SlideShare a Scribd company logo
What’s new in
MariaDB ColumnStore
Andrew Hutchings
Technical Lead, MariaDB ColumnStore
MariaDB Corporation
Shane K Johnson
Senior Director of Product Marketing
MariaDB Corporation
Agenda
1. Quick overview of MariaDB ColumnStore
2. The evolution of MariaDB ColumnStore
3. Recap of key MariaDB ColumnStore 1.1 features
4. What’s new in MariaDB ColumnStore 1.2
Server 2
MariaDB ColumnStore – overview (1/2)
MariaDB Server
ColumnStore
(interface)
InnoDB
ColumnStore
(storage)
User
Module (UM)
Performance
Module (PM)
Disk
Disk
Server 1
MariaDB MaxScale
MariaDB ColumnStore – overview (2/2)
MariaDB Server
ColumnStore
(interface)
InnoDB
ColumnStore
(storage)
ColumnStore
(storage)
ColumnStore
(storage)
MariaDB Server
ColumnStore
(interface)
InnoDB
ColumnStore
(storage)
ColumnStore
(storage)
MariaDB MaxScale
The evolution of
MariaDB ColumnStore
MariaDB Server
ColumnStore
ColumnStore
(storage)
MariaDB MaxScale
Applications
Import
(cpimport)
MariaDB ColumnStore 1.0
(Jan 2016)
MariaDB Server
ColumnStore
User-defined
Window functions
ColumnStore
(storage)
User-defined aggregate functions
(distributed, single parameter)
Backup
(parallel)
GlusterFS
(HA)
Bulk data adapterMariaDB MaxScale
Applications
Spark
Connector
Kafka
Connector
CDC
Connector
C++, Java and Python
APIs
Import
(cpimport)
MariaDB ColumnStore 1.1
(Dec 2017)
Write engine
MariaDB Server
ColumnStore
User-defined
Window functions
ColumnStore
(storage)
User-defined aggregate functions
(distributed, multi parameter)
Backup
(parallel)
GlusterFS
(HA)
Bulk data adapterMariaDB MaxScale
Applications
Spark
Connector
Kafka
Connector
CDC
Connector
Pentaho
Adapter
Regression functions
Import
(cpimport)
Remote import
(mcsimport)
C++, Java and Python
APIs
MariaDB ColumnStore 1.2
(Dec 2018)
Write engine
Recap of ColumnStore 1.1 key features
1. Bulk data adapters
2. CDC streaming data adapter
3. User-defined aggregate functions (distributed)
MariaDB Server
ColumnStore
(interface)
MariaDB Server
ColumnStore
(interface)
ColumnStore
(storage)
Write engine
ColumnStore
(storage)
Write engine
Application/Service/Script
(back end)
Bulk data adapter
1. For each row
a. For each column
bulkInsert->setColumn
b. bulkInsert->writeRow
2. bulkInsert->commit
* Buffer 100,000 rows by default
ColumnStore
(storage)
Write engine
MariaDB
MaxScale
Application
(front end)
Bulk data adapters
MariaDB Server
(primary)
InnoDB/MyRocks
MariaDB MaxScale
Binlog
Binlog router
Binlog server
MariaDB Server
(secondary)
InnoDB/MyRocks
MariaDB Server
(secondary)
InnoDB/MyRocks
App/Service/Script
(backend)
Bulk data adapter
MariaDB Server
(primary)
InnoDB/MyRocks
MariaDB MaxScale
Binlog
Binlog router
Avro router
CDC protocol
CDC client
ColumnStore
(storage)
Write engine
MariaDB Server
ColumnStore
(interface)
Binlog server
MariaDB Server
ColumnStore
(WSUM=957)
ColumnStore
(WSUM=405)
Cost WSUM
10 5
100 100
200 300
ColumnStore
(WSUM=26)
Cost WSUM
4 2
8 4
20 20
ColumnStore
(WSUM=516)
Cost WSUM
12 6
60 60
300 450
User-defined aggregate
functions (distributed)
Example: calculate a weighted sum
1-10 (0.5)
11-100 (1.0)
100 (1.5)
What’s new in
MariaDB ColumnStore 1.2
Pentaho Data Integration adapter
● This adapter implements the Pentaho Data Integration / Kettle SDK to enable
rapid data loading into ColumnStore by leveraging the bulk load API
● This will provide orders of magnitude performance improvement over the DML
based adapter
● Supported on Windows 10, Ubuntu 16, and RHEL / CentOS 7
● For more details:
https://mariadb.com/kb/en/library/columnstore-streaming-data-adapters/#colum
nstore-pentaho-data-integration-data-adapter
Pentaho Data Integration adapter – usage
● As a consumer of the ColumnStore
Bulk API, copy of the cluster
ColumnStore.xml is required
● In addition, a JDBC connection is
required for metadata and to
support update / delete DML
● A target table must be defined as
the target for the data stream
Pentaho Data Integration adapter – usage
● After the target table is defined the
mapping from the input stream to
the target table must be defined
● The map all inputs button will
attempt to auto map the columns if
possible
Remote import: mcsimport
● Batch
● CSV
● Command line
● Can run outside a UM/PM
● Local source files
● Auto committed
PM 1
Write engine
Files
PM 2
Write engine
PM n
Write engine
Files Files
Server
mcsimport
MariaDB
Server (UM)
CSV
Windows support for adapters and tools
● Support is now provided for the bulk data adapter, mcsimport and Pentaho
Data Integration adapter on Microsoft Windows 10
● This opens up a broader range of integration opportunities (ETL and custom
data loading) on the desktop
● A windows specific installer is provided which installs the necessary
dependencies
● Running ColumnStore itself within Windows is still best achieved through using
the Windows Linux Subsystem or the Docker container with Docker for
Windows
Multi-parameter Distributed UDAF
● Distributed user-defined aggregate functions (UDAF) can now take more than
one parameter – both aggregate and window functions are supported
● Enables more complex functions to be distributed to PMs:
○ Multi-column functions (e.g., linear regression)
○ Implemented using this framework - details on the next slide
○ Single-column functions with an extra parameter (e.g., custom percentile)
● Requires the C++ SDK and including the compiled library on each node
● For more details see:
https://mariadb.com/kb/en/library/columnstore-user-defined-aggregate-and-win
dow-functions/
Regression functions (1/2)
● REGR_AVGX(ColumnY, ColumnX)
○ Average of the independent variable (sum(ColumnX)/N), where N is number of rows
processed by the query
● REGR_AVGY(ColumnY, ColumnX)
○ Average of the dependent variable (sum(ColumnY)/N), where N is number of rows
processed by the query
● REGR_COUNT(ColumnY, ColumnX)
○ The total number of input rows in which both column Y and column X are nonnull
● REGR_INTERCEPT(ColumnY, ColumnX)
○ The y-intercept of the least-squares-fit linear equation determined by the pairs
Regression functions (2/2)
● REGR_R2(ColumnY, ColumnX)
○ Square of the correlation coefficient: regr_intercept(ColumnY, ColumnX)
● REGR_SLOPE(ColumnY, ColumnX)
○ The slope of the least-squares-fit linear equation determined by the pairs
● REGR_SXX(ColumnY, ColumnX)
○ REGR_COUNT(y, x) * VAR_POP(x) for non-null pairs
● REGR_SXY(ColumnY, ColumnX)
○ REGR_COUNT(y, x) * COVAR_POP(y, x) for non-null pairs
● REGR_SYY(ColumnY, ColumnX)
○ REGR_COUNT(y, x) * VAR_POP(y) for non-null pairs
Data types
● An explicit TIME datatype is now supported for capturing the time of day
○ This is very useful for financial applications
○ Avoids use of a custom numeric type as a workaround
○ Uses 8 bytes of storage
○ Supported range is '-838:59:59.999999' to '838:59:59.999999'
● Additionally, precision up to milli/micro second for DATETIME and TIME data
types allow more fine-grained time specification
● Boolean data type is supported.
Additional features
● CREATE TABLE .. LIKE ..;
● GROUP BY is pushed down in vtable_mode 0 (executed by MariaDB Server)
● Reserved words and non-alphanumeric characters for table/column names
● Cross-engine joins with SSL connections
● Improvements to non-root install to not require sudo privileges for install user
○ Recommend to use the 'mysql' user
● 80 bug fixes
● 40+ bug fixes coming in the soon-to-be-released 1.2.3 maintenance release
Convergence
● Internal refactoring and preparation to remove to get off a MariaDB Server fork
● MariaDB Server 10.4 will include additional optimizer and storage engine API
enhancements so we can complete the process
● Goal is to install ColumnStore on top of a standard MariaDB server installation
● postConfigure will still be required to configure the ColumnStore cluster
THANK YOU!

More Related Content

What's hot

Inside CynosDB: MariaDB optimized for the cloud at Tencent
Inside CynosDB: MariaDB optimized for the cloud at TencentInside CynosDB: MariaDB optimized for the cloud at Tencent
Inside CynosDB: MariaDB optimized for the cloud at Tencent
MariaDB plc
 
MariaDB Platform for hybrid transactional/analytical workloads
MariaDB Platform for hybrid transactional/analytical workloadsMariaDB Platform for hybrid transactional/analytical workloads
MariaDB Platform for hybrid transactional/analytical workloads
MariaDB plc
 
Transactional and Analytics together: MariaDB and ColumnStore
Transactional and Analytics together: MariaDB and ColumnStoreTransactional and Analytics together: MariaDB and ColumnStore
Transactional and Analytics together: MariaDB and ColumnStore
mlraviol
 
What's new in MariaDB Platform X3
What's new in MariaDB Platform X3What's new in MariaDB Platform X3
What's new in MariaDB Platform X3
MariaDB plc
 
Configuring workload-based storage and topologies
Configuring workload-based storage and topologiesConfiguring workload-based storage and topologies
Configuring workload-based storage and topologies
MariaDB plc
 
M|18 Analyzing Data with the MariaDB AX Platform
M|18 Analyzing Data with the MariaDB AX PlatformM|18 Analyzing Data with the MariaDB AX Platform
M|18 Analyzing Data with the MariaDB AX Platform
MariaDB plc
 
How QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it fasterHow QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it faster
MariaDB plc
 
Auto Europe's ongoing journey with MariaDB and open source
Auto Europe's ongoing journey with MariaDB and open sourceAuto Europe's ongoing journey with MariaDB and open source
Auto Europe's ongoing journey with MariaDB and open source
MariaDB plc
 
Extending MariaDB with user-defined functions
Extending MariaDB with user-defined functionsExtending MariaDB with user-defined functions
Extending MariaDB with user-defined functions
MariaDB plc
 
MariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & OptimizationMariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & Optimization
MariaDB plc
 
M|18 How to use MyRocks with MariaDB Server
M|18 How to use MyRocks with MariaDB ServerM|18 How to use MyRocks with MariaDB Server
M|18 How to use MyRocks with MariaDB Server
MariaDB plc
 
M|18 Under the Hood: Galera Cluster
M|18 Under the Hood: Galera ClusterM|18 Under the Hood: Galera Cluster
M|18 Under the Hood: Galera Cluster
MariaDB plc
 
Deploying MariaDB for extreme scale
Deploying MariaDB for extreme scaleDeploying MariaDB for extreme scale
Deploying MariaDB for extreme scale
MariaDB plc
 
M|18 Deep Dive: InnoDB Transactions and Write Paths
M|18 Deep Dive: InnoDB Transactions and Write PathsM|18 Deep Dive: InnoDB Transactions and Write Paths
M|18 Deep Dive: InnoDB Transactions and Write Paths
MariaDB plc
 
M|18 Battle of the Online Schema Change Methods
M|18 Battle of the Online Schema Change MethodsM|18 Battle of the Online Schema Change Methods
M|18 Battle of the Online Schema Change Methods
MariaDB plc
 
M|18 User Defined Function
M|18 User Defined FunctionM|18 User Defined Function
M|18 User Defined Function
MariaDB plc
 
Optimizing MariaDB for maximum performance
Optimizing MariaDB for maximum performanceOptimizing MariaDB for maximum performance
Optimizing MariaDB for maximum performance
MariaDB plc
 
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
Webinar slides: An Introduction to Performance Monitoring for PostgreSQLWebinar slides: An Introduction to Performance Monitoring for PostgreSQL
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
Severalnines
 
Writing powerful stored procedures in PL/SQL
Writing powerful stored procedures in PL/SQLWriting powerful stored procedures in PL/SQL
Writing powerful stored procedures in PL/SQL
MariaDB plc
 
MySQL and MariaDB Backups
MySQL and MariaDB BackupsMySQL and MariaDB Backups
MySQL and MariaDB Backups
Federico Razzoli
 

What's hot (20)

Inside CynosDB: MariaDB optimized for the cloud at Tencent
Inside CynosDB: MariaDB optimized for the cloud at TencentInside CynosDB: MariaDB optimized for the cloud at Tencent
Inside CynosDB: MariaDB optimized for the cloud at Tencent
 
MariaDB Platform for hybrid transactional/analytical workloads
MariaDB Platform for hybrid transactional/analytical workloadsMariaDB Platform for hybrid transactional/analytical workloads
MariaDB Platform for hybrid transactional/analytical workloads
 
Transactional and Analytics together: MariaDB and ColumnStore
Transactional and Analytics together: MariaDB and ColumnStoreTransactional and Analytics together: MariaDB and ColumnStore
Transactional and Analytics together: MariaDB and ColumnStore
 
What's new in MariaDB Platform X3
What's new in MariaDB Platform X3What's new in MariaDB Platform X3
What's new in MariaDB Platform X3
 
Configuring workload-based storage and topologies
Configuring workload-based storage and topologiesConfiguring workload-based storage and topologies
Configuring workload-based storage and topologies
 
M|18 Analyzing Data with the MariaDB AX Platform
M|18 Analyzing Data with the MariaDB AX PlatformM|18 Analyzing Data with the MariaDB AX Platform
M|18 Analyzing Data with the MariaDB AX Platform
 
How QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it fasterHow QBerg scaled to store data longer, query it faster
How QBerg scaled to store data longer, query it faster
 
Auto Europe's ongoing journey with MariaDB and open source
Auto Europe's ongoing journey with MariaDB and open sourceAuto Europe's ongoing journey with MariaDB and open source
Auto Europe's ongoing journey with MariaDB and open source
 
Extending MariaDB with user-defined functions
Extending MariaDB with user-defined functionsExtending MariaDB with user-defined functions
Extending MariaDB with user-defined functions
 
MariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & OptimizationMariaDB Server Performance Tuning & Optimization
MariaDB Server Performance Tuning & Optimization
 
M|18 How to use MyRocks with MariaDB Server
M|18 How to use MyRocks with MariaDB ServerM|18 How to use MyRocks with MariaDB Server
M|18 How to use MyRocks with MariaDB Server
 
M|18 Under the Hood: Galera Cluster
M|18 Under the Hood: Galera ClusterM|18 Under the Hood: Galera Cluster
M|18 Under the Hood: Galera Cluster
 
Deploying MariaDB for extreme scale
Deploying MariaDB for extreme scaleDeploying MariaDB for extreme scale
Deploying MariaDB for extreme scale
 
M|18 Deep Dive: InnoDB Transactions and Write Paths
M|18 Deep Dive: InnoDB Transactions and Write PathsM|18 Deep Dive: InnoDB Transactions and Write Paths
M|18 Deep Dive: InnoDB Transactions and Write Paths
 
M|18 Battle of the Online Schema Change Methods
M|18 Battle of the Online Schema Change MethodsM|18 Battle of the Online Schema Change Methods
M|18 Battle of the Online Schema Change Methods
 
M|18 User Defined Function
M|18 User Defined FunctionM|18 User Defined Function
M|18 User Defined Function
 
Optimizing MariaDB for maximum performance
Optimizing MariaDB for maximum performanceOptimizing MariaDB for maximum performance
Optimizing MariaDB for maximum performance
 
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
Webinar slides: An Introduction to Performance Monitoring for PostgreSQLWebinar slides: An Introduction to Performance Monitoring for PostgreSQL
Webinar slides: An Introduction to Performance Monitoring for PostgreSQL
 
Writing powerful stored procedures in PL/SQL
Writing powerful stored procedures in PL/SQLWriting powerful stored procedures in PL/SQL
Writing powerful stored procedures in PL/SQL
 
MySQL and MariaDB Backups
MySQL and MariaDB BackupsMySQL and MariaDB Backups
MySQL and MariaDB Backups
 

Similar to What’s new in MariaDB ColumnStore

How to make data available for analytics ASAP
How to make data available for analytics ASAPHow to make data available for analytics ASAP
How to make data available for analytics ASAP
MariaDB plc
 
What to expect from MariaDB Platform X5, part 1
What to expect from MariaDB Platform X5, part 1What to expect from MariaDB Platform X5, part 1
What to expect from MariaDB Platform X5, part 1
MariaDB plc
 
Db2 analytics accelerator on ibm integrated analytics system technical over...
Db2 analytics accelerator on ibm integrated analytics system   technical over...Db2 analytics accelerator on ibm integrated analytics system   technical over...
Db2 analytics accelerator on ibm integrated analytics system technical over...
Daniel Martin
 
IBM DB2 Analytics Accelerator Trends & Directions by Namik Hrle
IBM DB2 Analytics Accelerator  Trends & Directions by Namik Hrle IBM DB2 Analytics Accelerator  Trends & Directions by Namik Hrle
IBM DB2 Analytics Accelerator Trends & Directions by Namik Hrle
Surekha Parekh
 
IBM Analytics Accelerator Trends & Directions Namk Hrle
IBM Analytics Accelerator  Trends & Directions Namk Hrle IBM Analytics Accelerator  Trends & Directions Namk Hrle
IBM Analytics Accelerator Trends & Directions Namk Hrle
Surekha Parekh
 
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin FrankfurtMariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
MariaDB Corporation
 
ClustrixDB at Samsung Cloud
ClustrixDB at Samsung CloudClustrixDB at Samsung Cloud
ClustrixDB at Samsung Cloud
MariaDB plc
 
Introducing the ultimate MariaDB cloud, SkySQL
Introducing the ultimate MariaDB cloud, SkySQLIntroducing the ultimate MariaDB cloud, SkySQL
Introducing the ultimate MariaDB cloud, SkySQL
MariaDB plc
 
MariaDB pres at LeMUG
MariaDB pres at LeMUGMariaDB pres at LeMUG
MariaDB pres at LeMUG
Serge Frezefond
 
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
MariaDB Corporation
 
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
MariaDB plc
 
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
MariaDB plc
 
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
MariaDB plc
 
MariaDB for the Enterprise
MariaDB for the EnterpriseMariaDB for the Enterprise
MariaDB for the Enterprise
All Things Open
 
Les fonctionnalites mariadb
Les fonctionnalites mariadbLes fonctionnalites mariadb
Les fonctionnalites mariadb
lemugfr
 
Big data should be simple
Big data should be simpleBig data should be simple
Big data should be simple
Dori Waldman
 
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
Continuent
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
HBaseCon
 
Unifying Frontend and Backend Development with Scala - ScalaCon 2021
Unifying Frontend and Backend Development with Scala - ScalaCon 2021Unifying Frontend and Backend Development with Scala - ScalaCon 2021
Unifying Frontend and Backend Development with Scala - ScalaCon 2021
Taro L. Saito
 

Similar to What’s new in MariaDB ColumnStore (20)

How to make data available for analytics ASAP
How to make data available for analytics ASAPHow to make data available for analytics ASAP
How to make data available for analytics ASAP
 
What to expect from MariaDB Platform X5, part 1
What to expect from MariaDB Platform X5, part 1What to expect from MariaDB Platform X5, part 1
What to expect from MariaDB Platform X5, part 1
 
Db2 analytics accelerator on ibm integrated analytics system technical over...
Db2 analytics accelerator on ibm integrated analytics system   technical over...Db2 analytics accelerator on ibm integrated analytics system   technical over...
Db2 analytics accelerator on ibm integrated analytics system technical over...
 
IBM DB2 Analytics Accelerator Trends & Directions by Namik Hrle
IBM DB2 Analytics Accelerator  Trends & Directions by Namik Hrle IBM DB2 Analytics Accelerator  Trends & Directions by Namik Hrle
IBM DB2 Analytics Accelerator Trends & Directions by Namik Hrle
 
IBM Analytics Accelerator Trends & Directions Namk Hrle
IBM Analytics Accelerator  Trends & Directions Namk Hrle IBM Analytics Accelerator  Trends & Directions Namk Hrle
IBM Analytics Accelerator Trends & Directions Namk Hrle
 
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin FrankfurtMariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
MariaDB und mehr - MariaDB Roadshow Summer 2014 Hamburg Berlin Frankfurt
 
ClustrixDB at Samsung Cloud
ClustrixDB at Samsung CloudClustrixDB at Samsung Cloud
ClustrixDB at Samsung Cloud
 
Introducing the ultimate MariaDB cloud, SkySQL
Introducing the ultimate MariaDB cloud, SkySQLIntroducing the ultimate MariaDB cloud, SkySQL
Introducing the ultimate MariaDB cloud, SkySQL
 
MariaDB pres at LeMUG
MariaDB pres at LeMUGMariaDB pres at LeMUG
MariaDB pres at LeMUG
 
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
MariaDB Enterprise & MariaDB Enterprise Cluster - MariaDB Webinar July 2014 F...
 
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
 
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
What's New in MariaDB Server 10.2 and MariaDB MaxScale 2.1
 
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
Die Neuheiten in MariaDB 10.2 und MaxScale 2.1
 
MariaDB for the Enterprise
MariaDB for the EnterpriseMariaDB for the Enterprise
MariaDB for the Enterprise
 
Les fonctionnalites mariadb
Les fonctionnalites mariadbLes fonctionnalites mariadb
Les fonctionnalites mariadb
 
Big data should be simple
Big data should be simpleBig data should be simple
Big data should be simple
 
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
Tungsten Use Case: How Gittigidiyor (a subsidiary of eBay) Replicates Data In...
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce Argus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
 
Argus Production Monitoring at Salesforce
Argus Production Monitoring at SalesforceArgus Production Monitoring at Salesforce
Argus Production Monitoring at Salesforce
 
Unifying Frontend and Backend Development with Scala - ScalaCon 2021
Unifying Frontend and Backend Development with Scala - ScalaCon 2021Unifying Frontend and Backend Development with Scala - ScalaCon 2021
Unifying Frontend and Backend Development with Scala - ScalaCon 2021
 

More from MariaDB plc

MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.xMariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB plc
 
MariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - NewpharmaMariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - Newpharma
MariaDB plc
 
MariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - CloudMariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - Cloud
MariaDB plc
 
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB EnterpriseMariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB plc
 
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance OptimizationMariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB plc
 
MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale
MariaDB plc
 
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentationMariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB plc
 
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentationMariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB plc
 
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB plc
 
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-BackupMariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB plc
 
Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023
MariaDB plc
 
Hochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDBHochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDB
MariaDB plc
 
Die Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise ServerDie Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise Server
MariaDB plc
 
Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®
MariaDB plc
 
Introducing workload analysis
Introducing workload analysisIntroducing workload analysis
Introducing workload analysis
MariaDB plc
 
Under the hood: SkySQL monitoring
Under the hood: SkySQL monitoringUnder the hood: SkySQL monitoring
Under the hood: SkySQL monitoring
MariaDB plc
 
Introducing the R2DBC async Java connector
Introducing the R2DBC async Java connectorIntroducing the R2DBC async Java connector
Introducing the R2DBC async Java connector
MariaDB plc
 
MariaDB Enterprise Tools introduction
MariaDB Enterprise Tools introductionMariaDB Enterprise Tools introduction
MariaDB Enterprise Tools introduction
MariaDB plc
 
Faster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDBFaster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDB
MariaDB plc
 
The architecture of SkySQL
The architecture of SkySQLThe architecture of SkySQL
The architecture of SkySQL
MariaDB plc
 

More from MariaDB plc (20)

MariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.xMariaDB Paris Workshop 2023 - MaxScale 23.02.x
MariaDB Paris Workshop 2023 - MaxScale 23.02.x
 
MariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - NewpharmaMariaDB Paris Workshop 2023 - Newpharma
MariaDB Paris Workshop 2023 - Newpharma
 
MariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - CloudMariaDB Paris Workshop 2023 - Cloud
MariaDB Paris Workshop 2023 - Cloud
 
MariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB EnterpriseMariaDB Paris Workshop 2023 - MariaDB Enterprise
MariaDB Paris Workshop 2023 - MariaDB Enterprise
 
MariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance OptimizationMariaDB Paris Workshop 2023 - Performance Optimization
MariaDB Paris Workshop 2023 - Performance Optimization
 
MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale MariaDB Paris Workshop 2023 - MaxScale
MariaDB Paris Workshop 2023 - MaxScale
 
MariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentationMariaDB Paris Workshop 2023 - novadys presentation
MariaDB Paris Workshop 2023 - novadys presentation
 
MariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentationMariaDB Paris Workshop 2023 - DARVA presentation
MariaDB Paris Workshop 2023 - DARVA presentation
 
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
MariaDB Tech und Business Update Hamburg 2023 - MariaDB Enterprise Server
 
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-BackupMariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
MariaDB SkySQL Autonome Skalierung, Observability, Cloud-Backup
 
Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023Einführung : MariaDB Tech und Business Update Hamburg 2023
Einführung : MariaDB Tech und Business Update Hamburg 2023
 
Hochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDBHochverfügbarkeitslösungen mit MariaDB
Hochverfügbarkeitslösungen mit MariaDB
 
Die Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise ServerDie Neuheiten in MariaDB Enterprise Server
Die Neuheiten in MariaDB Enterprise Server
 
Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®Global Data Replication with Galera for Ansell Guardian®
Global Data Replication with Galera for Ansell Guardian®
 
Introducing workload analysis
Introducing workload analysisIntroducing workload analysis
Introducing workload analysis
 
Under the hood: SkySQL monitoring
Under the hood: SkySQL monitoringUnder the hood: SkySQL monitoring
Under the hood: SkySQL monitoring
 
Introducing the R2DBC async Java connector
Introducing the R2DBC async Java connectorIntroducing the R2DBC async Java connector
Introducing the R2DBC async Java connector
 
MariaDB Enterprise Tools introduction
MariaDB Enterprise Tools introductionMariaDB Enterprise Tools introduction
MariaDB Enterprise Tools introduction
 
Faster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDBFaster, better, stronger: The new InnoDB
Faster, better, stronger: The new InnoDB
 
The architecture of SkySQL
The architecture of SkySQLThe architecture of SkySQL
The architecture of SkySQL
 

Recently uploaded

UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling ExtensionsUI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
Peter Muessig
 
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSISDECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
Tier1 app
 
ppt on the brain chip neuralink.pptx
ppt  on   the brain  chip neuralink.pptxppt  on   the brain  chip neuralink.pptx
ppt on the brain chip neuralink.pptx
Reetu63
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
Drona Infotech
 
The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024
Yara Milbes
 
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
OnePlan Solutions
 
Oracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptxOracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptx
Remote DBA Services
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
Patrick Weigel
 
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptxMigration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
ervikas4
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
kalichargn70th171
 
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
Bert Jan Schrijver
 
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdfBaha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid
 
Malibou Pitch Deck For Its €3M Seed Round
Malibou Pitch Deck For Its €3M Seed RoundMalibou Pitch Deck For Its €3M Seed Round
Malibou Pitch Deck For Its €3M Seed Round
sjcobrien
 
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
kgyxske
 
UI5con 2024 - Bring Your Own Design System
UI5con 2024 - Bring Your Own Design SystemUI5con 2024 - Bring Your Own Design System
UI5con 2024 - Bring Your Own Design System
Peter Muessig
 
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CDKuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
rodomar2
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
dakas1
 
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLESINTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
anfaltahir1010
 
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s EcosystemUI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
Peter Muessig
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Julian Hyde
 

Recently uploaded (20)

UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling ExtensionsUI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
UI5con 2024 - Boost Your Development Experience with UI5 Tooling Extensions
 
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSISDECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
DECODING JAVA THREAD DUMPS: MASTER THE ART OF ANALYSIS
 
ppt on the brain chip neuralink.pptx
ppt  on   the brain  chip neuralink.pptxppt  on   the brain  chip neuralink.pptx
ppt on the brain chip neuralink.pptx
 
Mobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona InfotechMobile App Development Company In Noida | Drona Infotech
Mobile App Development Company In Noida | Drona Infotech
 
The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024The Rising Future of CPaaS in the Middle East 2024
The Rising Future of CPaaS in the Middle East 2024
 
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...Transforming Product Development using OnePlan To Boost Efficiency and Innova...
Transforming Product Development using OnePlan To Boost Efficiency and Innova...
 
Oracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptxOracle 23c New Features For DBAs and Developers.pptx
Oracle 23c New Features For DBAs and Developers.pptx
 
WWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders AustinWWDC 2024 Keynote Review: For CocoaCoders Austin
WWDC 2024 Keynote Review: For CocoaCoders Austin
 
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptxMigration From CH 1.0 to CH 2.0 and  Mule 4.6 & Java 17 Upgrade.pptx
Migration From CH 1.0 to CH 2.0 and Mule 4.6 & Java 17 Upgrade.pptx
 
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
A Comprehensive Guide on Implementing Real-World Mobile Testing Strategies fo...
 
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
J-Spring 2024 - Going serverless with Quarkus, GraalVM native images and AWS ...
 
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdfBaha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
Baha Majid WCA4Z IBM Z Customer Council Boston June 2024.pdf
 
Malibou Pitch Deck For Its €3M Seed Round
Malibou Pitch Deck For Its €3M Seed RoundMalibou Pitch Deck For Its €3M Seed Round
Malibou Pitch Deck For Its €3M Seed Round
 
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
一比一原版(sdsu毕业证书)圣地亚哥州立大学毕业证如何办理
 
UI5con 2024 - Bring Your Own Design System
UI5con 2024 - Bring Your Own Design SystemUI5con 2024 - Bring Your Own Design System
UI5con 2024 - Bring Your Own Design System
 
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CDKuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
KuberTENes Birthday Bash Guadalajara - Introducción a Argo CD
 
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
一比一原版(UMN毕业证)明尼苏达大学毕业证如何办理
 
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLESINTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
INTRODUCTION TO AI CLASSICAL THEORY TARGETED EXAMPLES
 
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s EcosystemUI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
UI5con 2024 - Keynote: Latest News about UI5 and it’s Ecosystem
 
Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)Measures in SQL (SIGMOD 2024, Santiago, Chile)
Measures in SQL (SIGMOD 2024, Santiago, Chile)
 

What’s new in MariaDB ColumnStore

  • 1. What’s new in MariaDB ColumnStore Andrew Hutchings Technical Lead, MariaDB ColumnStore MariaDB Corporation Shane K Johnson Senior Director of Product Marketing MariaDB Corporation
  • 2. Agenda 1. Quick overview of MariaDB ColumnStore 2. The evolution of MariaDB ColumnStore 3. Recap of key MariaDB ColumnStore 1.1 features 4. What’s new in MariaDB ColumnStore 1.2
  • 3. Server 2 MariaDB ColumnStore – overview (1/2) MariaDB Server ColumnStore (interface) InnoDB ColumnStore (storage) User Module (UM) Performance Module (PM) Disk Disk Server 1
  • 4. MariaDB MaxScale MariaDB ColumnStore – overview (2/2) MariaDB Server ColumnStore (interface) InnoDB ColumnStore (storage) ColumnStore (storage) ColumnStore (storage) MariaDB Server ColumnStore (interface) InnoDB ColumnStore (storage) ColumnStore (storage) MariaDB MaxScale
  • 7. MariaDB Server ColumnStore User-defined Window functions ColumnStore (storage) User-defined aggregate functions (distributed, single parameter) Backup (parallel) GlusterFS (HA) Bulk data adapterMariaDB MaxScale Applications Spark Connector Kafka Connector CDC Connector C++, Java and Python APIs Import (cpimport) MariaDB ColumnStore 1.1 (Dec 2017) Write engine
  • 8. MariaDB Server ColumnStore User-defined Window functions ColumnStore (storage) User-defined aggregate functions (distributed, multi parameter) Backup (parallel) GlusterFS (HA) Bulk data adapterMariaDB MaxScale Applications Spark Connector Kafka Connector CDC Connector Pentaho Adapter Regression functions Import (cpimport) Remote import (mcsimport) C++, Java and Python APIs MariaDB ColumnStore 1.2 (Dec 2018) Write engine
  • 9. Recap of ColumnStore 1.1 key features 1. Bulk data adapters 2. CDC streaming data adapter 3. User-defined aggregate functions (distributed)
  • 10. MariaDB Server ColumnStore (interface) MariaDB Server ColumnStore (interface) ColumnStore (storage) Write engine ColumnStore (storage) Write engine Application/Service/Script (back end) Bulk data adapter 1. For each row a. For each column bulkInsert->setColumn b. bulkInsert->writeRow 2. bulkInsert->commit * Buffer 100,000 rows by default ColumnStore (storage) Write engine MariaDB MaxScale Application (front end) Bulk data adapters
  • 11. MariaDB Server (primary) InnoDB/MyRocks MariaDB MaxScale Binlog Binlog router Binlog server MariaDB Server (secondary) InnoDB/MyRocks MariaDB Server (secondary) InnoDB/MyRocks
  • 12. App/Service/Script (backend) Bulk data adapter MariaDB Server (primary) InnoDB/MyRocks MariaDB MaxScale Binlog Binlog router Avro router CDC protocol CDC client ColumnStore (storage) Write engine MariaDB Server ColumnStore (interface) Binlog server
  • 13. MariaDB Server ColumnStore (WSUM=957) ColumnStore (WSUM=405) Cost WSUM 10 5 100 100 200 300 ColumnStore (WSUM=26) Cost WSUM 4 2 8 4 20 20 ColumnStore (WSUM=516) Cost WSUM 12 6 60 60 300 450 User-defined aggregate functions (distributed) Example: calculate a weighted sum 1-10 (0.5) 11-100 (1.0) 100 (1.5)
  • 14. What’s new in MariaDB ColumnStore 1.2
  • 15. Pentaho Data Integration adapter ● This adapter implements the Pentaho Data Integration / Kettle SDK to enable rapid data loading into ColumnStore by leveraging the bulk load API ● This will provide orders of magnitude performance improvement over the DML based adapter ● Supported on Windows 10, Ubuntu 16, and RHEL / CentOS 7 ● For more details: https://mariadb.com/kb/en/library/columnstore-streaming-data-adapters/#colum nstore-pentaho-data-integration-data-adapter
  • 16. Pentaho Data Integration adapter – usage ● As a consumer of the ColumnStore Bulk API, copy of the cluster ColumnStore.xml is required ● In addition, a JDBC connection is required for metadata and to support update / delete DML ● A target table must be defined as the target for the data stream
  • 17. Pentaho Data Integration adapter – usage ● After the target table is defined the mapping from the input stream to the target table must be defined ● The map all inputs button will attempt to auto map the columns if possible
  • 18. Remote import: mcsimport ● Batch ● CSV ● Command line ● Can run outside a UM/PM ● Local source files ● Auto committed PM 1 Write engine Files PM 2 Write engine PM n Write engine Files Files Server mcsimport MariaDB Server (UM) CSV
  • 19. Windows support for adapters and tools ● Support is now provided for the bulk data adapter, mcsimport and Pentaho Data Integration adapter on Microsoft Windows 10 ● This opens up a broader range of integration opportunities (ETL and custom data loading) on the desktop ● A windows specific installer is provided which installs the necessary dependencies ● Running ColumnStore itself within Windows is still best achieved through using the Windows Linux Subsystem or the Docker container with Docker for Windows
  • 20. Multi-parameter Distributed UDAF ● Distributed user-defined aggregate functions (UDAF) can now take more than one parameter – both aggregate and window functions are supported ● Enables more complex functions to be distributed to PMs: ○ Multi-column functions (e.g., linear regression) ○ Implemented using this framework - details on the next slide ○ Single-column functions with an extra parameter (e.g., custom percentile) ● Requires the C++ SDK and including the compiled library on each node ● For more details see: https://mariadb.com/kb/en/library/columnstore-user-defined-aggregate-and-win dow-functions/
  • 21. Regression functions (1/2) ● REGR_AVGX(ColumnY, ColumnX) ○ Average of the independent variable (sum(ColumnX)/N), where N is number of rows processed by the query ● REGR_AVGY(ColumnY, ColumnX) ○ Average of the dependent variable (sum(ColumnY)/N), where N is number of rows processed by the query ● REGR_COUNT(ColumnY, ColumnX) ○ The total number of input rows in which both column Y and column X are nonnull ● REGR_INTERCEPT(ColumnY, ColumnX) ○ The y-intercept of the least-squares-fit linear equation determined by the pairs
  • 22. Regression functions (2/2) ● REGR_R2(ColumnY, ColumnX) ○ Square of the correlation coefficient: regr_intercept(ColumnY, ColumnX) ● REGR_SLOPE(ColumnY, ColumnX) ○ The slope of the least-squares-fit linear equation determined by the pairs ● REGR_SXX(ColumnY, ColumnX) ○ REGR_COUNT(y, x) * VAR_POP(x) for non-null pairs ● REGR_SXY(ColumnY, ColumnX) ○ REGR_COUNT(y, x) * COVAR_POP(y, x) for non-null pairs ● REGR_SYY(ColumnY, ColumnX) ○ REGR_COUNT(y, x) * VAR_POP(y) for non-null pairs
  • 23. Data types ● An explicit TIME datatype is now supported for capturing the time of day ○ This is very useful for financial applications ○ Avoids use of a custom numeric type as a workaround ○ Uses 8 bytes of storage ○ Supported range is '-838:59:59.999999' to '838:59:59.999999' ● Additionally, precision up to milli/micro second for DATETIME and TIME data types allow more fine-grained time specification ● Boolean data type is supported.
  • 24. Additional features ● CREATE TABLE .. LIKE ..; ● GROUP BY is pushed down in vtable_mode 0 (executed by MariaDB Server) ● Reserved words and non-alphanumeric characters for table/column names ● Cross-engine joins with SSL connections ● Improvements to non-root install to not require sudo privileges for install user ○ Recommend to use the 'mysql' user ● 80 bug fixes ● 40+ bug fixes coming in the soon-to-be-released 1.2.3 maintenance release
  • 25. Convergence ● Internal refactoring and preparation to remove to get off a MariaDB Server fork ● MariaDB Server 10.4 will include additional optimizer and storage engine API enhancements so we can complete the process ● Goal is to install ColumnStore on top of a standard MariaDB server installation ● postConfigure will still be required to configure the ColumnStore cluster