SlideShare a Scribd company logo
Unsupervised Collaborative Learning of
Keyframe Detection and Visual Odometry
Towards Monocular Deep SLAM [Sheng & Xu+, ICCV’19]
東京大学 相澤研究室
M2 金子 真也
1
本論文
• Unsupervised Collaborative Learning of Keyframe Detection
and Visual Odometry Towards Monocular Deep SLAM
– 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang
– 所属: Beihang University, Oxford, SenseTime
– 採択会議: ICCV2019
2
本論文
• Unsupervised Collaborative Learning of Keyframe Detection
and Visual Odometry Towards Monocular Deep SLAM
– 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang
– 所属: Beihang University, Oxford, SenseTime
– 採択会議: ICCV2019
– Monocular Deep SLAMを実現したいという強い気持ちの論文
– わかりみが深い
3
Introduction
• Visual SLAM
– 3D reconstruction + Camera pose estimation
– 両者の同時最適化 (Bundle Adjustment)
Direct Sparse Odometry [Engel+, TPAMI’18]
4
Introduction
• Deep Learning for Visual SLAM (Deep SLAM)
End-to-end Deep SLAMDL helps SLAM
SfMLearner [Zhou+, CVPR’17]
CNN-SLAM [Tateno+, CVPR’17]
CodeSLAM [Tateno+, CVPR’18]
DeepTAM [Zhou+, ECCV’18]
This figure is from Tombari’s presentation slide @ ICCVW.
5
Introduction
• Deep Learning for Visual SLAM (Deep SLAM)
End-to-end Deep SLAMDL helps SLAM
CNN-SLAM [Tateno+, CVPR’17]
CodeSLAM [Tateno+, CVPR’18]
DeepTAM [Zhou+, ECCV’18]
SfMLearner [Zhou+, CVPR’17]
本論文の目標は,
この領域での最高のDeep SLAMを作ること
This figure is from Tombari’s presentation slide @ ICCVW.
6
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Training
• Photometric errorを最小化するように学習
7
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Inference
• 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
8
Related works
• SfMLearner [Zhou+, CVPR’17]
– 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現
– Inference
• 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
より従来のVSLAMに近い
Deep SLAMを実現するためには???
9
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
10
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
𝒖𝒖𝑖𝑖,𝑗𝑗
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Bundle
𝑍𝑍𝑗𝑗+1
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝒖𝒖𝑖𝑖,𝑗𝑗+1
画像 𝑍𝑍𝑗𝑗
3D位置 𝐗𝐗𝑖𝑖
11
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
最適化
画像 𝑍𝑍𝑗𝑗
𝒖𝒖𝑖𝑖,𝑗𝑗
Bundle
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1
3D位置 𝐗𝐗𝑖𝑖
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
12
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗
最適化
画像 𝑍𝑍𝑗𝑗
𝒖𝒖𝑖𝑖,𝑗𝑗
Bundle
[𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1]
𝑍𝑍𝑗𝑗+1
𝒖𝒖𝑖𝑖,𝑗𝑗+1
3D位置 𝐗𝐗𝑖𝑖
カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗]
投影点
𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
Keyframe
13
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
Keyframe
[1] ORB-SLAM2 for Monocular, Stereo and RGB-D Cameras [Mur-Artal+, ToR17]
14
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
15
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
16
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
→ 職人技のような挿入条件の設定が必要
17
Related works
• VSLAM
– VSLAMで最も重要な要素はBundle Adjustment (BA)
• 三次元地図に, 三次元点とその点が属するカメラ画像を登録
• カメラ画像をKeyframe (KF)と呼ぶ
– Keyframeの選び方
1. 重複を避けるようにある程度間隔を空ける
2. 十分な地図が作れなくなるのでそれなりに必要
→ 職人技のような挿入条件の設定が必要
– この選択をCNNで実現し, SfMLearnerに組み込めないか?
18
Proposed method
• SfMLearner with KF selection
– KF選択を行いながら, 三次元復元とカメラ姿勢推定を行うような
Deep SLAMの実現
19
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
KF selection network
Depth + Camera pose network
(Visual Odometry)
Depth + Camera pose network
(Visual Odometry)
20
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
KF selection network
- 2枚の画像間のsimilarity
scoreを回帰
- このscoreに応じてKFの
選択を行う
21
Proposed method
• SfMLearner with KF selection
– Unsupervised collaborative learning
• 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!!
Depth + Camera pose network
(Visual Odometry) KF selection network
22
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Nearest Keyframe
2nd nearest Keyframe
23
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
Target 𝐈𝐈𝑡𝑡
𝐃𝐃𝑡𝑡
Reference 𝐈𝐈𝑟𝑟
𝐃𝐃𝑟𝑟
Warped ref 𝐈𝐈𝑡𝑡←𝑟𝑟
𝐃𝐃𝑡𝑡
𝐃𝐃𝑟𝑟
Photometric error Cycle Consistency
t
r
Target 𝐈𝐈𝑡𝑡Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
Warped2
tgt 𝐈𝐈𝑡𝑡←𝑟𝑟←𝑡𝑡
Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
24
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
s
t
p
0.1
n
大 小
25
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛>
s
t
p
0.1
n
大 小
大 小0.8
26
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝>
<𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛>
s
t
p
0.1
n
大 小
大 小0.8
27
Proposed method
• Training
– Data pair
• Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1}
• Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
– Visual Odometry (≈SfMLearner)
• Photometric error + cycle consistency + depth smooth term
– Keyframe selection
• Triplet loss
KFはどのように選ばれるのか?
28
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
29
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {𝓘𝓘𝒔𝒔, 𝐈𝐈𝒑𝒑, 𝐈𝐈𝒏𝒏}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model
KF pool 𝒫𝒫 𝐾𝐾
Dataset
30
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model Loss
Train
31
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
{𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
𝐈𝐈𝑡𝑡
Model Loss
Train
32
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
33
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
34
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
35
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th:
Insert tgt frame 𝐈𝐈𝒕𝒕 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
ℐ𝑠𝑠
𝐈𝐈𝑝𝑝
𝐈𝐈𝑡𝑡
Model Score
36
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
𝐈𝐈𝑛𝑛𝐈𝐈𝑝𝑝
Model
ℐ𝑠𝑠
𝐈𝐈𝑡𝑡
Scores
37
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(I𝑝𝑝, I𝑡𝑡) > th:
Insert tgt frame I𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
38
Proposed method
• Training
– Keyframe update & management
Random KF initialization
for epoch:
for iteration:
Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛}
Train all the model
if iteration > 200 &
Similarity(𝐼𝐼𝑝𝑝, 𝐼𝐼𝑡𝑡) > th:
Insert tgt frame 𝐼𝐼𝑡𝑡 as KF
Merge KF
KF pool 𝒫𝒫 𝐾𝐾
Dataset
Model
この操作を繰り返すことで
KF poolの最適化を行う
39
Experimental results
• KITTI dataset
– Monocular Depth Estimation
KF selectionによって学習データを調整することで, 学習が安定し
推定精度も高くなる
40
Experimental results
• KITTI dataset
– Monocular Depth Estimation
KF selectionによって学習データを調整することで, 学習が安定し
推定精度も高くなる
41
Experimental results
• KITTI dataset
– Absolute Trajectory Error (ATE)
KF selectionがdata augmentationの効果を持ち, 結果としてカメラ
姿勢の推定精度が向上
42
Experimental results
• KITTI dataset
– Average Rotation Errors
とはいえカメラの回転の推定精度はORB-SLAM[Mur-Artal, TOR15]には
勝てていない状況
43
Experimental results
• KITTI dataset
– Keyframe selection
• カメラが並進する場所では, 均一になるように選択
• カメラが回転する場所では, 変化が激しいのでより刻んだ選択
44
Experimental results
• KITTI dataset
– Ablation study
Depth推定
カメラ軌跡推定
45
Conclusion
• SfMLearner with KF selection
– VSLAMで最も重要なKF selectionを, SfMLearnerの枠組みに追加
– UnsupervisedでKF selectionを学習する手法を提案
– 従来手法よりも高精度な奥行き推定, カメラ姿勢推定を達成.
• 感想
– 従来人手の緻密な設計が必要だったKF selectionを, unsupervisedに
CNNで学習し実現した点が新しく非常に面白い
– KF selectionだけでなく, Bundle Adjustment等の最適化要素も追加
できるとDeep SLAMの実現により近付きそう

More Related Content

What's hot

20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summaryTakuya Minagawa
 
20180527 ORB SLAM Code Reading
20180527 ORB SLAM Code Reading20180527 ORB SLAM Code Reading
20180527 ORB SLAM Code ReadingTakuya Minagawa
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII
 
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII
 
SLAM入門 第2章 SLAMの基礎
SLAM入門 第2章 SLAMの基礎SLAM入門 第2章 SLAMの基礎
SLAM入門 第2章 SLAMの基礎yohei okawa
 
LSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMLSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMEndoYuuki
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII
 
SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介miyanegi
 
SLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMSLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMIwami Kazuya
 
Cvpr 2021 manydepth
Cvpr 2021 manydepthCvpr 2021 manydepth
Cvpr 2021 manydepthKenta Tanaka
 
複数のGNSSを用いたポーズグラフ最適化
複数のGNSSを用いたポーズグラフ最適化複数のGNSSを用いたポーズグラフ最適化
複数のGNSSを用いたポーズグラフ最適化TaroSuzuki15
 
確率ロボティクス第二回
確率ロボティクス第二回確率ロボティクス第二回
確率ロボティクス第二回Ryuichi Ueda
 
[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況Deep Learning JP
 
確率ロボティクス第六回
確率ロボティクス第六回確率ロボティクス第六回
確率ロボティクス第六回Ryuichi Ueda
 
ARマーカーを用いた位置姿勢推定
ARマーカーを用いた位置姿勢推定ARマーカーを用いた位置姿勢推定
ARマーカーを用いた位置姿勢推定KakeruYamasaki
 
LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料Fujimoto Keisuke
 

What's hot (20)

Structure from Motion
Structure from MotionStructure from Motion
Structure from Motion
 
20190307 visualslam summary
20190307 visualslam summary20190307 visualslam summary
20190307 visualslam summary
 
20180527 ORB SLAM Code Reading
20180527 ORB SLAM Code Reading20180527 ORB SLAM Code Reading
20180527 ORB SLAM Code Reading
 
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
SSII2021 [TS1] Visual SLAM ~カメラ幾何の基礎から最近の技術動向まで~
 
20190825 vins mono
20190825 vins mono20190825 vins mono
20190825 vins mono
 
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
SSII2019企画: 画像および LiDAR を用いた自動走行に関する動向
 
G2o
G2oG2o
G2o
 
SLAM入門 第2章 SLAMの基礎
SLAM入門 第2章 SLAMの基礎SLAM入門 第2章 SLAMの基礎
SLAM入門 第2章 SLAMの基礎
 
LSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAMLSD-SLAM:Large Scale Direct Monocular SLAM
LSD-SLAM:Large Scale Direct Monocular SLAM
 
20180424 orb slam
20180424 orb slam20180424 orb slam
20180424 orb slam
 
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
SSII2019TS: 実践カメラキャリブレーション ~カメラを用いた実世界計測の基礎と応用~
 
SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介SLAM開発における課題と対策の一例の紹介
SLAM開発における課題と対策の一例の紹介
 
SLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAMSLAM勉強会(3) LSD-SLAM
SLAM勉強会(3) LSD-SLAM
 
Cvpr 2021 manydepth
Cvpr 2021 manydepthCvpr 2021 manydepth
Cvpr 2021 manydepth
 
複数のGNSSを用いたポーズグラフ最適化
複数のGNSSを用いたポーズグラフ最適化複数のGNSSを用いたポーズグラフ最適化
複数のGNSSを用いたポーズグラフ最適化
 
確率ロボティクス第二回
確率ロボティクス第二回確率ロボティクス第二回
確率ロボティクス第二回
 
[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況[DL輪読会]画像を使ったSim2Realの現況
[DL輪読会]画像を使ったSim2Realの現況
 
確率ロボティクス第六回
確率ロボティクス第六回確率ロボティクス第六回
確率ロボティクス第六回
 
ARマーカーを用いた位置姿勢推定
ARマーカーを用いた位置姿勢推定ARマーカーを用いた位置姿勢推定
ARマーカーを用いた位置姿勢推定
 
LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料LiDAR-SLAM チュートリアル資料
LiDAR-SLAM チュートリアル資料
 

Similar to Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説

Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Dongmin Choi
 
Explaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersExplaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersVasileiosMezaris
 
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorPR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorJinwon Lee
 
Realtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN ModelsRealtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN Modelsnithinsai2992
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM RecommendersYONG ZHENG
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsScott Clark
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsSigOpt
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataWeCloudData
 
Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Charles Martin
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D... Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...Databricks
 
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Joo-Haeng Lee
 
Decision Forests and discriminant analysis
Decision Forests and discriminant analysisDecision Forests and discriminant analysis
Decision Forests and discriminant analysispotaters
 
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Ansys
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecastingDevon Barrow
 
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From ScratchPR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From ScratchSunghoon Joo
 
Willump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceWillump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceDatabricks
 
Object Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningObject Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningJui-Hsin (Larry) Lai
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionNU_I_TODALAB
 

Similar to Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説 (20)

Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]Review: Incremental Few-shot Instance Segmentation [CDM]
Review: Incremental Few-shot Instance Segmentation [CDM]
 
Explaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiersExplaining the decisions of image/video classifiers
Explaining the decisions of image/video classifiers
 
Temporal Segment Network
Temporal Segment NetworkTemporal Segment Network
Temporal Segment Network
 
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object DetectorPR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
PR-270: PP-YOLO: An Effective and Efficient Implementation of Object Detector
 
Realtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN ModelsRealtime pothole detection system using improved CNN Models
Realtime pothole detection system using improved CNN Models
 
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
[CIKM 2014] Deviation-Based Contextual SLIM Recommenders
 
autoTVM
autoTVMautoTVM
autoTVM
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Using Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning ModelsUsing Bayesian Optimization to Tune Machine Learning Models
Using Bayesian Optimization to Tune Machine Learning Models
 
Deep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudDataDeep Learning Introduction - WeCloudData
Deep Learning Introduction - WeCloudData
 
Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022 Weight watcher Bay Area ACM Feb 28, 2022
Weight watcher Bay Area ACM Feb 28, 2022
 
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D... Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
Apache Spark Based Hyper-Parameter Selection and Adaptive Model Tuning for D...
 
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
Calibration Issues in FRC: Camera, Projector, Kinematics based Hybrid Approac...
 
Decision Forests and discriminant analysis
Decision Forests and discriminant analysisDecision Forests and discriminant analysis
Decision Forests and discriminant analysis
 
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
Use of FEA to Improve the Design of Suspension Springs for Reciprocating Comp...
 
Cross-validation aggregation for forecasting
Cross-validation aggregation for forecastingCross-validation aggregation for forecasting
Cross-validation aggregation for forecasting
 
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From ScratchPR-232:  AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
PR-232: AutoML-Zero:Evolving Machine Learning Algorithms From Scratch
 
Willump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML InferenceWillump: Optimizing Feature Computation in ML Inference
Willump: Optimizing Feature Computation in ML Inference
 
Object Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online LearningObject Tracking with Instance Matching and Online Learning
Object Tracking with Instance Matching and Online Learning
 
Weakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-AttentionWeakly-Supervised Sound Event Detection with Self-Attention
Weakly-Supervised Sound Event Detection with Self-Attention
 

More from Masaya Kaneko

GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説Masaya Kaneko
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])Masaya Kaneko
 
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Masaya Kaneko
 
論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)Masaya Kaneko
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between CapsulesMasaya Kaneko
 
論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)Masaya Kaneko
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)Masaya Kaneko
 

More from Masaya Kaneko (7)

GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
GN-Net: The Gauss-Newton Loss for Deep Direct SLAMの解説
 
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
論文読み会@AIST (Deep Virtual Stereo Odometry [ECCV2018])
 
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)Neural scene representation and rendering の解説(第3回3D勉強会@関東)
Neural scene representation and rendering の解説(第3回3D勉強会@関東)
 
論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)論文読み会2018 (CodeSLAM)
論文読み会2018 (CodeSLAM)
 
Dynamic Routing Between Capsules
Dynamic Routing Between CapsulesDynamic Routing Between Capsules
Dynamic Routing Between Capsules
 
論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)論文読み会(DeMoN;CVPR2017)
論文読み会(DeMoN;CVPR2017)
 
コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)コンピュータ先端ガイド2巻3章勉強会(SVM)
コンピュータ先端ガイド2巻3章勉強会(SVM)
 

Recently uploaded

Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyJohn Staveley
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfCheryl Hung
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Product School
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backElena Simperl
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutesconfluent
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonDianaGray10
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsExpeed Software
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor TurskyiFwdays
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...Product School
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualityInflectra
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...Product School
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlPeter Udo Diehl
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...Product School
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoTAnalytics
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Ramesh Iyer
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...Product School
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...Product School
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaRTTS
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Jeffrey Haguewood
 

Recently uploaded (20)

Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...Designing Great Products: The Power of Design and Leadership by Chief Designe...
Designing Great Products: The Power of Design and Leadership by Chief Designe...
 
Knowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and backKnowledge engineering: from people to machines and back
Knowledge engineering: from people to machines and back
 
Speed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in MinutesSpeed Wins: From Kafka to APIs in Minutes
Speed Wins: From Kafka to APIs in Minutes
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
In-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT ProfessionalsIn-Depth Performance Testing Guide for IT Professionals
In-Depth Performance Testing Guide for IT Professionals
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi"Impact of front-end architecture on development cost", Viktor Turskyi
"Impact of front-end architecture on development cost", Viktor Turskyi
 
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
From Daily Decisions to Bottom Line: Connecting Product Work to Revenue by VP...
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo DiehlFuture Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
Future Visions: Predictions to Guide and Time Tech Innovation, Peter Udo Diehl
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024IoT Analytics Company Presentation May 2024
IoT Analytics Company Presentation May 2024
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 

Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAMの解説

  • 1. Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM [Sheng & Xu+, ICCV’19] 東京大学 相澤研究室 M2 金子 真也
  • 2. 1 本論文 • Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM – 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang – 所属: Beihang University, Oxford, SenseTime – 採択会議: ICCV2019
  • 3. 2 本論文 • Unsupervised Collaborative Learning of Keyframe Detection and Visual Odometry Towards Monocular Deep SLAM – 著者: L. Sheng, D. Xu, W. Ouyang and X. Wang – 所属: Beihang University, Oxford, SenseTime – 採択会議: ICCV2019 – Monocular Deep SLAMを実現したいという強い気持ちの論文 – わかりみが深い
  • 4. 3 Introduction • Visual SLAM – 3D reconstruction + Camera pose estimation – 両者の同時最適化 (Bundle Adjustment) Direct Sparse Odometry [Engel+, TPAMI’18]
  • 5. 4 Introduction • Deep Learning for Visual SLAM (Deep SLAM) End-to-end Deep SLAMDL helps SLAM SfMLearner [Zhou+, CVPR’17] CNN-SLAM [Tateno+, CVPR’17] CodeSLAM [Tateno+, CVPR’18] DeepTAM [Zhou+, ECCV’18] This figure is from Tombari’s presentation slide @ ICCVW.
  • 6. 5 Introduction • Deep Learning for Visual SLAM (Deep SLAM) End-to-end Deep SLAMDL helps SLAM CNN-SLAM [Tateno+, CVPR’17] CodeSLAM [Tateno+, CVPR’18] DeepTAM [Zhou+, ECCV’18] SfMLearner [Zhou+, CVPR’17] 本論文の目標は, この領域での最高のDeep SLAMを作ること This figure is from Tombari’s presentation slide @ ICCVW.
  • 7. 6 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Training • Photometric errorを最小化するように学習
  • 8. 7 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Inference • 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰
  • 9. 8 Related works • SfMLearner [Zhou+, CVPR’17] – 古典的なSfMを応用し, UnsupervisedにDeep SLAMを実現 – Inference • 入力画像の奥行き画像と, 2視点間のカメラ姿勢をCNNで回帰 より従来のVSLAMに近い Deep SLAMを実現するためには???
  • 10. 9 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA)
  • 11. 10 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 𝒖𝒖𝑖𝑖,𝑗𝑗 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Bundle 𝑍𝑍𝑗𝑗+1 [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝒖𝒖𝑖𝑖,𝑗𝑗+1 画像 𝑍𝑍𝑗𝑗 3D位置 𝐗𝐗𝑖𝑖
  • 12. 11 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 最適化 画像 𝑍𝑍𝑗𝑗 𝒖𝒖𝑖𝑖,𝑗𝑗 Bundle [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1 3D位置 𝐗𝐗𝑖𝑖 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗)
  • 13. 12 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ 画像 𝑍𝑍𝑗𝑗 画像 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1特徴点 𝒖𝒖𝑖𝑖,𝑗𝑗 最適化 画像 𝑍𝑍𝑗𝑗 𝒖𝒖𝑖𝑖,𝑗𝑗 Bundle [𝐑𝐑𝑗𝑗+1, 𝐭𝐭𝑗𝑗+1] 𝑍𝑍𝑗𝑗+1 𝒖𝒖𝑖𝑖,𝑗𝑗+1 3D位置 𝐗𝐗𝑖𝑖 カメラ姿勢 [𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗] 投影点 𝑓𝑓 𝐗𝐗𝑖𝑖 𝐑𝐑𝑗𝑗, 𝐭𝐭𝑗𝑗) Keyframe
  • 14. 13 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ Keyframe [1] ORB-SLAM2 for Monocular, Stereo and RGB-D Cameras [Mur-Artal+, ToR17]
  • 15. 14 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける
  • 16. 15 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要
  • 17. 16 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要 → 職人技のような挿入条件の設定が必要
  • 18. 17 Related works • VSLAM – VSLAMで最も重要な要素はBundle Adjustment (BA) • 三次元地図に, 三次元点とその点が属するカメラ画像を登録 • カメラ画像をKeyframe (KF)と呼ぶ – Keyframeの選び方 1. 重複を避けるようにある程度間隔を空ける 2. 十分な地図が作れなくなるのでそれなりに必要 → 職人技のような挿入条件の設定が必要 – この選択をCNNで実現し, SfMLearnerに組み込めないか?
  • 19. 18 Proposed method • SfMLearner with KF selection – KF選択を行いながら, 三次元復元とカメラ姿勢推定を行うような Deep SLAMの実現
  • 20. 19 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! KF selection network Depth + Camera pose network (Visual Odometry)
  • 21. Depth + Camera pose network (Visual Odometry) 20 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! KF selection network - 2枚の画像間のsimilarity scoreを回帰 - このscoreに応じてKFの 選択を行う
  • 22. 21 Proposed method • SfMLearner with KF selection – Unsupervised collaborative learning • 三次元復元 + カメラ姿勢推定 + KF選択 ←New!!! Depth + Camera pose network (Visual Odometry) KF selection network
  • 23. 22 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Nearest Keyframe 2nd nearest Keyframe
  • 24. 23 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term Target 𝐈𝐈𝑡𝑡 𝐃𝐃𝑡𝑡 Reference 𝐈𝐈𝑟𝑟 𝐃𝐃𝑟𝑟 Warped ref 𝐈𝐈𝑡𝑡←𝑟𝑟 𝐃𝐃𝑡𝑡 𝐃𝐃𝑟𝑟 Photometric error Cycle Consistency t r Target 𝐈𝐈𝑡𝑡Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡 Warped2 tgt 𝐈𝐈𝑡𝑡←𝑟𝑟←𝑡𝑡 Warped tgt 𝐈𝐈𝑟𝑟←𝑡𝑡
  • 25. 24 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> s t p 0.1 n 大 小
  • 26. 25 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛> s t p 0.1 n 大 小 大 小0.8
  • 27. 26 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑝𝑝> <𝐈𝐈𝑡𝑡, 𝐈𝐈𝑠𝑠, 𝐈𝐈𝑛𝑛> s t p 0.1 n 大 小 大 小0.8
  • 28. 27 Proposed method • Training – Data pair • Sequential frames ℐ𝑠𝑠 ={𝐈𝐈𝑡𝑡−1, 𝐈𝐈𝑡𝑡, 𝐈𝐈𝑡𝑡+1} • Keyframes {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} – Visual Odometry (≈SfMLearner) • Photometric error + cycle consistency + depth smooth term – Keyframe selection • Triplet loss KFはどのように選ばれるのか?
  • 29. 28 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model
  • 30. 29 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {𝓘𝓘𝒔𝒔, 𝐈𝐈𝒑𝒑, 𝐈𝐈𝒏𝒏} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model KF pool 𝒫𝒫 𝐾𝐾 Dataset
  • 31. 30 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model Loss Train
  • 32. 31 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 {𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} 𝐈𝐈𝑡𝑡 Model Loss Train
  • 33. 32 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 34. 33 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 35. 34 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 36. 35 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐈𝐈𝑝𝑝, 𝐈𝐈𝑡𝑡) > th: Insert tgt frame 𝐈𝐈𝒕𝒕 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset ℐ𝑠𝑠 𝐈𝐈𝑝𝑝 𝐈𝐈𝑡𝑡 Model Score
  • 37. 36 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset 𝐈𝐈𝑛𝑛𝐈𝐈𝑝𝑝 Model ℐ𝑠𝑠 𝐈𝐈𝑡𝑡 Scores
  • 38. 37 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, 𝐈𝐈𝑝𝑝, 𝐈𝐈𝑛𝑛} Train all the model if iteration > 200 & Similarity(I𝑝𝑝, I𝑡𝑡) > th: Insert tgt frame I𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model
  • 39. 38 Proposed method • Training – Keyframe update & management Random KF initialization for epoch: for iteration: Choose training pair {ℐ𝑠𝑠, I𝑝𝑝, I𝑛𝑛} Train all the model if iteration > 200 & Similarity(𝐼𝐼𝑝𝑝, 𝐼𝐼𝑡𝑡) > th: Insert tgt frame 𝐼𝐼𝑡𝑡 as KF Merge KF KF pool 𝒫𝒫 𝐾𝐾 Dataset Model この操作を繰り返すことで KF poolの最適化を行う
  • 40. 39 Experimental results • KITTI dataset – Monocular Depth Estimation KF selectionによって学習データを調整することで, 学習が安定し 推定精度も高くなる
  • 41. 40 Experimental results • KITTI dataset – Monocular Depth Estimation KF selectionによって学習データを調整することで, 学習が安定し 推定精度も高くなる
  • 42. 41 Experimental results • KITTI dataset – Absolute Trajectory Error (ATE) KF selectionがdata augmentationの効果を持ち, 結果としてカメラ 姿勢の推定精度が向上
  • 43. 42 Experimental results • KITTI dataset – Average Rotation Errors とはいえカメラの回転の推定精度はORB-SLAM[Mur-Artal, TOR15]には 勝てていない状況
  • 44. 43 Experimental results • KITTI dataset – Keyframe selection • カメラが並進する場所では, 均一になるように選択 • カメラが回転する場所では, 変化が激しいのでより刻んだ選択
  • 45. 44 Experimental results • KITTI dataset – Ablation study Depth推定 カメラ軌跡推定
  • 46. 45 Conclusion • SfMLearner with KF selection – VSLAMで最も重要なKF selectionを, SfMLearnerの枠組みに追加 – UnsupervisedでKF selectionを学習する手法を提案 – 従来手法よりも高精度な奥行き推定, カメラ姿勢推定を達成. • 感想 – 従来人手の緻密な設計が必要だったKF selectionを, unsupervisedに CNNで学習し実現した点が新しく非常に面白い – KF selectionだけでなく, Bundle Adjustment等の最適化要素も追加 できるとDeep SLAMの実現により近付きそう