The document describes a General Disease Prediction System (GDPS) that uses machine learning and data mining techniques to predict diseases based on patient symptoms.
The GDPS first collects patient data, preprocesses it, and extracts relevant features. It then implements the ID3 decision tree algorithm to generate a predictive model and classify diseases. As an admin, one can train the model using sample data. As a user, one can enter symptoms and the trained model will predict the likely disease and recommend precautions.
The GDPS was tested on a dataset of 120 patients and achieved 86.67% accuracy in disease prediction. The system currently covers common diseases but future work involves expanding it to predict more serious or fatal diseases like various cancers