Objective: SWBAT examine multiple representations of
a function in order to become familiar with properties
of common functions
0011 0010 1010 1101 0001 0100 1011

   DRILL: August 30, 2011

             My Expectations of Calculus…
0011 0010 1010 1101 0001 0100 1011
   •Why did you sign up for calculus?     1
                                               2
                                      4
   •What do you expect the year to be like?
   •What are your plans after high school that
   involve mathematics or science-related
   fields?
0011 0010 1010 1101 0001 0100 1011




                                                         1
                                                             2
                                                    4
               This lab assignment can be found on EDLINE.
The Dominance of Functions
     • Any exponential function of n dominates any
0011 0010 1010 1101 0001 0100 1011
       polynomial function of n.
     • Any polynomial function of n dominates and
       logarithmic function of n.
     • Any logarithmic function of n dominates a
       constant term.                                 1
                                                          2
     • Any polynomial of degree k dominates a
       polynomial of degree l if and only if k>l

                                                 4
     In general, x(n) dominates y(n) if and only if
                             grows large.
                                                      grows as n
Exit Ticket
0011 0010 1010 1101 0001 0100 1011




                                       1
                                           2
                                       4
Homework
0011 0010 1010 1101 0001 0100 1011
     Mathematical Autobiography
     • Typed
     • Double-spaced
     • Times Roman, 12 Font
                                         1
                                                 2
                                      4
     • 4 paragraphs (as outlined on worksheet)
     (one paragraph was done as today’s drill)
Objective: SWBAT use area representations in order to
evaluate limits using tables, graphs, and functions
0011 0010 1010 1101 0001 0100 1011
   DRILL QUIZ #1: September 1, 2011


0011 0010 1010 1101 0001 0100 1011

                                         1
                                               2
                                     4
0011 0010 1010 1101 0001 0100 1011




                                                         1
                                                             2
                                                    4
               This lab assignment can be found on EDLINE.
Evaluating Limits of Functions
           TABLES
0011 0010 1010 1101 0001 0100 1011   GRAPHS




                                         1
                                              2
   SUBSTITUTION

                                       4
Limit Existence from a Graph
                                     Conclusion:
0011 0010 1010 1101 0001 0100 1011
                                     Existence or nonexistence
                                     at x=c has no effect on the
                                     existence of the limit of the




                                                          2
                                     function at x=c.

                                                   1
                                               4
Limit Non-Existence from a Graph
                                     Conclusion:
0011 0010 1010 1101 0001 0100 1011
                                     The limit at x=c does not exist
                                     if the function has oscillating
                                     or unbounded behavior or a




                                                            2
                                     jump discontinuity at x=c.

                                                     1
                                                 4
Exit Ticket
0011 0010 1010 1101 0001 0100 1011




                                       1
                                           2
                                       4
Homework
0011 0010 1010 1101 0001 0100 1011
                Calculus Textbook
     • Pgs. 54-58
     • #’s 2, 7, 8, 9-18, 20, 26, 60, 63, 65, 66

                                             1
                                                   2
                                         4
     • Pg. 67
     • Choose one from #’s 11-22
Objective: SWBAT use direct substitution and other
algebraic manipulations in order to evaluate limits
0011 0010 1010 1101 0001 0100 1011
   DRILL QUIZ #2: September 6, 2011


0011 0010 1010 1101 0001 0100 1011

                                          1
                                                2
                                      4
The Indeterminate Form
    • This limit cannot be determined
0011 0010 1010 1101 0001 0100 1011

    • But this does not mean that the limit DNE



                                         1
                                                  2
    When this happens, try the following:
    • Factor




                                      4
    • Rationalize the numerator or denominator
    • Use Trig Substitutions to rewrite the function
Exit Ticket
0011 0010 1010 1101 0001 0100 1011

                 Evaluating Limits
                     Worksheet
                                       1
                                           2
                                       4
Homework
0011 0010 1010 1101 0001 0100 1011
                Calculus Textbook
     • Pgs. 67-69
     • #’s 24, 27, 35, 42, 44, 52, 54, 65, 67, 70, 77,
       97, 98
                                            1
                                                  2
                                        4
     • Prove the 2nd Special Trig Limit involving
       cosine
Objective: SWBAT examine the area of regular
 polygons in order to evaluate limits at infinity

    DRILL QUIZ #3: September 8, 2011
0011 0010 1010 1101 0001 0100 1011




0011 0010 1010 1101 0001 0100 1011

                                            1
                                                    2
                                        4
0011 0010 1010 1101 0001 0100 1011




                                                         1
                                                             2
                                                    4
               This lab assignment can be found on EDLINE.
Horizontal Asymptote
0011 0010 1010 1101 0001 a horizontal
       The line y = L is 0100 1011      asymptote of the graph of f if

                                    or



                                                          1
                                                                 2
                                                     4
Limits at Infinity of Rational Functions
     • If the degree of the numerator is less than the
0011 0010 1010 1101 0001 0100 1011
       degree of the denominator, then the limit of
       the rational function is 0.
     • If the degree of the numerator is equal to the

                                             1
       degree of the denominator, then the limit of


                                                   2
       the rational function is the ratio of the leading
       coefficients.



                                         4
     • If the degree of the numerator is greater than
       the degree of the denominator, then the limit
       of the rational function does not exist.
Exit Ticket
0011 0010 1010 1101 0001 0100 1011




                                       1
                                           2
                                       4
Homework
0011 0010 1010 1101 0001 0100 1011
                Calculus Textbook
     • Pgs. 205-207
     • #’s 1-8, 15-20, 88b
                                     1
                                         2
                                     4

Unit 1 limits and continuity

  • 1.
    Objective: SWBAT examinemultiple representations of a function in order to become familiar with properties of common functions 0011 0010 1010 1101 0001 0100 1011 DRILL: August 30, 2011 My Expectations of Calculus… 0011 0010 1010 1101 0001 0100 1011 •Why did you sign up for calculus? 1 2 4 •What do you expect the year to be like? •What are your plans after high school that involve mathematics or science-related fields?
  • 2.
    0011 0010 10101101 0001 0100 1011 1 2 4 This lab assignment can be found on EDLINE.
  • 3.
    The Dominance ofFunctions • Any exponential function of n dominates any 0011 0010 1010 1101 0001 0100 1011 polynomial function of n. • Any polynomial function of n dominates and logarithmic function of n. • Any logarithmic function of n dominates a constant term. 1 2 • Any polynomial of degree k dominates a polynomial of degree l if and only if k>l 4 In general, x(n) dominates y(n) if and only if grows large. grows as n
  • 4.
    Exit Ticket 0011 00101010 1101 0001 0100 1011 1 2 4
  • 5.
    Homework 0011 0010 10101101 0001 0100 1011 Mathematical Autobiography • Typed • Double-spaced • Times Roman, 12 Font 1 2 4 • 4 paragraphs (as outlined on worksheet) (one paragraph was done as today’s drill)
  • 6.
    Objective: SWBAT usearea representations in order to evaluate limits using tables, graphs, and functions 0011 0010 1010 1101 0001 0100 1011 DRILL QUIZ #1: September 1, 2011 0011 0010 1010 1101 0001 0100 1011 1 2 4
  • 7.
    0011 0010 10101101 0001 0100 1011 1 2 4 This lab assignment can be found on EDLINE.
  • 8.
    Evaluating Limits ofFunctions TABLES 0011 0010 1010 1101 0001 0100 1011 GRAPHS 1 2 SUBSTITUTION 4
  • 9.
    Limit Existence froma Graph Conclusion: 0011 0010 1010 1101 0001 0100 1011 Existence or nonexistence at x=c has no effect on the existence of the limit of the 2 function at x=c. 1 4
  • 10.
    Limit Non-Existence froma Graph Conclusion: 0011 0010 1010 1101 0001 0100 1011 The limit at x=c does not exist if the function has oscillating or unbounded behavior or a 2 jump discontinuity at x=c. 1 4
  • 11.
    Exit Ticket 0011 00101010 1101 0001 0100 1011 1 2 4
  • 12.
    Homework 0011 0010 10101101 0001 0100 1011 Calculus Textbook • Pgs. 54-58 • #’s 2, 7, 8, 9-18, 20, 26, 60, 63, 65, 66 1 2 4 • Pg. 67 • Choose one from #’s 11-22
  • 13.
    Objective: SWBAT usedirect substitution and other algebraic manipulations in order to evaluate limits 0011 0010 1010 1101 0001 0100 1011 DRILL QUIZ #2: September 6, 2011 0011 0010 1010 1101 0001 0100 1011 1 2 4
  • 14.
    The Indeterminate Form • This limit cannot be determined 0011 0010 1010 1101 0001 0100 1011 • But this does not mean that the limit DNE 1 2 When this happens, try the following: • Factor 4 • Rationalize the numerator or denominator • Use Trig Substitutions to rewrite the function
  • 15.
    Exit Ticket 0011 00101010 1101 0001 0100 1011 Evaluating Limits Worksheet 1 2 4
  • 16.
    Homework 0011 0010 10101101 0001 0100 1011 Calculus Textbook • Pgs. 67-69 • #’s 24, 27, 35, 42, 44, 52, 54, 65, 67, 70, 77, 97, 98 1 2 4 • Prove the 2nd Special Trig Limit involving cosine
  • 17.
    Objective: SWBAT examinethe area of regular polygons in order to evaluate limits at infinity DRILL QUIZ #3: September 8, 2011 0011 0010 1010 1101 0001 0100 1011 0011 0010 1010 1101 0001 0100 1011 1 2 4
  • 18.
    0011 0010 10101101 0001 0100 1011 1 2 4 This lab assignment can be found on EDLINE.
  • 19.
    Horizontal Asymptote 0011 00101010 1101 0001 a horizontal The line y = L is 0100 1011 asymptote of the graph of f if or 1 2 4
  • 20.
    Limits at Infinityof Rational Functions • If the degree of the numerator is less than the 0011 0010 1010 1101 0001 0100 1011 degree of the denominator, then the limit of the rational function is 0. • If the degree of the numerator is equal to the 1 degree of the denominator, then the limit of 2 the rational function is the ratio of the leading coefficients. 4 • If the degree of the numerator is greater than the degree of the denominator, then the limit of the rational function does not exist.
  • 21.
    Exit Ticket 0011 00101010 1101 0001 0100 1011 1 2 4
  • 22.
    Homework 0011 0010 10101101 0001 0100 1011 Calculus Textbook • Pgs. 205-207 • #’s 1-8, 15-20, 88b 1 2 4