VARIABEL RANDOM
DISTRIBUSI PROBABILITAS
Variabel Random (Peubah
   Acak)
Definisi :
 Suatu fungsi yang mengaitkan suatu
 bilangan real pada setiap unsur dalam
 ruang sampel atau cara memberi harga
 berupa angka kepada setiap elemen
 ruang sampel
Contoh 1:
Eksperimen pelemparan sebuah koin sebanyak
tiga kali. Jika M menunjukkan hasil nampak
muka saat pelemparan dan B menunjukkan
hasil nampak belakang, maka kejadian yang
mungkin adalah munculnya sisi muka tiga kali,
dua kali, sekali, atau bahkan tidak muncul sama
sekali. Himpunan kejadian yang mungkin terjadi
adalah : {MMM, MMB, MBM, BMM, MBB, BMB,
BBM, BBB}  2 x 2 x 2
Jika uang tersebut “normal” (seimbang), dimana
masing-masing sisi memiliki peluang yang sama
untuk muncul di permukaan dalam tiap lemparan,
maka probabilitas terjadi masing-masing elemen
ruang sampel dalam himpunan hasil eksperimen
tersebut adalah 1/8.
Dengan kata lain : P (MMM ) = 1/8; P(MMB) = 1/8
                   P (MBM ) = 1/8, dst.
Jika variabel random x didefinisikan sebagai
“banyaknya M (nampak muka) dalam tiap
elemen”; maka variabel random x ini dapat
menjalani harga 0,1,2,3.

Harga-harga variabel random x dapat kita
tulis : x(MMM ) = 3; x(MBM) = 2; x(MBB) = 1;
x(BBB) = 0 dst.
Probabilitas variabel random untuk tiap
nilai x dapat dihitung dengan membagi
jumlah titik sampel tiap nilai x dengan
jumlah titik sampel seluruhnya. Sebagai
contoh :
     Jika x = 1, maka f(x = 1) = 3, dimana titik
      sampelnya meliputi (MBB, BMB, BBM ).
      Dengan demikian p(x = 1) = 3/8.
     Jika x = 0, maka f(x = 0) = 1 dimana titik
      sampelnya adalah : ( BBB ), sehingga p( x
      = 0 ) = 1/8.
Contoh 2:
 Sebuah toko mempunyai persediaan 8
 buah radio dimana 3 diantaranya
 memiliki kecacatan. Sebuah organisasi
 remaja bermaksud membeli 2 radio dari
 toko tersebut tanpa meneliti ada
 tidaknya kecacatannya. Buatlah
 distribusi probabilitas radio dengan
 cacat yang terbeli!
Jika variabel random x adalah
banyaknya radio dengan cacat yang
terbeli, maka nilai x adalah 0, 1, 2


      Jumlah produk yg
         akan dibeli
Probabilitas tiap nilai x ini dapat dihitung sebagai
berikut :
                               3  5 
                                
                               0  2  10
         f (0) = p ( x = 0) =    =
                                8      28
                                 
                                 2
                                 

                               3  5 
                                
                               1  1  15
         f (1) = p ( x = 1) =    =
                                8      28
                                 
                                 2
                                 

                               3  5 
                                
                               2  0  3
         f (2) = p ( x = 2) =    =
                                8      28
                                 
                                 2
                                 
Distribusi Probabilitas Variabel Random x


 Definisi : Daftar semua harga variabel random x
            beserta probabilitas masing-masing
            harga.

 Contoh :
             X       0       1       2
            f (x)   10/28   15/28   3/28
Distribusi kumulatif variabel
random x

 Definisi : Bila F (x) = p (X ≤ x) untuk setiap
            bilangan real x


 F ( x) = p ( X ≤ x) = ∑ f ( x)........untuk − ∞ < x < ∞
                      t≤x
Contoh :
           Menggunakan hasil contoh 2
                10
F (0) = f (0) =
                28
                        10 15 25                               Nilai x:0, 1, 2, 3
F (1) = f (0) + f (1) =   +  =
                        28 28 28                               Jadi, intrval yg
                                                                dapat dibuat
                                10 15 3                            adalah
F (2) = f (0) + f (1) + f (2) =   +  +   =1
                                28 28 28
                                                       0...........x < 0
                                                       10
                                                        ........0 ≤ x < 1
                                                        28
                       sehingga :             F ( x) = 
                                                        25 .......1 ≤ x < 2
                                                        28
                                                       1...........x ≤ 2
                                                       
PROBABILITAS BERSAMA 2
VARIABEL RANDOM


   Definisi : Jika terdapat 2 atau lebih peubah acak
              diamati secara bersamaan  Proses
              pemberian harga dilakukan untuk tiap
              elemen masing-masing variabel

   f(x,y) = P(X=x W Y=y)

   Contoh :   Pada contoh 1, variabel random x
              didefinisikan sebagai tampak muka (M)
              dan variabel random y didefinisikan
              untuk tampak belakang (B)
Contoh Perhitungan :

Suatu kotak terdapat 8 bola, terdiri dari 3
bola biru, 2 merah, 3 hijau. 2 bola diambil
secara acak dari kotak tersebut. Jika x
menunjukan banyak bola biru terambil dan
y menunjukan banyak bola merah
terambil, tulis disribusi probabilitas bersama
x dan y !
Pasangan harga ( Xi,Yi ) yang mungkin adalah

       (0,1) ; (0,2) ; (1,1) ; (0,0) ; (2,0) ; (1,0)

                               8    8!
Kombinasi Total : 8C2 =         =       = 28
                                2  6!2!

                                 3  2  3 
Probabilitas kejadian f (0,1) =  0  1  1  = 2.3 = 6
                                   
                                                28     28
                                    28

Cari probabilitas untuk kemungkinan yg lain dan buat
bentuk distribusi probabilitas variabel random
bersama.
Distribusi Marginal
Distribusi kumulatif tunggal untuk masing-
masing peubah acak (variabel random) yang
diberikan oleh total kolom dan total baris

 G ( x) = p ( X ≤ x) = ∑ f ( x)........untuk − ∞ < x < ∞
                      t≤x



 H ( x) = p (Y ≤ y ) = ∑ f ( y )........untuk − ∞ < x < ∞
                      t≤x
Contoh :
Distribusi marginal dari
contoh sebelumnya :

       x/y    0       1       2     ∑ Baris
        0     3/28   6/28    1/28    10/28
        1     9/28   6/28      0     15/28
        2     3/28    0        0     3/28

     ∑ Kolom 15/28   12/28   1/28      1
Distribusi Bersyarat
Probabilitas bersyarat dinyatakan :
a. Bergantung hanya pada x untuk y tertentu
                                    p( X = x ∩ Y = y)
              p(Y = y X = x) =
                                        p ( X = x)
                         f ( x, y )
              f ( x y) =            dengan H ( y ) > 0
                          H ( y)
b.   Bergantung hanya pada y untuk x tertentu
                                    p( X = x ∩ Y = y)
              p( X = x Y = y ) =
                                        p(Y = y )
                         f ( x, y )
              f ( y x) =            dengan G ( x) > 0
                          G ( x)
Contoh perhitungan
Tentukan distribusi bersyarat X untuk Y=1 kasus sebelumnya :
H (1) = f (0,1) + f (1,1) + f (2,1)
     = 6/28 + 6/28
     = 12/28

f (xl1) =    f ( x,1) f ( x,1)
                     =         = (28 / 12) . f ( x,1)
             H ( y ) 12 / 28
            untuk x = 0,1, dan 2

f (0l1) = (28/12) . 6/28 = 0,5
f (1l1) = (28/12) . 6/28 = 0,5
f (2l1) = (28/12) . 0    =0
Kejadian Tidak Bebas
Sifat ini berlaku untuk semua kemungkinan pasangan
f (x,y) ≠ G (x) . H (y)

Contoh:
Perhitungan sebelumnya, jika x = 0 dan y = 2, maka :
f (0,2) = 1/28
G (0) = 10/28
                   (10/28) . (1/28) = 10/ 784
H (2) = 1/28

1/28 ≠ 10/784  kedua peubah acak (variabel random)
                 bersifat tidak bebas
Perhitungan probabilitas bersama jika peubah acak
merupakan himpunan ruang dengan fungsi yang
ditentukan.

    p[ (X,Y) ε A ] , untuk A = {(x,y) l f (x,y)}



Contoh :
Kasus sebelumnya, tentukan p[ (X,Y) ε A ] , untuk A =
{(x,y) l x+y ≤ 1}
X=0,1,2 dan Y=0,1,2
f(0,0) + f(0,1) + f(1,0) = 8/28 + 6/28 + 6/28
                         = 16/28
Latihan :
1 bungkus permen yang berisi 9 buah yang
terdiri dari 3 rasa apel, 2 rasa mangga, dan 4
rasa jambu. Secara acak diambil 3 buah
permen dari satu bungkus permen. Jika X
merupakan var. random untuk rasa mangga
dan Y var. random untuk rasa apel. Tentukan :
a. Distribusi probabilitas bersama
c. Distribusi bersyarat X untuk Y = 1

Variabel random

  • 1.
  • 2.
    Variabel Random (Peubah Acak) Definisi : Suatu fungsi yang mengaitkan suatu bilangan real pada setiap unsur dalam ruang sampel atau cara memberi harga berupa angka kepada setiap elemen ruang sampel
  • 3.
    Contoh 1: Eksperimen pelemparansebuah koin sebanyak tiga kali. Jika M menunjukkan hasil nampak muka saat pelemparan dan B menunjukkan hasil nampak belakang, maka kejadian yang mungkin adalah munculnya sisi muka tiga kali, dua kali, sekali, atau bahkan tidak muncul sama sekali. Himpunan kejadian yang mungkin terjadi adalah : {MMM, MMB, MBM, BMM, MBB, BMB, BBM, BBB}  2 x 2 x 2
  • 4.
    Jika uang tersebut“normal” (seimbang), dimana masing-masing sisi memiliki peluang yang sama untuk muncul di permukaan dalam tiap lemparan, maka probabilitas terjadi masing-masing elemen ruang sampel dalam himpunan hasil eksperimen tersebut adalah 1/8. Dengan kata lain : P (MMM ) = 1/8; P(MMB) = 1/8 P (MBM ) = 1/8, dst.
  • 5.
    Jika variabel randomx didefinisikan sebagai “banyaknya M (nampak muka) dalam tiap elemen”; maka variabel random x ini dapat menjalani harga 0,1,2,3. Harga-harga variabel random x dapat kita tulis : x(MMM ) = 3; x(MBM) = 2; x(MBB) = 1; x(BBB) = 0 dst.
  • 6.
    Probabilitas variabel randomuntuk tiap nilai x dapat dihitung dengan membagi jumlah titik sampel tiap nilai x dengan jumlah titik sampel seluruhnya. Sebagai contoh :  Jika x = 1, maka f(x = 1) = 3, dimana titik sampelnya meliputi (MBB, BMB, BBM ). Dengan demikian p(x = 1) = 3/8.  Jika x = 0, maka f(x = 0) = 1 dimana titik sampelnya adalah : ( BBB ), sehingga p( x = 0 ) = 1/8.
  • 7.
    Contoh 2: Sebuahtoko mempunyai persediaan 8 buah radio dimana 3 diantaranya memiliki kecacatan. Sebuah organisasi remaja bermaksud membeli 2 radio dari toko tersebut tanpa meneliti ada tidaknya kecacatannya. Buatlah distribusi probabilitas radio dengan cacat yang terbeli!
  • 8.
    Jika variabel randomx adalah banyaknya radio dengan cacat yang terbeli, maka nilai x adalah 0, 1, 2 Jumlah produk yg akan dibeli
  • 9.
    Probabilitas tiap nilaix ini dapat dihitung sebagai berikut :  3  5      0  2  10 f (0) = p ( x = 0) =    = 8 28    2    3  5      1  1  15 f (1) = p ( x = 1) =    = 8 28    2    3  5      2  0  3 f (2) = p ( x = 2) =    = 8 28    2  
  • 10.
    Distribusi Probabilitas VariabelRandom x Definisi : Daftar semua harga variabel random x beserta probabilitas masing-masing harga. Contoh : X 0 1 2 f (x) 10/28 15/28 3/28
  • 11.
    Distribusi kumulatif variabel randomx Definisi : Bila F (x) = p (X ≤ x) untuk setiap bilangan real x F ( x) = p ( X ≤ x) = ∑ f ( x)........untuk − ∞ < x < ∞ t≤x
  • 12.
    Contoh : Menggunakan hasil contoh 2 10 F (0) = f (0) = 28 10 15 25 Nilai x:0, 1, 2, 3 F (1) = f (0) + f (1) = + = 28 28 28 Jadi, intrval yg dapat dibuat 10 15 3 adalah F (2) = f (0) + f (1) + f (2) = + + =1 28 28 28 0...........x < 0 10  ........0 ≤ x < 1  28 sehingga : F ( x) =   25 .......1 ≤ x < 2  28 1...........x ≤ 2 
  • 13.
    PROBABILITAS BERSAMA 2 VARIABELRANDOM Definisi : Jika terdapat 2 atau lebih peubah acak diamati secara bersamaan  Proses pemberian harga dilakukan untuk tiap elemen masing-masing variabel f(x,y) = P(X=x W Y=y) Contoh : Pada contoh 1, variabel random x didefinisikan sebagai tampak muka (M) dan variabel random y didefinisikan untuk tampak belakang (B)
  • 14.
    Contoh Perhitungan : Suatukotak terdapat 8 bola, terdiri dari 3 bola biru, 2 merah, 3 hijau. 2 bola diambil secara acak dari kotak tersebut. Jika x menunjukan banyak bola biru terambil dan y menunjukan banyak bola merah terambil, tulis disribusi probabilitas bersama x dan y !
  • 15.
    Pasangan harga (Xi,Yi ) yang mungkin adalah (0,1) ; (0,2) ; (1,1) ; (0,0) ; (2,0) ; (1,0) 8 8! Kombinasi Total : 8C2 =  = = 28  2  6!2!  3  2  3  Probabilitas kejadian f (0,1) =  0  1  1  = 2.3 = 6     28 28 28 Cari probabilitas untuk kemungkinan yg lain dan buat bentuk distribusi probabilitas variabel random bersama.
  • 16.
    Distribusi Marginal Distribusi kumulatiftunggal untuk masing- masing peubah acak (variabel random) yang diberikan oleh total kolom dan total baris G ( x) = p ( X ≤ x) = ∑ f ( x)........untuk − ∞ < x < ∞ t≤x H ( x) = p (Y ≤ y ) = ∑ f ( y )........untuk − ∞ < x < ∞ t≤x
  • 17.
    Contoh : Distribusi marginaldari contoh sebelumnya : x/y 0 1 2 ∑ Baris 0 3/28 6/28 1/28 10/28 1 9/28 6/28 0 15/28 2 3/28 0 0 3/28 ∑ Kolom 15/28 12/28 1/28 1
  • 18.
    Distribusi Bersyarat Probabilitas bersyaratdinyatakan : a. Bergantung hanya pada x untuk y tertentu p( X = x ∩ Y = y) p(Y = y X = x) = p ( X = x) f ( x, y ) f ( x y) = dengan H ( y ) > 0 H ( y) b. Bergantung hanya pada y untuk x tertentu p( X = x ∩ Y = y) p( X = x Y = y ) = p(Y = y ) f ( x, y ) f ( y x) = dengan G ( x) > 0 G ( x)
  • 19.
    Contoh perhitungan Tentukan distribusibersyarat X untuk Y=1 kasus sebelumnya : H (1) = f (0,1) + f (1,1) + f (2,1) = 6/28 + 6/28 = 12/28 f (xl1) = f ( x,1) f ( x,1) = = (28 / 12) . f ( x,1) H ( y ) 12 / 28 untuk x = 0,1, dan 2 f (0l1) = (28/12) . 6/28 = 0,5 f (1l1) = (28/12) . 6/28 = 0,5 f (2l1) = (28/12) . 0 =0
  • 20.
    Kejadian Tidak Bebas Sifatini berlaku untuk semua kemungkinan pasangan f (x,y) ≠ G (x) . H (y) Contoh: Perhitungan sebelumnya, jika x = 0 dan y = 2, maka : f (0,2) = 1/28 G (0) = 10/28 (10/28) . (1/28) = 10/ 784 H (2) = 1/28 1/28 ≠ 10/784  kedua peubah acak (variabel random) bersifat tidak bebas
  • 21.
    Perhitungan probabilitas bersamajika peubah acak merupakan himpunan ruang dengan fungsi yang ditentukan. p[ (X,Y) ε A ] , untuk A = {(x,y) l f (x,y)} Contoh : Kasus sebelumnya, tentukan p[ (X,Y) ε A ] , untuk A = {(x,y) l x+y ≤ 1} X=0,1,2 dan Y=0,1,2 f(0,0) + f(0,1) + f(1,0) = 8/28 + 6/28 + 6/28 = 16/28
  • 22.
    Latihan : 1 bungkuspermen yang berisi 9 buah yang terdiri dari 3 rasa apel, 2 rasa mangga, dan 4 rasa jambu. Secara acak diambil 3 buah permen dari satu bungkus permen. Jika X merupakan var. random untuk rasa mangga dan Y var. random untuk rasa apel. Tentukan : a. Distribusi probabilitas bersama c. Distribusi bersyarat X untuk Y = 1