, j 0 1  k  n, ank  0, ank 1  ank ,   an  an1  ...ank 1  ank  ank 1  ...  a1  a0 , a0 then the number of zeros of P(z) in  z   ,0    1 , does not exceed M7 1 2   a n  a n  (  1)a n k    1 a n k  a0  a0 log , 1 a0 log  where M 7  2  a n  a n  (  1)a n  k    1 a nk  a0 , a0 and if ank  ank 1 , then the number of zeros of P(z) in  z   ,0    1 , does not exceed M8 1 2   a n  a n  (1   )a n k  1   a n k  a0  a0 log , 1 a0 log  where M 8  2  a n  a n  (1   )a n  k  1   a n  k  a0 . Applying Theorem 1 to the polynomial –iP(z), we get the following result, which reduces to Theorem C by taking  1: n Theorem 3: Let P( z )  a j 0 j z j be a polynomial of degree n with Re( a j )   j and Im(a j )   j , j=0,1,2,……,n. If for some real numbers  ,   0 , 1  k  n,  nk  0,  n k 1   n k ,    n   n1  ... nk 1   nk   nk 1  ...  1   0 , a0 then the number of zeros of P(z) in  z   ,0    1 , does not exceed M9 n 2    n   n  (  1)  n  k    1  n  k   0   0  2  j 1 j 0 log , 1 a0 log  n where M 9  2    n   n  (  1)  n  k    1  n  k   0   0  2  j , j 1 a0 and if  n k   n k 1 , then the number of zeros of P(z) in  z   ,0    1 , does not exceed M 10 n 2    n   n  (1   )  n  k  1    n  k   0   0  2  j 1 j 0 log , 1 a0 log  n where M 10  2    n   n  (1   )  n  k  1    n  k   0   0  2  j . j 1 www.ijmer.com 242 | Page
  • 4. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 n Theorem 4: Let P( z )  a j 0 j z j be a polynomial of degree n .If for some real numbers   0 ,   0 , 1  k  n, ank  0,   an  an1  ...  ank 1   ank  ank 1  ...  a1  a0 ,  and for some real  , arg a j      , j  0,1,......, n and an k 1  an k , i.e.   1 ,then the number of zeros of 2 a0 P(z) in  z   ,0    1 , does not exceed M 11 [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1) n 1 1  a 0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] log 1 a0 log  where M11  (   an (cos   sin   1)  an  k (cos   sin    cos    sin     1) n 1  a 0 (cos   sin  )  2 sin  a j 1, j  n  k j a0 and if an k  a n k 1 , i.e.   1 , then the number of zeros of P(z) in  z   ,0    1 , does not exceed M 12 [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin   1   ) n 1 1  a 0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] log Where 1 a0 log  M 12  (   a n (cos   sin   1)  a nk (cos   sin    cos    sin   1   ) n 1  a 0 (cos   sin  )  2 sin  a j 1, j  n  k j . Remark 4: Taking   1 , Theorem 4 reduces to Theorem D. II. Lemmas For the proofs of the above results, we need the following results: n Lemma 1:. Let P(z)= a z j 0 j j be a polynomial of degree n with complex coefficients such that  arg a j      , j  0,1,...n, for some real  ,then for some t>0, 2 ta j  a j 1     t a j  a j 1 cos   t a j  a j1 sin  .  The proof of lemma 1 follows from a lemma due to Govil and Rahman [1]. www.ijmer.com 243 | Page
  • 5. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 Lemma 2.If p(z) is regular ,p(0)  0 and p( z )  M in z  1, then the number of zeros of p(z) in z   ,0    1, does 1 M not exceed log (see[4],p171). 1 p(0) log  III. Proofs of Theorems Proof of Theorem 1: Consider the polynomial F ( z)  (1  z) P( z)  (1  z )(a n z n  a n1 z n 1  ......  a1 z  a0 )  a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a n k ) z n k 1  (a nk  a nk 1 ) z n k  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0  ( n  i n ) z n 1  ( n   n 1 ) z n  ......  ( n  k 1   n k ) z n  k 1  ( n  k   n  k 1 ) z n  k  ( n k 1   n  k  2 ) z n  k 1  ......  ( 1   0 ) z   0 n  i  (  j   j 1 ) z j  i 0 j 1 If  nk 1   nk , then F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1  ( n k   n k 1 ) z n k  (  1) n k z n k  ( n k 1   n k 2 ) z n k 1  ...... n  (1   0 ) z   0  i  (  j   j 1 ) z j  i 0 . j 1 For z  1 , F ( z )   n       n   n1  ......   nk 1   nk +  nk   nk 1    1  nk n   nk 1   nk 2  ......  1   0   0  2  j j 0 n  2    n   n  (  1) nk    1  nk   0   0  2  j j 0 Hence by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed n 2    n   n  (  1) n  k    1  n k   0   0  2  j 1 j 0 log . 1 a0 log  On the other hand, let n 1 Q (z)=  an z  (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z For z  1 , Q( z )   n       n   n1  ......   nk 1   nk   nk   nk 1    1  nk n    k 1   n  k  2  ......   1   0   0  2  j j 1 n  2    n   n  (  1)    1  n  k   0   0  2  j  M 5 . j 1 www.ijmer.com 244 | Page
  • 6. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 Since Q(0)=0, we have, by Rouche’s theorem, Q( z )  M 5 z , for z  1 . Thus F ( z )  a0  Q( z )  a 0  Q( z )  a0  M 5 z 0 a0 if z  . M5 a0 This shows that F(z) has no zero in z  . Consequently it follows that the number of zeros of F(z) and hence P(z) in M5 a0  z   ,0    1 , does not exceed M5 n 2    n   n  (  1) n  k    1  n k   0   0  2  j 1 j 0 log 1 a0 log  If  nk   nk 1 , then F ( z)  ( n  i n ) z n1  z n  (    n   n1 ) z n  ......  ( nk 1   nk ) z nk 1  ( n k   n k 1 ) z n k  (1   ) n k z n k   ( n k 1   n k 2 ) z n k 1  ...... n  ( 1   0 ) z   0  i  (  j   j 1 ) z j  i 0 . j 1 For z  1 , F ( z )   n       n   n1  ......   nk 1   nk +  nk   nk 1  1    nk n   nk 1   nk 2  ......  1   0   0  2  j j 0 n  2    n   n  (1   ) nk  1    nk   0   0  2  j j 0 Hence by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed n 2    n   n  (1   ) n  k  1    n k   0   0  2  j 1 j 0 log . 1 a0 log  On the other hand, let n 1 Q(z)=  an z  (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z www.ijmer.com 245 | Page
  • 7. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645  ( n  i n ) z n 1  z n  (    n   n 1 ) z n  ......  ( n  k 1   n  k ) z n k 1  ( n k   n  k 1 ) z n  k  (1   )a n  k z n k 1  ( n  k 1   n k  2 ) z n k 1  ...... n  ( 1   0 ) z  i  (  j   j 1 ) z j j 1 For z  1 , Q( z )   n       n   n1  ......   nk 1   nk   nk   nk 1  1    nk n   k 1   nk 2  ......   1   0   0  2  j j 1 n  2    n   n  (1   )  1    n  k   0   0  2  j  M 6 . j 1 Since Q(0)=0, we have, by Rouche’s theorem, Q( z )  M z , for z  1 . Thus F ( z )  a0  Q( z )  a 0  Q( z )  a0  M 6 z 0 a0 if z  . M6 a0 This shows that F(z) has no zero in z  . Consequently it follows that the number of zeros of F(z) and hence P(z) in M6 a0  z   ,0    1, does not exceed M6 n 2    n   n  (1   ) n  k  1    n k   0   0  2  j 1 j 0 log . 1 a0 log  That proves Theorem 1. Proof of Theorem 4: Consider the polynomial F ( z)  (1  z) P( z)  (1  z )(a n z n  a n1 z n 1  ......  a1 z  a0 )  a n z n1  (a n  a n1 ) z n  ......  (a nk 1  a n k ) z n k 1  (a nk  a nk 1 ) z n k  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0 If an k 1  an k , i.e.   1 , then F ( z )  a n z n 1  z n  (   an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (  1)ank z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0 so that for z  1 , we have by using Lemma 1, F ( z )  an      an  an1  ......  ank 1  ank  ank  ank 1 www.ijmer.com 246 | Page
  • 8. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645    1 ank  ank 1  ank 2  ......  a1  a0  a0  an    (   an  an1 ) cos   (   an  an1 ) sin   ......  ( a n  k 1  a n  k ) cos   ( a n  k 1  a n  k ) sin   (  1) a n  k  ( a n  k  a n  k 1 ) cos   ( a n  k  a n  k 1 ) sin   ( a n  k 1  a n  k  2 ) cos   ( a n  k 1  a n  k  2 ) sin   ......  ( a1  a 0 ) cos   ( a1  a 0 ) sin   a 0  (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin     1) n 1  a0 (cos   sin   1)  2 sin  a j 1, j  n  k j Hence, by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1) n 1 1  a 0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] log On the other hand, 1 a0 log  let n 1 Q(z)=  an z  (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z For z  1 , Q(z )  (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin     1) n 1  a0 (cos   sin  )  2 sin  a j 1, j  n  k j  M 11 . Since Q(0)=0 , we have , by Rouche’s Theorem, Q( z )  M 11 z , for z  1 . Thus, for z  1 , F ( z )  a0  Q( z )  a 0  Q( z )  a 0  M 11 z 0 a0 if z  . M 11 a0 This shows that F(z) has all its zeros z with z  1 in z  . M 11 a0 Thus, the number of zeros of F(z) and hence P(z) in  z   ,0    1 , does not exceed M 11 www.ijmer.com 247 | Page
  • 9. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 [(   a n (cos   sin   1)  a n  k (cos   sin    cos    sin     1) n 1 1  a 0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] log 1 a0 log  If an k  a n k 1 , i.e.   1 , then F ( z)  an z n1  z n  (   an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (1   )ank z nk 1  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z  a0 so that for z  1 , we have by Lemma 1, F ( z )  an      an  an1  ......  ank 1  ank  ank  ank 1  1   ank  ank 1  ank 2  ......  a1  a0  a0  an    (   an  an1 ) cos   (   an  an1 ) sin   ......  ( a n k 1   a n  k ) cos   ( a n  k 1   a n  k ) sin   1   a n k  ( a n k  a n  k 1 ) cos   ( a n  k  a n k 1 ) sin   ( a n k 1  a n  k  2 ) cos   ( a n  k 1  a n  k  2 ) sin   ......  ( a1  a 0 ) cos   ( a1  a 0 ) sin   a 0  (   a n )(cos   sin   1)  a nk (cos   sin    cos    sin   1   ) n 1  a0 (cos   sin   1)  2 sin  a j 1, j  n  k j Hence , by Lemma 2, the number of zeros of F(z) in z   ,0    1, does not exceed [(   an (cos   sin   1)  an  k (cos   sin    cos    sin   1   ) n 1 1 log  a0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] 1 log a0  On the other hand, let n 1 Q(z)=  an z  (an  an1 ) z n  ......  (ank 1  ank ) z nk 1  (ank  ank 1 ) z nk  (ank 1  ank 2 ) z nk 1  ......  (a1  a0 ) z For z  1 , by using Lemma 1, Q(z )  (   a n )(cos   sin   1)  a n k (cos   sin    cos    sin   1   ) n 1  a0 (cos   sin  )  2 sin  a j 1, j  n  k j  M 12 . Since Q(0)=0 , we have , by Rouche’s Theorem, Q( z )  M 12 z , for z  1 . Thus, for z  1 , www.ijmer.com 248 | Page
  • 10. International Journal of Modern Engineering Research (IJMER) www.ijmer.com Vol.3, Issue.1, Jan-Feb. 2013 pp-240-249 ISSN: 2249-6645 F ( z )  a0  Q( z )  a 0  Q( z )  a 0  M 12 z 0 a0 if z  . M 12 a0 This shows that F(z) has all its zeros z with z  1 in z  . M 12 a0 Thus, the number of zeros of F(z) and hence P(z) in  z   ,0    1 , does not exceed M 12 [(   an (cos   sin   1)  an  k (cos   sin    cos    sin   1   ) n 1 1  a0 (cos   sin   1)  2 sin  a j 1, j  n  k j ] log . 1 a0 log  That proves Theorem 4. References [1] N.K.Govil and Q.I.Rahman, On the Enestrom-Kakeya Theorem, Tohoku Math.J.20 (1968), 126-136. [2] M. H. Gulzar, on the number of Zeros of a polynomial in a prescribed Region, Research Journal of Pure Algebra-2(2), 2012, 1-11. [3] E C. Titchmarsh, The Theory of Functions, 2nd edition, Oxford University Press, London, 1939. www.ijmer.com 249 | Page