SlideShare a Scribd company logo
1 of 5
Download to read offline
The	
  process	
  of	
  photosynthesis	
  involves	
  the	
  use	
  of	
  light	
  energy	
  to	
  convert	
  carbon	
  dioxide	
  and	
  
water	
  into	
  sugar,	
  oxygen,	
  and	
  other	
  organic	
  compounds.	
  This	
  process	
  is	
  o;en	
  summarized	
  by	
  
the	
  following	
  reac=on:
6	
  H2O	
  +	
  6	
  CO2	
  +	
  light	
  energy	
  →	
  C6H12O6	
  +	
  6	
  O2
This	
  process	
  is	
  an	
  extremely	
  complex	
  one,	
  occurring	
  in	
  two	
  stages.	
  The	
  first	
  stage,	
  called	
  the	
  
light	
  reac+ons	
  of	
  photosynthesis,	
  requires	
  light	
  energy.	
  The	
  products	
  of	
  the	
  light	
  reac=ons	
  are	
  
then	
  used	
  to	
  produce	
  glucose	
  from	
  carbon	
  dioxide	
  and	
  water.	
  Because	
  the	
  reac=ons	
  in	
  the	
  
second	
  stage	
  do	
  not	
  require	
  the	
  direct	
  use	
  of	
  light	
  energy,	
  they	
  are	
  called	
  the	
  dark	
  reac+ons	
  of	
  
photosynthesis.
In	
  the	
  light	
  reac=ons,	
  electrons	
  derived	
  from	
  water	
  are	
  “excited”	
  (raised	
  to	
  higher	
  energy	
  
levels)	
  in	
  several	
  steps,	
  called	
  photosystems	
  I	
  and	
  II.	
  In	
  both	
  steps,	
  chlorophyll	
  absorbs	
  light	
  
energy	
  that	
  is	
  used	
  to	
  excite	
  the	
  electrons.	
  Normally,	
  these	
  electrons	
  are	
  passed	
  to	
  a	
  
cytochrome-­‐containing	
  electron	
  transport	
  chain.	
  In	
  the	
  first	
  photosystem,	
  these	
  electrons	
  are	
  
used	
  to	
  generate	
  ATP.	
  In	
  the	
  second	
  photosystem,	
  excited	
  electrons	
  are	
  used	
  to	
  produce	
  the	
  
reduced	
  coenzyme	
  nico=namide	
  adenine	
  dinucleo=de	
  phosphate	
  (NADPH).	
  Both	
  ATP	
  and	
  
NADPH	
  are	
  then	
  used	
  in	
  the	
  dark	
  reac=ons	
  to	
  produce	
  glucose.
In	
  this	
  experiment,	
  a	
  blue	
  dye	
  (2,6-­‐dichlorophenol-­‐indophenol,	
  or	
  DPIP)	
  will	
  be	
  used	
  to	
  replace	
  
NADPH	
  in	
  the	
  light	
  reac=ons.	
  When	
  the	
  dye	
  is	
  oxidized,	
  it	
  is	
  blue.	
  When	
  reduced,	
  however,	
  it	
  
turns	
  colorless.	
  Since	
  DPIP	
  replaces	
  NADPH	
  in	
  the	
  light	
  reac=ons,	
  it	
  will	
  turn	
  from	
  blue	
  to	
  
colorless	
  during	
  photosynthesis.
OBJECTIVES
	
  In	
  this	
  experiment,	
  you	
  will
• Use	
  a	
  Colorimeter	
  to	
  measure	
  color	
  changes	
  due	
  to	
  photosynthesis.
• Study	
  the	
  effect	
  of	
  light	
  on	
  photosynthesis.
• Study	
  the	
  effect	
  that	
  the	
  boiling	
  of	
  plant	
  cells	
  has	
  on	
  photosynthesis.
• Compare	
  the	
  rates	
  of	
  photosynthesis	
  for	
  plants	
  in	
  different	
  light	
  condi=ons.
Figure	
  1
MATERIALS (per set)
computer 250	
  mL	
  beaker	
  
Vernier	
  computer	
  interface two	
  small	
  test	
  tubes
Logger	
  Pro	
  >>>	
  Prefer	
  to	
  use	
  Go!Links 5	
  mL	
  pipet
Vernier	
  Colorimeter pipet	
  pump	
  or	
  bulb
Vernier	
  Photosynthesis	
  Lab	
  #7
Interna'onal	
  School	
  of	
  Tanganyika	
  IBMYP	
  Science
two	
  cuve]es	
  with	
  lids two	
  eyedroppers	
  or	
  Beral	
  pipets
aluminum	
  foil	
  covered	
  cuve]e	
  with	
  lid 10	
  mL	
  DPIP/phosphate	
  buffer	
  solu=on
100	
  wa]	
  floodlight unboiled	
  chloroplast	
  suspension	
  
stopwatch boiled	
  chloroplast	
  suspension	
  
600	
  mL	
  beaker	
   ice
PROCEDURE
1.	
   Obtain	
  and	
  wear	
  goggles.
2.	
   Obtain	
  two	
  plas=c	
  Beral	
  pipets,	
  two	
  cuve]es	
  with	
  lids,	
  and	
  one	
  aluminum	
  foil	
  covered	
  
cuve]e	
  with	
  a	
  lid.	
  Mark	
  one	
  Beral	
  pipet	
  with	
  a	
  U	
  (unboiled)	
  and	
  one	
  with	
  a	
  B	
  (boiled).	
  Mark	
  
the	
  lid	
  for	
  the	
  cuveDe	
  with	
  aluminum	
  foil	
  with	
  a	
  D	
  (dark).	
  For	
  the	
  remaining	
  two	
  cuve]es,	
  
mark	
  one	
  lid	
  with	
  a	
  U	
  (unboiled)	
  and	
  one	
  with	
  a	
  B	
  (boiled).
3.	
   Connect	
  the	
  Colorimeter	
  to	
  the	
  computer	
  interface.	
  Open	
  the	
  file	
  “07	
  Photosynthesis”	
  
from	
  the	
  Biology	
  with	
  Computers	
  folder	
  of	
  Logger	
  Pro.	
  [File	
  >	
  Open	
  >	
  Experiments	
  >	
  Biology	
  
with	
  Computers	
  >	
  “07	
  Photosynthesis”]
4.	
   Prepare	
  a	
  blank	
  by	
  filling	
  a	
  cuve]e	
  3/4	
  full	
  with	
  dis=lled	
  water.	
  To	
  correctly	
  use	
  a	
  
Colorimeter	
  cuve]e,	
  remember:
• All	
  cuve]es	
  should	
  be	
  wiped	
  clean	
  and	
  dry	
  on	
  the	
  outside	
  with	
  a	
  =ssue.
• Handle	
  cuve]es	
  only	
  by	
  the	
  top	
  edge	
  of	
  the	
  ribbed	
  sides.
• All	
  solu=ons	
  should	
  be	
  free	
  of	
  bubbles.
• Always	
  posi=on	
  the	
  cuve]e	
  with	
  its	
  reference	
  mark	
  facing	
  toward	
  the	
  white	
  reference	
  
mark	
  at	
  the	
  top	
  of	
  the	
  cuve]e	
  slot	
  on	
  the	
  Colorimeter.
5.	
   Calibrate	
  the	
  Colorimeter.
a. Open	
  the	
  Colorimeter	
  lid.	
  
b. Holding	
  the	
  cuve]e	
  by	
  the	
  upper	
  edges,	
  place	
  it	
  in	
  the	
  cuve]e	
  slot	
  of	
  the	
  Colorimeter.	
  
Close	
  the	
  lid.
c. If	
  your	
  Colorimeter	
  has	
  a	
  CAL	
  bu]on,	
  press	
  the	
  <	
  or	
  >	
  bu]on	
  on	
  the	
  Colorimeter	
  to	
  select	
  
a	
  wavelength	
  of	
  635	
  nm	
  (Red)	
  for	
  this	
  experiment.	
  Press	
  the	
  CAL	
  bu]on	
  un=l	
  the	
  red	
  LED	
  
begins	
  to	
  flash.	
  Then	
  release	
  the	
  CAL	
  bu]on.	
  When	
  the	
  LED	
  stops	
  flashing,	
  the	
  calibra=on	
  
is	
  complete.	
  Proceed	
  directly	
  to	
  Step	
  6.	
  If	
  your	
  Colorimeter	
  does	
  not	
  have	
  a	
  CAL	
  bu]on,	
  
con=nue	
  with	
  this	
  step	
  to	
  calibrate	
  your	
  Colorimeter.
Vernier	
  Photosynthesis	
  Lab	
  #7
Interna'onal	
  School	
  of	
  Tanganyika	
  IBMYP	
  Science
First	
  Calibra=on	
  Point
d. Choose	
  Calibrate	
  !	
  CH1:	
  Colorimeter	
  (%T)	
  from	
  the	
  Experiment	
  menu	
  and	
  then	
  click	
  
.	
  
e. Turn	
  the	
  wavelength	
  knob	
  on	
  the	
  Colorimeter	
  to	
  the	
  “0%	
  T”	
  posi=on.	
  	
  
f. Type	
  “0”	
  in	
  the	
  edit	
  box.	
  
g. When	
  the	
  displayed	
  voltage	
  reading	
  for	
  Reading	
  1	
  stabilizes,	
  click	
   .	
  
Second	
  Calibra=on	
  Point
h. Turn	
  the	
  knob	
  of	
  the	
  Colorimeter	
  to	
  the	
  Red	
  LED	
  posi=on	
  (635	
  nm).	
  
i. Type	
  “100”	
  in	
  the	
  edit	
  box.	
  
j. When	
  the	
  displayed	
  voltage	
  reading	
  for	
  Reading	
  2	
  stabilizes,	
  click	
   ,	
  then	
  click	
  
.
6.	
   Arrange	
  the	
  lamp	
  and	
  600ml	
  beaker	
  as	
  shown	
  in	
  Figure	
  2,	
  below.	
  The	
  beaker	
  will	
  act	
  as	
  a	
  
heat	
  shield,	
  protec=ng	
  the	
  chloroplasts	
  from	
  warming	
  by	
  the	
  flood	
  lamp.	
  Do	
  not	
  turn	
  the	
  
lamp	
  on	
  un+l	
  Step	
  10.
Figure	
  2
7.	
   Locate	
  the	
  unboiled	
  and	
  boiled	
  chloroplast	
  suspension	
  prepared	
  by	
  your	
  instructor.	
  Before	
  
removing	
  any	
  of	
  the	
  chloroplast	
  suspension,	
  gently	
  swirl	
  to	
  re-­‐suspend	
  any	
  chloroplast	
  
which	
  may	
  have	
  se]led	
  out.	
  Using	
  the	
  pipet	
  marked	
  U,	
  draw	
  up	
  approximately	
  1	
  mL	
  of	
  
unboiled	
  chloroplast	
  suspension.	
  Using	
  the	
  pipet	
  marked	
  B,	
  draw	
  up	
  approximately	
  1	
  mL	
  
of	
  boiled	
  chloroplast	
  suspension.	
  Set	
  both	
  pipe]es	
  in	
  the	
  small	
  beaker	
  filled	
  with	
  ice	
  at	
  
your	
  lab	
  sta=on	
  to	
  keep	
  the	
  chloroplasts	
  cooled.
8.	
   Add	
  2.5	
  mL	
  of	
  DPIP/phosphate	
  buffer	
  soluon	
  to	
  each	
  of	
  the	
  cuveDes.	
  Important:	
  perform	
  
the	
  following	
  steps	
  as	
  quickly	
  as	
  possible	
  and	
  proceed	
  directly	
  to	
  Step	
  9.
a. CuveDe	
  U:	
  Add	
  3	
  drops	
  of	
  unboiled	
  chloroplasts.	
  Place	
  the	
  lid	
  on	
  the	
  cuve]e	
  and	
  gently	
  
mix;	
  try	
  not	
  to	
  introduce	
  bubbles	
  in	
  the	
  solu=on.	
  Place	
  the	
  cuve]e	
  in	
  front	
  of	
  the	
  lamp	
  as	
  
shown	
  in	
  Figure	
  2.	
  Mark	
  the	
  cuve]e's	
  posi=on	
  so	
  that	
  it	
  can	
  always	
  be	
  placed	
  back	
  in	
  the	
  
same	
  spot.
b. CuveDe	
  D:	
  Add	
  3	
  drops	
  of	
  unboiled	
  chloroplasts.	
  Place	
  the	
  lid	
  on	
  the	
  cuve]e	
  and	
  gently	
  
mix;	
  try	
  not	
  to	
  introduce	
  bubbles	
  in	
  the	
  solu=on.	
  Place	
  the	
  foil-­‐covered	
  cuve]e	
  in	
  front	
  
of	
  the	
  lamp	
  as	
  shown	
  in	
  Figure	
  2	
  and	
  mark	
  its	
  posi=on.	
  Make	
  sure	
  that	
  no	
  light	
  can	
  
penetrate	
  the	
  cuve]e.
c. CuveDe	
  B:	
  Add	
  3	
  drops	
  of	
  boiled	
  chloroplasts.	
  Place	
  the	
  lid	
  on	
  the	
  cuve]e	
  and	
  gently	
  
mix;	
  try	
  not	
  to	
  introduce	
  bubbles	
  in	
  the	
  solu=on.	
  Place	
  the	
  cuve]e	
  in	
  front	
  of	
  the	
  lamp	
  as	
  
shown	
  in	
  Figure	
  2.	
  Mark	
  the	
  cuve]e's	
  posi=on	
  so	
  that	
  it	
  can	
  be	
  placed	
  back	
  in	
  the	
  same	
  
spot.
Vernier	
  Photosynthesis	
  Lab	
  #7
Interna'onal	
  School	
  of	
  Tanganyika	
  IBMYP	
  Science
 9.	
   Take	
  absorbance	
  readings	
  for	
  each	
  cuveDe.	
  Invert	
  each	
  cuve]e	
  two	
  =mes	
  to	
  re-­‐suspend	
  
the	
  chloroplast	
  before	
  taking	
  a	
  reading.	
  If	
  any	
  air	
  bubbles	
  form,	
  gently	
  tap	
  on	
  the	
  cuve]e	
  lid	
  
to	
  knock	
  them	
  loose.
a. CuveDe	
  U:	
  Place	
  the	
  cuve]e	
  in	
  the	
  cuve]e	
  slot	
  of	
  the	
  Colorimeter	
  and	
  close	
  the	
  lid.	
  
Allow	
  10	
  seconds	
  for	
  the	
  readings	
  displayed	
  in	
  the	
  meter	
  to	
  stabilize,	
  then	
  record	
  the	
  
absorbance	
  value	
  in	
  Table	
  1.	
  Remove	
  the	
  cuve]e	
  and	
  place	
  it	
  in	
  its	
  original	
  posi=on	
  in	
  
front	
  of	
  the	
  lamp.
b. CuveDe	
  D:	
  Remove	
  the	
  cuve]e	
  from	
  the	
  foil	
  sleeve	
  and	
  place	
  it	
  in	
  the	
  cuve]e	
  slot	
  of	
  the	
  
Colorimeter.	
  Close	
  the	
  Colorimeter	
  lid	
  and	
  wait	
  10	
  seconds.	
  Record	
  the	
  absorbance	
  value	
  
displayed	
  in	
  the	
  meter	
  in	
  Table	
  1.	
  Remove	
  the	
  cuve]e	
  and	
  place	
  it	
  back	
  into	
  the	
  foil	
  
sleeve.	
  Place	
  the	
  cuve]e	
  in	
  its	
  original	
  posi=on	
  in	
  front	
  of	
  the	
  lamp.
c. CuveDe	
  B:	
  Place	
  the	
  cuve]e	
  in	
  the	
  cuve]e	
  slot	
  of	
  the	
  Colorimeter	
  and	
  close	
  the	
  lid.	
  
Allow	
  10	
  seconds	
  for	
  the	
  readings	
  displayed	
  in	
  the	
  meter	
  to	
  stabilize,	
  then	
  record	
  the	
  
absorbance	
  value	
  in	
  Table	
  1.	
  Remove	
  the	
  cuve]e	
  and	
  place	
  it	
  in	
  its	
  original	
  posi=on	
  in	
  
front	
  of	
  the	
  lamp.
	
  10.	
  Turn	
  on	
  the	
  lamp.
	
  11.	
  Repeat	
  Step	
  9	
  when	
  5	
  minutes	
  have	
  elapsed.
	
  12.	
  Repeat	
  Step	
  9	
  when	
  10	
  minutes	
  have	
  elapsed.
	
  13.	
  Repeat	
  Step	
  9	
  when	
  15	
  minutes	
  have	
  elapsed.
	
  14.	
  Repeat	
  Step	
  9	
  when	
  20	
  minutes	
  have	
  elapsed.
PROCESSING	
  THE	
  DATA
1.	
   Go	
  to	
  Page	
  2	
  of	
  the	
  experiment	
  file	
  and	
  manually	
  enter	
  the	
  data	
  recorded	
  in	
  Table	
  1	
  into	
  
the	
  appropriate	
  column	
  in	
  the	
  table.	
  To	
  type	
  click	
  on	
  the	
  table	
  cell	
  with	
  the	
  mouse	
  pointer.	
  
You	
  will	
  see	
  a	
  blinking	
  cursor	
  in	
  the	
  cell.	
  Type	
  your	
  data	
  point	
  and	
  press	
  ENTER.	
  The	
  cursor	
  
will	
  move	
  down	
  to	
  the	
  next	
  cell.	
  The	
  graph	
  will	
  update	
  a;er	
  each	
  data	
  point	
  is	
  entered.
	
  2.	
   Calculate	
  the	
  rate	
  of	
  photosynthesis	
  for	
  each	
  of	
  the	
  three	
  cuve]es	
  tested.
a. Click	
  the	
  Linear	
  Fit	
  bu]on,	
   ,to	
  perform	
  a	
  linear	
  regression.	
  A	
  dialog	
  box	
  will	
  appear.	
  
Select	
  the	
  three	
  data	
  sets	
  you	
  wish	
  to	
  perform	
  a	
  linear	
  regression	
  on	
  and	
  click	
   .	
  A	
  
floa=ng	
  box	
  will	
  appear	
  with	
  the	
  formula	
  for	
  a	
  best	
  fit	
  line	
  for	
  each	
  data	
  set	
  selected.
b. In	
  Table	
  2,	
  record	
  the	
  slope	
  of	
  the	
  line,	
  m,	
  as	
  the	
  rate	
  of	
  photosynthesis	
  for	
  each	
  data	
  set.
c. Close	
  the	
  linear	
  regression	
  floa=ng	
  boxes.	
  
DATA
Table 1Table 1Table 1Table 1 Table 2Table 2
Time
(min)
Absorbance
unboiled
Absorbance
in dark
Absorbance
boiled
Chloroplast Rate of
photosynthesis
0 Unboiled
5 Dark
10 Boiled
15
20
Vernier	
  Photosynthesis	
  Lab	
  #7
Interna'onal	
  School	
  of	
  Tanganyika	
  IBMYP	
  Science
QUESTIONS
1.	
   Is	
  there	
  evidence	
  that	
  chloroplasts	
  were	
  able	
  to	
  reduce	
  DPIP	
  in	
  this	
  experiment?	
  Explain.
2.	
   Were	
  chloroplasts	
  able	
  to	
  reduce	
  DPIP	
  when	
  kept	
  in	
  the	
  dark?	
  Explain.
3.	
   Were	
  boiled	
  chloroplasts	
  able	
  to	
  reduce	
  DPIP	
  ?	
  Explain.
4.	
   What	
  conclusions	
  can	
  you	
  make	
  about	
  the	
  photosynthe=c	
  ac=vity	
  of	
  spinach?
Vernier	
  Photosynthesis	
  Lab	
  #7
Interna'onal	
  School	
  of	
  Tanganyika	
  IBMYP	
  Science

More Related Content

Similar to Vernier Photosynthesis Lab #7

Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docx
Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docxPost-lab 1- Myths in Science (10 pts)Read the remaining myths” .docx
Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docxChantellPantoja184
 
Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6oreo10
 
222 l exp lead in soil - spring 2011
222 l exp   lead in soil - spring 2011222 l exp   lead in soil - spring 2011
222 l exp lead in soil - spring 2011syazwanisya
 
Compiled manual version 1
Compiled manual version 1Compiled manual version 1
Compiled manual version 1Nick Dao
 
Lab protocols by Kojo Ahiakpa.
Lab protocols by Kojo Ahiakpa.Lab protocols by Kojo Ahiakpa.
Lab protocols by Kojo Ahiakpa.Kojo Ahiakpa
 
Cellular RespirationHands-on labs, inc. Version 42-0040-00-01.docx
Cellular RespirationHands-on labs, inc.  Version 42-0040-00-01.docxCellular RespirationHands-on labs, inc.  Version 42-0040-00-01.docx
Cellular RespirationHands-on labs, inc. Version 42-0040-00-01.docxtidwellveronique
 
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docxLab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docxsmile790243
 
Simple Chemistry Experiments
Simple Chemistry ExperimentsSimple Chemistry Experiments
Simple Chemistry ExperimentsEmma Wise
 
Lab topic 6 alcoholic fermentationwritten by nickie cauthen
Lab topic 6 alcoholic fermentationwritten by nickie cauthenLab topic 6 alcoholic fermentationwritten by nickie cauthen
Lab topic 6 alcoholic fermentationwritten by nickie cauthensherni1
 
MIC428L Lab Manual Winter 2015
MIC428L Lab Manual Winter 2015MIC428L Lab Manual Winter 2015
MIC428L Lab Manual Winter 2015Abid Nordin
 
Molecular Biology & Biotechnology(Practical) MANIK
Molecular Biology & Biotechnology(Practical) MANIKMolecular Biology & Biotechnology(Practical) MANIK
Molecular Biology & Biotechnology(Practical) MANIKImran Nur Manik
 
1-introductionbacteria
1-introductionbacteria1-introductionbacteria
1-introductionbacteriaSiti Mastura
 
Final Anthocyanin Paper Project
Final Anthocyanin Paper ProjectFinal Anthocyanin Paper Project
Final Anthocyanin Paper ProjectEmma McKee
 
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docx
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docxphychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docx
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docxmattjtoni51554
 

Similar to Vernier Photosynthesis Lab #7 (20)

Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docx
Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docxPost-lab 1- Myths in Science (10 pts)Read the remaining myths” .docx
Post-lab 1- Myths in Science (10 pts)Read the remaining myths” .docx
 
Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6Fermentation report sheet 1online.docx report sheet—lab topic 6
Fermentation report sheet 1online.docx report sheet—lab topic 6
 
222 l exp lead in soil - spring 2011
222 l exp   lead in soil - spring 2011222 l exp   lead in soil - spring 2011
222 l exp lead in soil - spring 2011
 
Compiled manual version 1
Compiled manual version 1Compiled manual version 1
Compiled manual version 1
 
Lab protocols by Kojo Ahiakpa.
Lab protocols by Kojo Ahiakpa.Lab protocols by Kojo Ahiakpa.
Lab protocols by Kojo Ahiakpa.
 
Cellular RespirationHands-on labs, inc. Version 42-0040-00-01.docx
Cellular RespirationHands-on labs, inc.  Version 42-0040-00-01.docxCellular RespirationHands-on labs, inc.  Version 42-0040-00-01.docx
Cellular RespirationHands-on labs, inc. Version 42-0040-00-01.docx
 
Practical
PracticalPractical
Practical
 
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docxLab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docx
Lab 9 Chemical Reactions IIPre-lab Questions1. What is a limi.docx
 
Qtr 1 module 4 elements & compounds
Qtr 1 module 4 elements & compoundsQtr 1 module 4 elements & compounds
Qtr 1 module 4 elements & compounds
 
Lab4
Lab4Lab4
Lab4
 
Simple Chemistry Experiments
Simple Chemistry ExperimentsSimple Chemistry Experiments
Simple Chemistry Experiments
 
Lab topic 6 alcoholic fermentationwritten by nickie cauthen
Lab topic 6 alcoholic fermentationwritten by nickie cauthenLab topic 6 alcoholic fermentationwritten by nickie cauthen
Lab topic 6 alcoholic fermentationwritten by nickie cauthen
 
MIC428L Lab Manual Winter 2015
MIC428L Lab Manual Winter 2015MIC428L Lab Manual Winter 2015
MIC428L Lab Manual Winter 2015
 
DSSC,Aeration system in closed chambers IDM11
DSSC,Aeration system in closed chambers IDM11DSSC,Aeration system in closed chambers IDM11
DSSC,Aeration system in closed chambers IDM11
 
Molecular Biology & Biotechnology(Practical) MANIK
Molecular Biology & Biotechnology(Practical) MANIKMolecular Biology & Biotechnology(Practical) MANIK
Molecular Biology & Biotechnology(Practical) MANIK
 
1-introductionbacteria
1-introductionbacteria1-introductionbacteria
1-introductionbacteria
 
Micro lab 3,2
Micro lab 3,2Micro lab 3,2
Micro lab 3,2
 
REPORT FINAL
REPORT FINALREPORT FINAL
REPORT FINAL
 
Final Anthocyanin Paper Project
Final Anthocyanin Paper ProjectFinal Anthocyanin Paper Project
Final Anthocyanin Paper Project
 
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docx
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docxphychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docx
phychem1phychem2Lab 9 Chemical Reactions IIPre-lab Qu.docx
 

More from Brad Kremer

Bradley M Kremer resumé October 2019
Bradley M Kremer resumé October 2019Bradley M Kremer resumé October 2019
Bradley M Kremer resumé October 2019Brad Kremer
 
How to create graphs for science
How to create graphs for scienceHow to create graphs for science
How to create graphs for scienceBrad Kremer
 
2.5 investigating ecosystems notes
2.5 investigating ecosystems notes2.5 investigating ecosystems notes
2.5 investigating ecosystems notesBrad Kremer
 
2.4 biomes zonation and succession notes
2.4 biomes zonation and succession notes2.4 biomes zonation and succession notes
2.4 biomes zonation and succession notesBrad Kremer
 
2.3 flows of energy and matter notes
2.3 flows of energy and matter notes2.3 flows of energy and matter notes
2.3 flows of energy and matter notesBrad Kremer
 
2.2 communities and ecosystems notes
2.2 communities and ecosystems notes2.2 communities and ecosystems notes
2.2 communities and ecosystems notesBrad Kremer
 
2.1 species and populations notes
2.1 species and populations notes2.1 species and populations notes
2.1 species and populations notesBrad Kremer
 
1.5 humans and pollution notes
1.5 humans and pollution notes1.5 humans and pollution notes
1.5 humans and pollution notesBrad Kremer
 
1.4 sustainability notes
1.4 sustainability notes1.4 sustainability notes
1.4 sustainability notesBrad Kremer
 
1.3 energy and equilibria notes
1.3 energy and equilibria notes1.3 energy and equilibria notes
1.3 energy and equilibria notesBrad Kremer
 
1.2 systems and models notes
1.2 systems and models notes1.2 systems and models notes
1.2 systems and models notesBrad Kremer
 
1.1 environmental value systems notes
1.1 environmental value systems notes1.1 environmental value systems notes
1.1 environmental value systems notesBrad Kremer
 
Atmosphere and climate science - MYP Year 4
Atmosphere and climate science - MYP Year 4Atmosphere and climate science - MYP Year 4
Atmosphere and climate science - MYP Year 4Brad Kremer
 
Independent gas laws investigation
Independent gas laws investigationIndependent gas laws investigation
Independent gas laws investigationBrad Kremer
 
Chili Pepper Tasks - MYP 4 Gas Laws
Chili Pepper Tasks - MYP 4 Gas LawsChili Pepper Tasks - MYP 4 Gas Laws
Chili Pepper Tasks - MYP 4 Gas LawsBrad Kremer
 
Vernier exploring gas laws lab
Vernier exploring gas laws labVernier exploring gas laws lab
Vernier exploring gas laws labBrad Kremer
 
Graphing periodic trends
Graphing periodic trendsGraphing periodic trends
Graphing periodic trendsBrad Kremer
 
Intro to Chemistry - Meet the elements
Intro to Chemistry - Meet the elementsIntro to Chemistry - Meet the elements
Intro to Chemistry - Meet the elementsBrad Kremer
 
Grade 8 chemistry vocabulary list
Grade 8 chemistry vocabulary listGrade 8 chemistry vocabulary list
Grade 8 chemistry vocabulary listBrad Kremer
 
Chemical reaction posters - MYP 3
Chemical reaction posters - MYP 3Chemical reaction posters - MYP 3
Chemical reaction posters - MYP 3Brad Kremer
 

More from Brad Kremer (20)

Bradley M Kremer resumé October 2019
Bradley M Kremer resumé October 2019Bradley M Kremer resumé October 2019
Bradley M Kremer resumé October 2019
 
How to create graphs for science
How to create graphs for scienceHow to create graphs for science
How to create graphs for science
 
2.5 investigating ecosystems notes
2.5 investigating ecosystems notes2.5 investigating ecosystems notes
2.5 investigating ecosystems notes
 
2.4 biomes zonation and succession notes
2.4 biomes zonation and succession notes2.4 biomes zonation and succession notes
2.4 biomes zonation and succession notes
 
2.3 flows of energy and matter notes
2.3 flows of energy and matter notes2.3 flows of energy and matter notes
2.3 flows of energy and matter notes
 
2.2 communities and ecosystems notes
2.2 communities and ecosystems notes2.2 communities and ecosystems notes
2.2 communities and ecosystems notes
 
2.1 species and populations notes
2.1 species and populations notes2.1 species and populations notes
2.1 species and populations notes
 
1.5 humans and pollution notes
1.5 humans and pollution notes1.5 humans and pollution notes
1.5 humans and pollution notes
 
1.4 sustainability notes
1.4 sustainability notes1.4 sustainability notes
1.4 sustainability notes
 
1.3 energy and equilibria notes
1.3 energy and equilibria notes1.3 energy and equilibria notes
1.3 energy and equilibria notes
 
1.2 systems and models notes
1.2 systems and models notes1.2 systems and models notes
1.2 systems and models notes
 
1.1 environmental value systems notes
1.1 environmental value systems notes1.1 environmental value systems notes
1.1 environmental value systems notes
 
Atmosphere and climate science - MYP Year 4
Atmosphere and climate science - MYP Year 4Atmosphere and climate science - MYP Year 4
Atmosphere and climate science - MYP Year 4
 
Independent gas laws investigation
Independent gas laws investigationIndependent gas laws investigation
Independent gas laws investigation
 
Chili Pepper Tasks - MYP 4 Gas Laws
Chili Pepper Tasks - MYP 4 Gas LawsChili Pepper Tasks - MYP 4 Gas Laws
Chili Pepper Tasks - MYP 4 Gas Laws
 
Vernier exploring gas laws lab
Vernier exploring gas laws labVernier exploring gas laws lab
Vernier exploring gas laws lab
 
Graphing periodic trends
Graphing periodic trendsGraphing periodic trends
Graphing periodic trends
 
Intro to Chemistry - Meet the elements
Intro to Chemistry - Meet the elementsIntro to Chemistry - Meet the elements
Intro to Chemistry - Meet the elements
 
Grade 8 chemistry vocabulary list
Grade 8 chemistry vocabulary listGrade 8 chemistry vocabulary list
Grade 8 chemistry vocabulary list
 
Chemical reaction posters - MYP 3
Chemical reaction posters - MYP 3Chemical reaction posters - MYP 3
Chemical reaction posters - MYP 3
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Jisc
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...Procuring digital preservation CAN be quick and painless with our new dynamic...
Procuring digital preservation CAN be quick and painless with our new dynamic...
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 

Vernier Photosynthesis Lab #7

  • 1. The  process  of  photosynthesis  involves  the  use  of  light  energy  to  convert  carbon  dioxide  and   water  into  sugar,  oxygen,  and  other  organic  compounds.  This  process  is  o;en  summarized  by   the  following  reac=on: 6  H2O  +  6  CO2  +  light  energy  →  C6H12O6  +  6  O2 This  process  is  an  extremely  complex  one,  occurring  in  two  stages.  The  first  stage,  called  the   light  reac+ons  of  photosynthesis,  requires  light  energy.  The  products  of  the  light  reac=ons  are   then  used  to  produce  glucose  from  carbon  dioxide  and  water.  Because  the  reac=ons  in  the   second  stage  do  not  require  the  direct  use  of  light  energy,  they  are  called  the  dark  reac+ons  of   photosynthesis. In  the  light  reac=ons,  electrons  derived  from  water  are  “excited”  (raised  to  higher  energy   levels)  in  several  steps,  called  photosystems  I  and  II.  In  both  steps,  chlorophyll  absorbs  light   energy  that  is  used  to  excite  the  electrons.  Normally,  these  electrons  are  passed  to  a   cytochrome-­‐containing  electron  transport  chain.  In  the  first  photosystem,  these  electrons  are   used  to  generate  ATP.  In  the  second  photosystem,  excited  electrons  are  used  to  produce  the   reduced  coenzyme  nico=namide  adenine  dinucleo=de  phosphate  (NADPH).  Both  ATP  and   NADPH  are  then  used  in  the  dark  reac=ons  to  produce  glucose. In  this  experiment,  a  blue  dye  (2,6-­‐dichlorophenol-­‐indophenol,  or  DPIP)  will  be  used  to  replace   NADPH  in  the  light  reac=ons.  When  the  dye  is  oxidized,  it  is  blue.  When  reduced,  however,  it   turns  colorless.  Since  DPIP  replaces  NADPH  in  the  light  reac=ons,  it  will  turn  from  blue  to   colorless  during  photosynthesis. OBJECTIVES  In  this  experiment,  you  will • Use  a  Colorimeter  to  measure  color  changes  due  to  photosynthesis. • Study  the  effect  of  light  on  photosynthesis. • Study  the  effect  that  the  boiling  of  plant  cells  has  on  photosynthesis. • Compare  the  rates  of  photosynthesis  for  plants  in  different  light  condi=ons. Figure  1 MATERIALS (per set) computer 250  mL  beaker   Vernier  computer  interface two  small  test  tubes Logger  Pro  >>>  Prefer  to  use  Go!Links 5  mL  pipet Vernier  Colorimeter pipet  pump  or  bulb Vernier  Photosynthesis  Lab  #7 Interna'onal  School  of  Tanganyika  IBMYP  Science
  • 2. two  cuve]es  with  lids two  eyedroppers  or  Beral  pipets aluminum  foil  covered  cuve]e  with  lid 10  mL  DPIP/phosphate  buffer  solu=on 100  wa]  floodlight unboiled  chloroplast  suspension   stopwatch boiled  chloroplast  suspension   600  mL  beaker   ice PROCEDURE 1.   Obtain  and  wear  goggles. 2.   Obtain  two  plas=c  Beral  pipets,  two  cuve]es  with  lids,  and  one  aluminum  foil  covered   cuve]e  with  a  lid.  Mark  one  Beral  pipet  with  a  U  (unboiled)  and  one  with  a  B  (boiled).  Mark   the  lid  for  the  cuveDe  with  aluminum  foil  with  a  D  (dark).  For  the  remaining  two  cuve]es,   mark  one  lid  with  a  U  (unboiled)  and  one  with  a  B  (boiled). 3.   Connect  the  Colorimeter  to  the  computer  interface.  Open  the  file  “07  Photosynthesis”   from  the  Biology  with  Computers  folder  of  Logger  Pro.  [File  >  Open  >  Experiments  >  Biology   with  Computers  >  “07  Photosynthesis”] 4.   Prepare  a  blank  by  filling  a  cuve]e  3/4  full  with  dis=lled  water.  To  correctly  use  a   Colorimeter  cuve]e,  remember: • All  cuve]es  should  be  wiped  clean  and  dry  on  the  outside  with  a  =ssue. • Handle  cuve]es  only  by  the  top  edge  of  the  ribbed  sides. • All  solu=ons  should  be  free  of  bubbles. • Always  posi=on  the  cuve]e  with  its  reference  mark  facing  toward  the  white  reference   mark  at  the  top  of  the  cuve]e  slot  on  the  Colorimeter. 5.   Calibrate  the  Colorimeter. a. Open  the  Colorimeter  lid.   b. Holding  the  cuve]e  by  the  upper  edges,  place  it  in  the  cuve]e  slot  of  the  Colorimeter.   Close  the  lid. c. If  your  Colorimeter  has  a  CAL  bu]on,  press  the  <  or  >  bu]on  on  the  Colorimeter  to  select   a  wavelength  of  635  nm  (Red)  for  this  experiment.  Press  the  CAL  bu]on  un=l  the  red  LED   begins  to  flash.  Then  release  the  CAL  bu]on.  When  the  LED  stops  flashing,  the  calibra=on   is  complete.  Proceed  directly  to  Step  6.  If  your  Colorimeter  does  not  have  a  CAL  bu]on,   con=nue  with  this  step  to  calibrate  your  Colorimeter. Vernier  Photosynthesis  Lab  #7 Interna'onal  School  of  Tanganyika  IBMYP  Science
  • 3. First  Calibra=on  Point d. Choose  Calibrate  !  CH1:  Colorimeter  (%T)  from  the  Experiment  menu  and  then  click   .   e. Turn  the  wavelength  knob  on  the  Colorimeter  to  the  “0%  T”  posi=on.     f. Type  “0”  in  the  edit  box.   g. When  the  displayed  voltage  reading  for  Reading  1  stabilizes,  click   .   Second  Calibra=on  Point h. Turn  the  knob  of  the  Colorimeter  to  the  Red  LED  posi=on  (635  nm).   i. Type  “100”  in  the  edit  box.   j. When  the  displayed  voltage  reading  for  Reading  2  stabilizes,  click   ,  then  click   . 6.   Arrange  the  lamp  and  600ml  beaker  as  shown  in  Figure  2,  below.  The  beaker  will  act  as  a   heat  shield,  protec=ng  the  chloroplasts  from  warming  by  the  flood  lamp.  Do  not  turn  the   lamp  on  un+l  Step  10. Figure  2 7.   Locate  the  unboiled  and  boiled  chloroplast  suspension  prepared  by  your  instructor.  Before   removing  any  of  the  chloroplast  suspension,  gently  swirl  to  re-­‐suspend  any  chloroplast   which  may  have  se]led  out.  Using  the  pipet  marked  U,  draw  up  approximately  1  mL  of   unboiled  chloroplast  suspension.  Using  the  pipet  marked  B,  draw  up  approximately  1  mL   of  boiled  chloroplast  suspension.  Set  both  pipe]es  in  the  small  beaker  filled  with  ice  at   your  lab  sta=on  to  keep  the  chloroplasts  cooled. 8.   Add  2.5  mL  of  DPIP/phosphate  buffer  soluon  to  each  of  the  cuveDes.  Important:  perform   the  following  steps  as  quickly  as  possible  and  proceed  directly  to  Step  9. a. CuveDe  U:  Add  3  drops  of  unboiled  chloroplasts.  Place  the  lid  on  the  cuve]e  and  gently   mix;  try  not  to  introduce  bubbles  in  the  solu=on.  Place  the  cuve]e  in  front  of  the  lamp  as   shown  in  Figure  2.  Mark  the  cuve]e's  posi=on  so  that  it  can  always  be  placed  back  in  the   same  spot. b. CuveDe  D:  Add  3  drops  of  unboiled  chloroplasts.  Place  the  lid  on  the  cuve]e  and  gently   mix;  try  not  to  introduce  bubbles  in  the  solu=on.  Place  the  foil-­‐covered  cuve]e  in  front   of  the  lamp  as  shown  in  Figure  2  and  mark  its  posi=on.  Make  sure  that  no  light  can   penetrate  the  cuve]e. c. CuveDe  B:  Add  3  drops  of  boiled  chloroplasts.  Place  the  lid  on  the  cuve]e  and  gently   mix;  try  not  to  introduce  bubbles  in  the  solu=on.  Place  the  cuve]e  in  front  of  the  lamp  as   shown  in  Figure  2.  Mark  the  cuve]e's  posi=on  so  that  it  can  be  placed  back  in  the  same   spot. Vernier  Photosynthesis  Lab  #7 Interna'onal  School  of  Tanganyika  IBMYP  Science
  • 4.  9.   Take  absorbance  readings  for  each  cuveDe.  Invert  each  cuve]e  two  =mes  to  re-­‐suspend   the  chloroplast  before  taking  a  reading.  If  any  air  bubbles  form,  gently  tap  on  the  cuve]e  lid   to  knock  them  loose. a. CuveDe  U:  Place  the  cuve]e  in  the  cuve]e  slot  of  the  Colorimeter  and  close  the  lid.   Allow  10  seconds  for  the  readings  displayed  in  the  meter  to  stabilize,  then  record  the   absorbance  value  in  Table  1.  Remove  the  cuve]e  and  place  it  in  its  original  posi=on  in   front  of  the  lamp. b. CuveDe  D:  Remove  the  cuve]e  from  the  foil  sleeve  and  place  it  in  the  cuve]e  slot  of  the   Colorimeter.  Close  the  Colorimeter  lid  and  wait  10  seconds.  Record  the  absorbance  value   displayed  in  the  meter  in  Table  1.  Remove  the  cuve]e  and  place  it  back  into  the  foil   sleeve.  Place  the  cuve]e  in  its  original  posi=on  in  front  of  the  lamp. c. CuveDe  B:  Place  the  cuve]e  in  the  cuve]e  slot  of  the  Colorimeter  and  close  the  lid.   Allow  10  seconds  for  the  readings  displayed  in  the  meter  to  stabilize,  then  record  the   absorbance  value  in  Table  1.  Remove  the  cuve]e  and  place  it  in  its  original  posi=on  in   front  of  the  lamp.  10.  Turn  on  the  lamp.  11.  Repeat  Step  9  when  5  minutes  have  elapsed.  12.  Repeat  Step  9  when  10  minutes  have  elapsed.  13.  Repeat  Step  9  when  15  minutes  have  elapsed.  14.  Repeat  Step  9  when  20  minutes  have  elapsed. PROCESSING  THE  DATA 1.   Go  to  Page  2  of  the  experiment  file  and  manually  enter  the  data  recorded  in  Table  1  into   the  appropriate  column  in  the  table.  To  type  click  on  the  table  cell  with  the  mouse  pointer.   You  will  see  a  blinking  cursor  in  the  cell.  Type  your  data  point  and  press  ENTER.  The  cursor   will  move  down  to  the  next  cell.  The  graph  will  update  a;er  each  data  point  is  entered.  2.   Calculate  the  rate  of  photosynthesis  for  each  of  the  three  cuve]es  tested. a. Click  the  Linear  Fit  bu]on,   ,to  perform  a  linear  regression.  A  dialog  box  will  appear.   Select  the  three  data  sets  you  wish  to  perform  a  linear  regression  on  and  click   .  A   floa=ng  box  will  appear  with  the  formula  for  a  best  fit  line  for  each  data  set  selected. b. In  Table  2,  record  the  slope  of  the  line,  m,  as  the  rate  of  photosynthesis  for  each  data  set. c. Close  the  linear  regression  floa=ng  boxes.   DATA Table 1Table 1Table 1Table 1 Table 2Table 2 Time (min) Absorbance unboiled Absorbance in dark Absorbance boiled Chloroplast Rate of photosynthesis 0 Unboiled 5 Dark 10 Boiled 15 20 Vernier  Photosynthesis  Lab  #7 Interna'onal  School  of  Tanganyika  IBMYP  Science
  • 5. QUESTIONS 1.   Is  there  evidence  that  chloroplasts  were  able  to  reduce  DPIP  in  this  experiment?  Explain. 2.   Were  chloroplasts  able  to  reduce  DPIP  when  kept  in  the  dark?  Explain. 3.   Were  boiled  chloroplasts  able  to  reduce  DPIP  ?  Explain. 4.   What  conclusions  can  you  make  about  the  photosynthe=c  ac=vity  of  spinach? Vernier  Photosynthesis  Lab  #7 Interna'onal  School  of  Tanganyika  IBMYP  Science