SlideShare a Scribd company logo
Wearable Accelerometer Optimal
Positions for Human Motion
Recognition
2020 IEEELifeTech, Kyoto, March. 10
K e i o U n i v e r s i t y
C h e n g s h u o X i a
Y u t a S u g i u r a
• Name: Chengshuo Xia (Nick)
PhD. Candidate
• Affiliation: LifeStyle Computing Lab
(PI: Assist. Prof. Sugiura)
Faculty of Science and Technology
Keio University, Japan
• Interested fields: Human-Computer Interaction
Wearable Technique
Energy Harvesting
Presenter Introduction
2
3
Content
1. Background
2. Experiment Design
3. Methodology
4. Result & Conclusion
Background
• Wearable sensors have been applied widely to the
recognition of human activities of daily living (ADL),
assists the human daily life from several aspects.
• Also have been constantly focused on from both
commercial perspective and research perspective.
5
[1] Yuan, Ye, and Kris Kitani. "3d ego-pose estimation via imitation learning." Proceedings of the European Conference on Computer Vision (ECCV). 2018.
Background
Huawei Band 4 Pro Google Glass 3D Ego-Pose Estimation[1]
• For wearing case, significant issue is to persuade
the user to wear it.
• Thus, the system considering the user’s body
conditions and preferences is necessary.
• For example:
6
Background
Disabled person: Long-term monitoring:
• Disabled body
part may not
suitable for
placing
• Wearing the device for a long
time
• Important to study the number of wearable
sensors attached and their positions on the
human body.
• We investigated and presented a series of result
for different numbers and positions of wearable
accelerometers for human ADL recognition.
7
Background
Experiment Design
• Device: Xsens (MVN Awinda)
• Each unit contains
Accelerometer
magnetometer and gyroscope.
• Sensor positions:
• 17 different locations
(Head/Chest/Waist
RL: hand/Forearm/Shoulder
/Upper leg/Lower leg/Foot)
• Participants: 10
5 males and 5 females
9
Experiment Design
Figure 1. Worn sensors on human body (with portion of practical sensors)
• Executed activities:
• Static/Dynamic activity: be performed for 90s;
• Transitional activity: 15times
10
Activity
Activity Type Activity
Static Activity
Standing
Lying
Dynamic Activity
Walking
Running
Going Upstairs
Going Downstairs
Transitional Activity
Sitting-to-standing
Standing-to-sitting
Squatting-to-standing
Standing-to-squatting
• Data Processing:
• Machine learning---Support Vector Machine (SVM)[2]
• Data Segmentation:
4s as sliding window size, 2s for overlapping [3]
• Feature Extraction:
• Mean value/Variance/Standard Variance/ 75th percentile/
Inter-percentile;
• Mean value of power spectrum/ Median value of power
spectrum/Shannon entropy value;
• 8 features from time and frequency domain; calculate from 3
axes of accelerometer data;
• Validation: 10-fold cross validation (3 times and
calculate the average value as the accuracy)
11
Support Vector Machine
[2] S. Rosati, G. Balestra, and M. Knaflitz, "Comparison of different sets of features for human activity recognition by wearable sensors," Sensors, vol. 18, p. 4189, 2018.
[3] G. Wang, Q. Li, L. Wang, W. Wang, M. Wu, and T. Liu, "Impact of sliding window length in indoor human motion modes and pose pattern recognition based on
smartphone sensors," Sensors, vol. 18, p. 1965, 2018.
Methodology
• Object/Goal:
Under the requirement of different sensor amount,
figure out the optimal position’s combination
among 17 placed locations.
13
Investigation Object
Worn sensor
number
N∈17
N-Dimension
space
Optimal
sensor
combination
Maximum
classification accuracy
within N-D space
• Approach:
Discrete Particle Swarm Optimization (DPSO)based
algorithm;
• Heuristic swarm intelligence algorithm
• Imitate the behaviour of birds foraging
• N-dimension discrete space optimization
We developed a multistage and multi-swarm discrete
particle swarm optimization (MSMS-DPSO) algorithm;
14
MSMS-DPSO Algorithm
Parameters in DPSO Sensor Position Optimization
N-dimensional particle N sensors
Position of a particle Position of sensor (chest/leg/…)
Fitness value Recognition accuracy of activity
Fitness function Relationship between sensor positions and
recognition accuracy
• Implementation:
• 3-sensor optimization(as an example):
15
Algorithm Implemetation
Figure 3. Implementation of MSMS-DPSO (3-sensor as an instance)
17
x
x
17
x
x
17
16
15
…
5
x
x
5
x
x
5
x
x
1
2
3
1
x
x
1
x
x
…
Swarm 1 Swarm 3 Swarm 9
Whole population
17
13
7
17
13
7
17
6
9
…
5
6
3
5
7
3
5
6
2
1
4
6
1
4
8
1
3
6
…
Swarm 1 Swarm 3 Swarm 9
Whole populationGlobal optimal particle in each swarm
17
13
7
5
7
3
1
3
6
Swarm 1/Particle 1 Swarm 3/Particle 3 Swarm 9/Particle 9
Whole population
… …
1
3
5
Swarm number:9
Particle number: 27
Swarm number:9
Particle number: 27
Swarm number:9
Particle number: 9
Intragroup optimization end
• 2 stages:
①Intragroup optimization
②Whole swarm optimization
• Processing flow:
• Update equations:
16
Algorithm Processing Flow
Figure 2. Working process of MSMS-DPSO
'
1 1(2)i i i
n n nx x v+ += +
1 1 1'
1
1 1 1
[ ] [ ] < 0.5
(3)
[ ] 1 [ ] > 0.5
i i i
n n ni
n i i i
n n n
x if x x
x
x if x x
+ + +
+
+ + +
 −
= 
+ −
' '
1 1 1 2 2( ) ( )best best
i i i i i i
n n n nv w v c r P x c r G x+ = ⋅ + − + −
Initial solutions
generated
(9*N)
Indicate the first -
dimension position as
2P-1 (P from 1 to 9)
Generate initial fitness
value of each particle
Update the local and
global optimal value in
each swarm
Velocity and position
update (Eq.1 and 2)
Global optimal value
from each swarm as new
particles
Iteration times =
N+1
Generate new global
optimal value
Velocity and position
update (Eq.1 and 2)
All particle converge into
the same position?
Output
1
2
• Repetition avoidance:
• 3-sensor optimization (as an instance):
• Bound limitation
• 1≤Position≤17
17
Key Parts for Iterations
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
15
15
15
16
16
16
17
17
17
...
Converge direction (v < 0)
Global best position [1,2,3]
Current particle position [6,5,4]
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
15
15
15
16
16
16
17
17
17
...
Global best position [1,2,3]
Current particle position [3,5,4]
Dimension 1
Dimension 2
Dimension 3
Dimension 1
Dimension 2
Dimension 3
After update for
dimension 1
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
15
15
15
16
16
16
17
17
17
...
Converge direction (v > 0)
Global best position [3,4,6]
Current particle position [1,2,3]
Dimension 1
Dimension 2
Dimension 3
After update for
dimension 1
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
15
15
15
16
16
16
17
17
17
...
Global best position [3,4,6]
Current particle position [4,2,3]
Dimension 1
Dimension 2
Dimension 3
Figure 4. Position updating for not repeating
(a) Position process for not repeating while v<0 (b) Position process for not repeating while v>0
Result & Conclusion
• Configuring the relevant parameters
• N=2/3/4
• Swarm size:9
• Particles in each swarm: 3
• Stop condition:
Intragroup period: Reach iteration times:
N+1;
Whole swarm period: Converge to one
position;
19
Result
• Apply the MSMS-DPSO to investigate 2-sensor,
3-sensor and 4-sensor position combination
Figure 5. Convergence process of MSMD-DPSO (3-sensor example)
Stage 1 Stage 2
• Result of MSDS-PSO
20
Result
Sensor
number Position
Accuracy
(%)
1
Right shoulder 88.83%
Waist 87.73%
Left Shoulder 87.68%
2
Waist +Chest 93.55%
Waist+ Head 92.68%
Waist+ Right
shoulder
92.66%
3
Waist + Chest
+Right upper arm
94.57%
Waist + Chest
+Head
94.54%
Waist + Chest
+Left shoulder
94.29%
4
Waist + Chest +
Head +Right upper
arm
95.12%
Waist + Chest +
Head +Left upper
arm
94.83%
Waist + Chest+
Right upper arm
+Left upper arm
94.71%
Acceptable optimal combinations for 1 to 4 sensors:
• For different types of activity:
21
Result
0
10
20
30
40
50
60
70
80
90
100
Static Dynamic Transistional
F1-score(%)
Activity Type
Comparison of optimal sensor combinationwith different
number
Right shoulder
Waist+Chest
Waist+Chest+Right upper arm
Waist+Chest+Head+Right upper arm
Static activity: Stand, lie
Dynamic activity: Walk, run, go upstairs, go
downstairs
Transitional activity: sit-to-stand, stand-to-sit, squat-
to-stand, stand-to-squat
Figure 6. F1-score of optimal 1-, 2-, 3- and 4- sensor combinations
• Upper body has advantages
• Significant improvement on
transitional activity recognition
• Confusion matrix:
22
Result
Figure 7. The confusion matrix of optimal two-sensor, three-sensor and four sensor combinations
23
Conclusion
• Upper body part, especially the chest, waist,
shoulder and upper arm can present advantages.
• Basically 2 sensors can satisfy the most
situations;
• More sensors used will produce the significant
improvement on transitional activity;
• Future work:
• More complex motions considered;
• More types of sensor considered;
• Rapid algorithm improvement, for online application;
Thank you very much!

More Related Content

Similar to Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTech2020)

Seminar nov2017
Seminar nov2017Seminar nov2017
Seminar nov2017
Ahmed Youssef Ali Amer
 
Computer aided detection of pulmonary nodules using genetic programming
Computer aided detection of pulmonary nodules using genetic programmingComputer aided detection of pulmonary nodules using genetic programming
Computer aided detection of pulmonary nodules using genetic programming
Wookjin Choi
 
Recognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor dataRecognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor data
Suhyun Cho
 
Henrik Christensen - Vision for Co-robot Applications
Henrik Christensen - Vision for Co-robot ApplicationsHenrik Christensen - Vision for Co-robot Applications
Henrik Christensen - Vision for Co-robot Applications
Daniel Huber
 
Henrik Christensen - Vision for co-robot applications
Henrik Christensen  -  Vision for co-robot applicationsHenrik Christensen  -  Vision for co-robot applications
Henrik Christensen - Vision for co-robot applications
Daniel Huber
 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
IJRESJOURNAL
 
Development of a Virtual Reality Simulator for Robotic Brain Tumor Resection
Development of a Virtual Reality Simulator for Robotic Brain Tumor ResectionDevelopment of a Virtual Reality Simulator for Robotic Brain Tumor Resection
Development of a Virtual Reality Simulator for Robotic Brain Tumor Resection
saulnml
 
[Skolkovo Robotics 2015 Day 1] Тетерюков Дмитрий | Dzmitry Tsetserukou
[Skolkovo Robotics 2015 Day 1]  Тетерюков Дмитрий | Dzmitry Tsetserukou [Skolkovo Robotics 2015 Day 1]  Тетерюков Дмитрий | Dzmitry Tsetserukou
[Skolkovo Robotics 2015 Day 1] Тетерюков Дмитрий | Dzmitry Tsetserukou
Skolkovo Robotics Center
 
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
Victor Asanza
 
A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...
Rafael Ferreira da Silva
 
EE660_Report_YaxinLiu_8448347171
EE660_Report_YaxinLiu_8448347171EE660_Report_YaxinLiu_8448347171
EE660_Report_YaxinLiu_8448347171
Yaxin Liu
 
Integrated RF and Shim coils for MRI
 Integrated RF and Shim coils for MRI Integrated RF and Shim coils for MRI
Integrated RF and Shim coils for MRI
NeuroPoly
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
manishkurse
 
Week08.pdf
Week08.pdfWeek08.pdf
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
Ryo Iwaki
 
Understand students’ self-reflections through learning analytics
Understand students’ self-reflections through learning analyticsUnderstand students’ self-reflections through learning analytics
Understand students’ self-reflections through learning analytics
Vitomir Kovanovic
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
TulasiramKandula1
 
A multi-sensor based uncut crop edge detection method for head-feeding combin...
A multi-sensor based uncut crop edge detection method for head-feeding combin...A multi-sensor based uncut crop edge detection method for head-feeding combin...
A multi-sensor based uncut crop edge detection method for head-feeding combin...
Institute of Agricultural Machinery, NARO
 
Matthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 PresentationMatthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 Presentation
Matthew Gray
 
Final Thesis Presentation
Final Thesis PresentationFinal Thesis Presentation
Final Thesis Presentation
Sajid Rasheed
 

Similar to Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTech2020) (20)

Seminar nov2017
Seminar nov2017Seminar nov2017
Seminar nov2017
 
Computer aided detection of pulmonary nodules using genetic programming
Computer aided detection of pulmonary nodules using genetic programmingComputer aided detection of pulmonary nodules using genetic programming
Computer aided detection of pulmonary nodules using genetic programming
 
Recognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor dataRecognition of anaerobic based on machine learning using smart watch sensor data
Recognition of anaerobic based on machine learning using smart watch sensor data
 
Henrik Christensen - Vision for Co-robot Applications
Henrik Christensen - Vision for Co-robot ApplicationsHenrik Christensen - Vision for Co-robot Applications
Henrik Christensen - Vision for Co-robot Applications
 
Henrik Christensen - Vision for co-robot applications
Henrik Christensen  -  Vision for co-robot applicationsHenrik Christensen  -  Vision for co-robot applications
Henrik Christensen - Vision for co-robot applications
 
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
An Improved Adaptive Multi-Objective Particle Swarm Optimization for Disassem...
 
Development of a Virtual Reality Simulator for Robotic Brain Tumor Resection
Development of a Virtual Reality Simulator for Robotic Brain Tumor ResectionDevelopment of a Virtual Reality Simulator for Robotic Brain Tumor Resection
Development of a Virtual Reality Simulator for Robotic Brain Tumor Resection
 
[Skolkovo Robotics 2015 Day 1] Тетерюков Дмитрий | Dzmitry Tsetserukou
[Skolkovo Robotics 2015 Day 1]  Тетерюков Дмитрий | Dzmitry Tsetserukou [Skolkovo Robotics 2015 Day 1]  Тетерюков Дмитрий | Dzmitry Tsetserukou
[Skolkovo Robotics 2015 Day 1] Тетерюков Дмитрий | Dzmitry Tsetserukou
 
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
⭐⭐⭐⭐⭐ Finding a Dynamical Model of a Social Norm Physical Activity Intervention
 
A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...A science-gateway for workflow executions: online and non-clairvoyant self-h...
A science-gateway for workflow executions: online and non-clairvoyant self-h...
 
EE660_Report_YaxinLiu_8448347171
EE660_Report_YaxinLiu_8448347171EE660_Report_YaxinLiu_8448347171
EE660_Report_YaxinLiu_8448347171
 
Integrated RF and Shim coils for MRI
 Integrated RF and Shim coils for MRI Integrated RF and Shim coils for MRI
Integrated RF and Shim coils for MRI
 
Manish Kurse PhD research slides
Manish Kurse PhD research slidesManish Kurse PhD research slides
Manish Kurse PhD research slides
 
Week08.pdf
Week08.pdfWeek08.pdf
Week08.pdf
 
方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用方策勾配型強化学習の基礎と応用
方策勾配型強化学習の基礎と応用
 
Understand students’ self-reflections through learning analytics
Understand students’ self-reflections through learning analyticsUnderstand students’ self-reflections through learning analytics
Understand students’ self-reflections through learning analytics
 
Introduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdfIntroduction to computing Processing and performance.pdf
Introduction to computing Processing and performance.pdf
 
A multi-sensor based uncut crop edge detection method for head-feeding combin...
A multi-sensor based uncut crop edge detection method for head-feeding combin...A multi-sensor based uncut crop edge detection method for head-feeding combin...
A multi-sensor based uncut crop edge detection method for head-feeding combin...
 
Matthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 PresentationMatthew Gray Summer 2015 Presentation
Matthew Gray Summer 2015 Presentation
 
Final Thesis Presentation
Final Thesis PresentationFinal Thesis Presentation
Final Thesis Presentation
 

More from sugiuralab

ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
sugiuralab
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
sugiuralab
 
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェースSelfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
sugiuralab
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
sugiuralab
 
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
sugiuralab
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価
sugiuralab
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツール
sugiuralab
 
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
sugiuralab
 
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイスSkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
sugiuralab
 
バイオリンの運弓動作計測による初心者と経験者の差異分析
バイオリンの運弓動作計測による初心者と経験者の差異分析バイオリンの運弓動作計測による初心者と経験者の差異分析
バイオリンの運弓動作計測による初心者と経験者の差異分析
sugiuralab
 
Converting Tatamis into Touch Sensors by Measuring Capacitance
Converting Tatamis into Touch Sensors by Measuring CapacitanceConverting Tatamis into Touch Sensors by Measuring Capacitance
Converting Tatamis into Touch Sensors by Measuring Capacitance
sugiuralab
 
Pinch Force Measurement Using a Geomagnetic Sensor
Pinch Force Measurement Using a Geomagnetic SensorPinch Force Measurement Using a Geomagnetic Sensor
Pinch Force Measurement Using a Geomagnetic Sensor
sugiuralab
 
Smartphone-Based Teaching System for Neonate Soothing Motions
Smartphone-Based Teaching System for Neonate Soothing MotionsSmartphone-Based Teaching System for Neonate Soothing Motions
Smartphone-Based Teaching System for Neonate Soothing Motions
sugiuralab
 
Tactile Presentation of Orchestral Conductor's Motion Trajectory
Tactile Presentation of Orchestral Conductor's Motion TrajectoryTactile Presentation of Orchestral Conductor's Motion Trajectory
Tactile Presentation of Orchestral Conductor's Motion Trajectory
sugiuralab
 
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
sugiuralab
 
Seeing the Wind: An Interactive Mist Interface for Airflow Input
Seeing the Wind: An Interactive Mist Interface for Airflow InputSeeing the Wind: An Interactive Mist Interface for Airflow Input
Seeing the Wind: An Interactive Mist Interface for Airflow Input
sugiuralab
 
Identification and Authentication Using Clavicles
Identification and Authentication Using ClaviclesIdentification and Authentication Using Clavicles
Identification and Authentication Using Clavicles
sugiuralab
 
Estimation of Violin Bow Pressure Using Photo-Reflective Sensors
Estimation of Violin Bow Pressure Using Photo-Reflective SensorsEstimation of Violin Bow Pressure Using Photo-Reflective Sensors
Estimation of Violin Bow Pressure Using Photo-Reflective Sensors
sugiuralab
 
バウンサーを動かす外付けデバイス
バウンサーを動かす外付けデバイスバウンサーを動かす外付けデバイス
バウンサーを動かす外付けデバイス
sugiuralab
 
A Virtual Window Using Curtains and Image Projection
A Virtual Window Using Curtains and Image ProjectionA Virtual Window Using Curtains and Image Projection
A Virtual Window Using Curtains and Image Projection
sugiuralab
 

More from sugiuralab (20)

ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
ShadoCookies: 視点位置に依存して情報切り替え可能なクッキー製造手法
 
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
TataPixel: 畳の異方性を利用した切り替え可能なディスプレイの提案
 
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェースSelfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
Selfie WanD: 自撮り棒を動かすことによる撮影用入力インタフェース
 
スマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システムスマートフォンを用いた新生児あやし動作の教示システム
スマートフォンを用いた新生児あやし動作の教示システム
 
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
EarAuthCam: Personal Identification and Authentication Method Using Ear Image...
 
プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価プレイマットのパターン生成支援ツールの評価
プレイマットのパターン生成支援ツールの評価
 
プレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツールプレイマットのパターン生成支援ツール
プレイマットのパターン生成支援ツール
 
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
EarHover:ヒアラブルデバイスにおける音漏れ信号を用いた空中ジェスチャ認識
 
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイスSkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
SkinRing: 装着方向に依らない指側面でのジェスチャ入力可能なリング型デバイス
 
バイオリンの運弓動作計測による初心者と経験者の差異分析
バイオリンの運弓動作計測による初心者と経験者の差異分析バイオリンの運弓動作計測による初心者と経験者の差異分析
バイオリンの運弓動作計測による初心者と経験者の差異分析
 
Converting Tatamis into Touch Sensors by Measuring Capacitance
Converting Tatamis into Touch Sensors by Measuring CapacitanceConverting Tatamis into Touch Sensors by Measuring Capacitance
Converting Tatamis into Touch Sensors by Measuring Capacitance
 
Pinch Force Measurement Using a Geomagnetic Sensor
Pinch Force Measurement Using a Geomagnetic SensorPinch Force Measurement Using a Geomagnetic Sensor
Pinch Force Measurement Using a Geomagnetic Sensor
 
Smartphone-Based Teaching System for Neonate Soothing Motions
Smartphone-Based Teaching System for Neonate Soothing MotionsSmartphone-Based Teaching System for Neonate Soothing Motions
Smartphone-Based Teaching System for Neonate Soothing Motions
 
Tactile Presentation of Orchestral Conductor's Motion Trajectory
Tactile Presentation of Orchestral Conductor's Motion TrajectoryTactile Presentation of Orchestral Conductor's Motion Trajectory
Tactile Presentation of Orchestral Conductor's Motion Trajectory
 
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective SensorsTouchLog: Finger Micro Gesture Recognition  Using Photo-Reflective Sensors
TouchLog: Finger Micro Gesture Recognition Using Photo-Reflective Sensors
 
Seeing the Wind: An Interactive Mist Interface for Airflow Input
Seeing the Wind: An Interactive Mist Interface for Airflow InputSeeing the Wind: An Interactive Mist Interface for Airflow Input
Seeing the Wind: An Interactive Mist Interface for Airflow Input
 
Identification and Authentication Using Clavicles
Identification and Authentication Using ClaviclesIdentification and Authentication Using Clavicles
Identification and Authentication Using Clavicles
 
Estimation of Violin Bow Pressure Using Photo-Reflective Sensors
Estimation of Violin Bow Pressure Using Photo-Reflective SensorsEstimation of Violin Bow Pressure Using Photo-Reflective Sensors
Estimation of Violin Bow Pressure Using Photo-Reflective Sensors
 
バウンサーを動かす外付けデバイス
バウンサーを動かす外付けデバイスバウンサーを動かす外付けデバイス
バウンサーを動かす外付けデバイス
 
A Virtual Window Using Curtains and Image Projection
A Virtual Window Using Curtains and Image ProjectionA Virtual Window Using Curtains and Image Projection
A Virtual Window Using Curtains and Image Projection
 

Recently uploaded

Analysis and Assessment of Gateway Process – HemiSync(1).PDF
Analysis and Assessment of Gateway Process – HemiSync(1).PDFAnalysis and Assessment of Gateway Process – HemiSync(1).PDF
Analysis and Assessment of Gateway Process – HemiSync(1).PDF
JoshuaDagama1
 
The Fascinating World of Bats: Unveiling the Secrets of the Night
The Fascinating World of Bats: Unveiling the Secrets of the NightThe Fascinating World of Bats: Unveiling the Secrets of the Night
The Fascinating World of Bats: Unveiling the Secrets of the Night
thomasard1122
 
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANEMRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
DK PAGEANT
 
Types of Garage Doors Explained: Energy Efficiency, Style, and More
Types of Garage Doors Explained: Energy Efficiency, Style, and MoreTypes of Garage Doors Explained: Energy Efficiency, Style, and More
Types of Garage Doors Explained: Energy Efficiency, Style, and More
Affordable Garage Door Repair
 
Care Instructions for Activewear & Swim Suits.pdf
Care Instructions for Activewear & Swim Suits.pdfCare Instructions for Activewear & Swim Suits.pdf
Care Instructions for Activewear & Swim Suits.pdf
sundazesurf80
 
Insanony: Watch Instagram Stories Secretly - A Complete Guide
Insanony: Watch Instagram Stories Secretly - A Complete GuideInsanony: Watch Instagram Stories Secretly - A Complete Guide
Insanony: Watch Instagram Stories Secretly - A Complete Guide
Trending Blogers
 
Biography and career history of Bruno Amezcua
Biography and career history of Bruno AmezcuaBiography and career history of Bruno Amezcua
Biography and career history of Bruno Amezcua
Bruno Amezcua
 
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
lyurzi7r
 
Capsule Wardrobe Women: A document show
Capsule Wardrobe Women:  A document showCapsule Wardrobe Women:  A document show
Capsule Wardrobe Women: A document show
mustaphaadeyemi08
 
thrifthands-thrift store- get the latest trends
thrifthands-thrift store- get the latest trendsthrifthands-thrift store- get the latest trends
thrifthands-thrift store- get the latest trends
amarshifan555
 
Self-Discipline: The Secret Weapon for Certain Victory
Self-Discipline: The Secret Weapon for Certain VictorySelf-Discipline: The Secret Weapon for Certain Victory
Self-Discipline: The Secret Weapon for Certain Victory
bluetroyvictorVinay
 

Recently uploaded (11)

Analysis and Assessment of Gateway Process – HemiSync(1).PDF
Analysis and Assessment of Gateway Process – HemiSync(1).PDFAnalysis and Assessment of Gateway Process – HemiSync(1).PDF
Analysis and Assessment of Gateway Process – HemiSync(1).PDF
 
The Fascinating World of Bats: Unveiling the Secrets of the Night
The Fascinating World of Bats: Unveiling the Secrets of the NightThe Fascinating World of Bats: Unveiling the Secrets of the Night
The Fascinating World of Bats: Unveiling the Secrets of the Night
 
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANEMRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
MRS PUNE 2024 - WINNER AMRUTHAA UTTAM JAGDHANE
 
Types of Garage Doors Explained: Energy Efficiency, Style, and More
Types of Garage Doors Explained: Energy Efficiency, Style, and MoreTypes of Garage Doors Explained: Energy Efficiency, Style, and More
Types of Garage Doors Explained: Energy Efficiency, Style, and More
 
Care Instructions for Activewear & Swim Suits.pdf
Care Instructions for Activewear & Swim Suits.pdfCare Instructions for Activewear & Swim Suits.pdf
Care Instructions for Activewear & Swim Suits.pdf
 
Insanony: Watch Instagram Stories Secretly - A Complete Guide
Insanony: Watch Instagram Stories Secretly - A Complete GuideInsanony: Watch Instagram Stories Secretly - A Complete Guide
Insanony: Watch Instagram Stories Secretly - A Complete Guide
 
Biography and career history of Bruno Amezcua
Biography and career history of Bruno AmezcuaBiography and career history of Bruno Amezcua
Biography and career history of Bruno Amezcua
 
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
一比一原版(McGill毕业证书)麦吉尔大学毕业证如何办理
 
Capsule Wardrobe Women: A document show
Capsule Wardrobe Women:  A document showCapsule Wardrobe Women:  A document show
Capsule Wardrobe Women: A document show
 
thrifthands-thrift store- get the latest trends
thrifthands-thrift store- get the latest trendsthrifthands-thrift store- get the latest trends
thrifthands-thrift store- get the latest trends
 
Self-Discipline: The Secret Weapon for Certain Victory
Self-Discipline: The Secret Weapon for Certain VictorySelf-Discipline: The Secret Weapon for Certain Victory
Self-Discipline: The Secret Weapon for Certain Victory
 

Wearable Accelerometer Optimal Positions for Human Motion Recognition(LifeTech2020)

  • 1. Wearable Accelerometer Optimal Positions for Human Motion Recognition 2020 IEEELifeTech, Kyoto, March. 10 K e i o U n i v e r s i t y C h e n g s h u o X i a Y u t a S u g i u r a
  • 2. • Name: Chengshuo Xia (Nick) PhD. Candidate • Affiliation: LifeStyle Computing Lab (PI: Assist. Prof. Sugiura) Faculty of Science and Technology Keio University, Japan • Interested fields: Human-Computer Interaction Wearable Technique Energy Harvesting Presenter Introduction 2
  • 3. 3 Content 1. Background 2. Experiment Design 3. Methodology 4. Result & Conclusion
  • 5. • Wearable sensors have been applied widely to the recognition of human activities of daily living (ADL), assists the human daily life from several aspects. • Also have been constantly focused on from both commercial perspective and research perspective. 5 [1] Yuan, Ye, and Kris Kitani. "3d ego-pose estimation via imitation learning." Proceedings of the European Conference on Computer Vision (ECCV). 2018. Background Huawei Band 4 Pro Google Glass 3D Ego-Pose Estimation[1]
  • 6. • For wearing case, significant issue is to persuade the user to wear it. • Thus, the system considering the user’s body conditions and preferences is necessary. • For example: 6 Background Disabled person: Long-term monitoring: • Disabled body part may not suitable for placing • Wearing the device for a long time
  • 7. • Important to study the number of wearable sensors attached and their positions on the human body. • We investigated and presented a series of result for different numbers and positions of wearable accelerometers for human ADL recognition. 7 Background
  • 9. • Device: Xsens (MVN Awinda) • Each unit contains Accelerometer magnetometer and gyroscope. • Sensor positions: • 17 different locations (Head/Chest/Waist RL: hand/Forearm/Shoulder /Upper leg/Lower leg/Foot) • Participants: 10 5 males and 5 females 9 Experiment Design Figure 1. Worn sensors on human body (with portion of practical sensors)
  • 10. • Executed activities: • Static/Dynamic activity: be performed for 90s; • Transitional activity: 15times 10 Activity Activity Type Activity Static Activity Standing Lying Dynamic Activity Walking Running Going Upstairs Going Downstairs Transitional Activity Sitting-to-standing Standing-to-sitting Squatting-to-standing Standing-to-squatting
  • 11. • Data Processing: • Machine learning---Support Vector Machine (SVM)[2] • Data Segmentation: 4s as sliding window size, 2s for overlapping [3] • Feature Extraction: • Mean value/Variance/Standard Variance/ 75th percentile/ Inter-percentile; • Mean value of power spectrum/ Median value of power spectrum/Shannon entropy value; • 8 features from time and frequency domain; calculate from 3 axes of accelerometer data; • Validation: 10-fold cross validation (3 times and calculate the average value as the accuracy) 11 Support Vector Machine [2] S. Rosati, G. Balestra, and M. Knaflitz, "Comparison of different sets of features for human activity recognition by wearable sensors," Sensors, vol. 18, p. 4189, 2018. [3] G. Wang, Q. Li, L. Wang, W. Wang, M. Wu, and T. Liu, "Impact of sliding window length in indoor human motion modes and pose pattern recognition based on smartphone sensors," Sensors, vol. 18, p. 1965, 2018.
  • 13. • Object/Goal: Under the requirement of different sensor amount, figure out the optimal position’s combination among 17 placed locations. 13 Investigation Object Worn sensor number N∈17 N-Dimension space Optimal sensor combination Maximum classification accuracy within N-D space
  • 14. • Approach: Discrete Particle Swarm Optimization (DPSO)based algorithm; • Heuristic swarm intelligence algorithm • Imitate the behaviour of birds foraging • N-dimension discrete space optimization We developed a multistage and multi-swarm discrete particle swarm optimization (MSMS-DPSO) algorithm; 14 MSMS-DPSO Algorithm Parameters in DPSO Sensor Position Optimization N-dimensional particle N sensors Position of a particle Position of sensor (chest/leg/…) Fitness value Recognition accuracy of activity Fitness function Relationship between sensor positions and recognition accuracy
  • 15. • Implementation: • 3-sensor optimization(as an example): 15 Algorithm Implemetation Figure 3. Implementation of MSMS-DPSO (3-sensor as an instance) 17 x x 17 x x 17 16 15 … 5 x x 5 x x 5 x x 1 2 3 1 x x 1 x x … Swarm 1 Swarm 3 Swarm 9 Whole population 17 13 7 17 13 7 17 6 9 … 5 6 3 5 7 3 5 6 2 1 4 6 1 4 8 1 3 6 … Swarm 1 Swarm 3 Swarm 9 Whole populationGlobal optimal particle in each swarm 17 13 7 5 7 3 1 3 6 Swarm 1/Particle 1 Swarm 3/Particle 3 Swarm 9/Particle 9 Whole population … … 1 3 5 Swarm number:9 Particle number: 27 Swarm number:9 Particle number: 27 Swarm number:9 Particle number: 9 Intragroup optimization end • 2 stages: ①Intragroup optimization ②Whole swarm optimization
  • 16. • Processing flow: • Update equations: 16 Algorithm Processing Flow Figure 2. Working process of MSMS-DPSO ' 1 1(2)i i i n n nx x v+ += + 1 1 1' 1 1 1 1 [ ] [ ] < 0.5 (3) [ ] 1 [ ] > 0.5 i i i n n ni n i i i n n n x if x x x x if x x + + + + + + +  − =  + − ' ' 1 1 1 2 2( ) ( )best best i i i i i i n n n nv w v c r P x c r G x+ = ⋅ + − + − Initial solutions generated (9*N) Indicate the first - dimension position as 2P-1 (P from 1 to 9) Generate initial fitness value of each particle Update the local and global optimal value in each swarm Velocity and position update (Eq.1 and 2) Global optimal value from each swarm as new particles Iteration times = N+1 Generate new global optimal value Velocity and position update (Eq.1 and 2) All particle converge into the same position? Output 1 2
  • 17. • Repetition avoidance: • 3-sensor optimization (as an instance): • Bound limitation • 1≤Position≤17 17 Key Parts for Iterations 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 15 15 15 16 16 16 17 17 17 ... Converge direction (v < 0) Global best position [1,2,3] Current particle position [6,5,4] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 15 15 15 16 16 16 17 17 17 ... Global best position [1,2,3] Current particle position [3,5,4] Dimension 1 Dimension 2 Dimension 3 Dimension 1 Dimension 2 Dimension 3 After update for dimension 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 15 15 15 16 16 16 17 17 17 ... Converge direction (v > 0) Global best position [3,4,6] Current particle position [1,2,3] Dimension 1 Dimension 2 Dimension 3 After update for dimension 1 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 15 15 15 16 16 16 17 17 17 ... Global best position [3,4,6] Current particle position [4,2,3] Dimension 1 Dimension 2 Dimension 3 Figure 4. Position updating for not repeating (a) Position process for not repeating while v<0 (b) Position process for not repeating while v>0
  • 19. • Configuring the relevant parameters • N=2/3/4 • Swarm size:9 • Particles in each swarm: 3 • Stop condition: Intragroup period: Reach iteration times: N+1; Whole swarm period: Converge to one position; 19 Result • Apply the MSMS-DPSO to investigate 2-sensor, 3-sensor and 4-sensor position combination Figure 5. Convergence process of MSMD-DPSO (3-sensor example) Stage 1 Stage 2
  • 20. • Result of MSDS-PSO 20 Result Sensor number Position Accuracy (%) 1 Right shoulder 88.83% Waist 87.73% Left Shoulder 87.68% 2 Waist +Chest 93.55% Waist+ Head 92.68% Waist+ Right shoulder 92.66% 3 Waist + Chest +Right upper arm 94.57% Waist + Chest +Head 94.54% Waist + Chest +Left shoulder 94.29% 4 Waist + Chest + Head +Right upper arm 95.12% Waist + Chest + Head +Left upper arm 94.83% Waist + Chest+ Right upper arm +Left upper arm 94.71% Acceptable optimal combinations for 1 to 4 sensors:
  • 21. • For different types of activity: 21 Result 0 10 20 30 40 50 60 70 80 90 100 Static Dynamic Transistional F1-score(%) Activity Type Comparison of optimal sensor combinationwith different number Right shoulder Waist+Chest Waist+Chest+Right upper arm Waist+Chest+Head+Right upper arm Static activity: Stand, lie Dynamic activity: Walk, run, go upstairs, go downstairs Transitional activity: sit-to-stand, stand-to-sit, squat- to-stand, stand-to-squat Figure 6. F1-score of optimal 1-, 2-, 3- and 4- sensor combinations • Upper body has advantages • Significant improvement on transitional activity recognition
  • 22. • Confusion matrix: 22 Result Figure 7. The confusion matrix of optimal two-sensor, three-sensor and four sensor combinations
  • 23. 23 Conclusion • Upper body part, especially the chest, waist, shoulder and upper arm can present advantages. • Basically 2 sensors can satisfy the most situations; • More sensors used will produce the significant improvement on transitional activity; • Future work: • More complex motions considered; • More types of sensor considered; • Rapid algorithm improvement, for online application;
  • 24. Thank you very much!