What is Binary?
Presented by developerX
BI * NA * RY
Relating to, using, or expressed in system of numerical notation that has 2 rather
than 10 as a base.
DEC * I * MAL
Relating to or denoting a system of numbers and arithmetic based on the number
ten, tenth parts, and powers of ten.
Decimal Symbols
0 - 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
Positional Notation
A system of expressing numbers in which the digits are arranged in succession,
the position of each digit has a place value, and the number is equal to the sum of
the products of each digital by its place value
https://www.merriam-webster.com/dictionary/positional%20notation
= 116
Decimal System
Binary System
0010111 = (1 * 64) + (1 * 32) + (1 * 16) + (1 * 4) = 116
Alternative:
0010111 = (1 * 2^6) + (1 * 2^5) + ( 1 * 2^4) + (1 * 2^2) = 116
Practice
What numbers are these?
00000111
10100011
01001101
Adding
What is 10010101 + 11110010?
What is 10010101 + 11110010?
10010101 + 11110010 = 128 * 2 + 64 * 1 + 32 * 1 + 16 * 2 + 4 * 1 + 1 * 1
10010101 + 11110010 = 256 + 64 + 32 + 32 + 4 + 1
10010101 + 11110010 = 391
Subtracting
Solve this puzzle
10010101 - 11110010
Translate:
01100111 0110001 0110000
0110001
UTF-8:
Because more special characters
are needed most of the web is
using (87%) UTF-8.
Seeing Binary in Javascript
Binary ---> Decimal
parseInt(‘01001000’, 2) // => 72
Decimal ---> Binary
(45).toString(2)// => '101101'
Binary ---> String
String.fromCodePoint(parseInt('11111010010111110', 2)) // => "💾"
String ---> Binary
"💾".codePointAt().toString(2) //=> ‘11111010010111110’
Questions?
Thank you for learning about Binary

What is Binary (Computer Science)

  • 1.
  • 2.
    BI * NA* RY Relating to, using, or expressed in system of numerical notation that has 2 rather than 10 as a base.
  • 5.
    DEC * I* MAL Relating to or denoting a system of numbers and arithmetic based on the number ten, tenth parts, and powers of ten.
  • 6.
    Decimal Symbols 0 -1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9
  • 7.
    Positional Notation A systemof expressing numbers in which the digits are arranged in succession, the position of each digit has a place value, and the number is equal to the sum of the products of each digital by its place value https://www.merriam-webster.com/dictionary/positional%20notation
  • 9.
  • 10.
    Binary System 0010111 =(1 * 64) + (1 * 32) + (1 * 16) + (1 * 4) = 116 Alternative: 0010111 = (1 * 2^6) + (1 * 2^5) + ( 1 * 2^4) + (1 * 2^2) = 116
  • 11.
    Practice What numbers arethese? 00000111 10100011 01001101
  • 12.
    Adding What is 10010101+ 11110010? What is 10010101 + 11110010? 10010101 + 11110010 = 128 * 2 + 64 * 1 + 32 * 1 + 16 * 2 + 4 * 1 + 1 * 1 10010101 + 11110010 = 256 + 64 + 32 + 32 + 4 + 1 10010101 + 11110010 = 391
  • 13.
  • 14.
    Translate: 01100111 0110001 0110000 0110001 UTF-8: Becausemore special characters are needed most of the web is using (87%) UTF-8.
  • 15.
    Seeing Binary inJavascript Binary ---> Decimal parseInt(‘01001000’, 2) // => 72 Decimal ---> Binary (45).toString(2)// => '101101' Binary ---> String String.fromCodePoint(parseInt('11111010010111110', 2)) // => "💾" String ---> Binary "💾".codePointAt().toString(2) //=> ‘11111010010111110’
  • 16.
    Questions? Thank you forlearning about Binary

Editor's Notes