SlideShare a Scribd company logo
Observa(ons	
  and	
  modelling	
  of	
  precipita(on	
  and	
  the	
  
hydrological	
  cycle:	
  	
  
uncertain(es	
  and	
  downscaling	
  
Jost	
  von	
  Hardenberg	
  	
  -­‐	
  	
  Elisa	
  Palazzi	
  –	
  Silvia	
  Terzago	
  
ISAC-­‐CNR,	
  Torino	
  
with:	
  L.	
  Filippi,	
  P.	
  Davini,	
  D.	
  D’Onofrio	
  (ISAC-­‐CNR)	
  
From	
  large	
  to	
  small	
  scales	
  (and	
  back)	
  
•  Climate	
  projecOons	
  from	
  global	
  climate	
  
models	
  are	
  available	
  at	
  coarse	
  resoluOons	
  
(~100	
  km)	
  
	
  
	
  
•  Climate	
  change	
  impacts	
  act	
  mostly	
  at	
  local	
  
scales	
  (impacts	
  on	
  ecosystems,	
  hydrology,	
  
risks,	
  surface	
  processes)	
  
à 	
  Scale	
  mismatch	
  and	
  need	
  for	
  downscaling	
  	
  
•  Local	
  surface	
  processes	
  may	
  feed	
  back	
  on	
  
large	
  scales	
  	
  
à 	
  need	
  for	
  upscaling	
  
+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)
*/,454-,%65/#-7,54-)
0#835-,%.32)
)
9':,-/)#3))
&-#;7<0"#%#2.-,%):"#-&55&5)
A:/!<#$%&'()*%+L*9.('1!':(*%!The	
  downscaling	
  modeling	
  chain	
  
+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)
*/,454-,%65/#-7,54-)
0#835-,%.32)
)
9':,-/)#3))
&-#;7<0"#%#2.-,%):"#-&55&5)
A:/!<#$%&'()*%+L*9.('1!':(*%!The	
  downscaling	
  modeling	
  chain	
  
•  All	
  elements	
  in	
  this	
  chain	
  are	
  
characterized	
  by	
  sources	
  of	
  uncertainty	
  
	
  
+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)
*/,454-,%65/#-7,54-)
0#835-,%.32)
)
9':,-/)#3))
&-#;7<0"#%#2.-,%):"#-&55&5)
A:/!<#$%&'()*%+L*9.('1!':(*%!The	
  downscaling	
  modeling	
  chain	
  
Global	
  Climate	
  Models	
  
	
  
-­‐  Examples	
  of	
  applicaOons	
  to	
  precipitaOon	
  and	
  snow	
  
depth	
  in	
  the	
  mountains	
  (Karakoram-­‐Himalaya	
  and	
  
the	
  Alps)	
  
	
  
using	
  the	
  CMIP5	
  Global	
  Climate	
  Models	
  and	
  	
  
the	
  EC-­‐Earth	
  GCM	
  
Winter	
  
Westerlies	
  
Indian	
  summer	
  Monsoon	
  
ITCZ	
  (NH	
  SUMMER)	
  
L
L
HKK	
  
Himalaya	
  
Hindu-­‐Kush	
  Karakoram	
  Himalaya:	
  example	
  
*	
  Palazzi,	
  E.,	
  J.	
  von	
  Hardenberg,	
  and	
  A.	
  Provenzale.	
  2013.	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  Karakoram	
  Himalaya:	
  
Observa<ons	
  and	
  future	
  scenarios,	
  J.	
  Geophys.	
  Res.	
  Atmos.,	
  118,	
  85–100	
  
*	
  Filippi,	
  L.,	
  Palazzi,	
  E.,	
  von	
  Hardenberg,	
  J.	
  &	
  Provenzale,	
  A.	
  2014.	
  Mul<decadal	
  Varia<ons	
  in	
  the	
  Rela<onship	
  
between	
  the	
  NAO	
  and	
  Winter	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  Karakoram.	
  Journal	
  of	
  Climate	
  (2014).	
  doi:
10.1175/JCLI-­‐D-­‐14-­‐00286.1,	
  
SpaOal	
  averages	
  over	
  the	
  two	
  boxes	
  of	
  
² Gridded	
  precipitaOon	
  data	
  +	
  reanalyses	
  
² Data	
  from	
  GCMs	
  
	
  
Annual	
  cycle	
  climatology,	
  long-­‐term	
  trends,	
  PrecipitaOon	
  changes	
  
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1000 2000 3000 4000 5000 6000
m
We	
  consider	
  only	
  the	
  data	
  and	
  
model	
  outputs	
  from	
  pixels/grid	
  
points	
  with	
  mean	
  elevaOon	
  
higher	
  than	
  1000	
  m	
  above	
  
mean	
  sea	
  level.	
  
HKK
Himalaya
Approach	
  
HKKH	
  precipitaOon	
  
–  In-­‐situ	
  sta(ons	
  
•  CharacterizaOon	
  of	
  the	
  local	
  condiOons	
  
•  Long	
  temporal	
  coverage 	
  	
  
•  Unevenly	
  distributed,	
  mainly	
  in	
  the	
  valleys	
  and	
  lowland	
  
areas,	
  leading	
  to	
  a	
  bias	
  toward	
  the	
  lower	
  elevaOons	
  	
  
•  UnderesOmaOon	
  of	
  total	
  precipitaOon	
  (snow)
–  Interpolated	
  (gridded)	
  datasets	
  
•  Gridding:	
  reduces	
  biases	
  arising	
  from	
  the	
  irregular	
  staOon	
  
distribuOon	
  and	
  is	
  essenOal	
  for	
  the	
  analysis	
  of	
  regional	
  
precipitaOon	
  trends 	
  	
  
•  Poor	
  spaOal	
  coverage	
  and	
  high	
  sparseness	
  of	
  the	
  
underlying	
  staOons	
  à	
  source	
  of	
  uncertainty	
  when	
  
interpolaOng	
  grid	
  point	
  values.	
  	
  
•  For	
  short	
  averaging	
  Ome	
  scales	
  the	
  spaOal	
  intermi^ency	
  
of	
  precipitaOon	
  represents	
  a	
  major	
  source	
  of	
  uncertainty	
  
for	
  these	
  approaches	
  
PrecipitaOon	
  datasets	
  &	
  issues	
  
GPCC	
  raw	
  
GPCC	
  interpolated	
  
Maximum Number of Gauges/grid over time − CRU
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
0 1 2 3 4 5 6 7 8
gauges/grid
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
Maximum Number of Gauges/grid over time − GPCC
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
0 1 2 3 4 5 6 7 8
gauges/grid
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
Maximum Number of Gauges/grid over time − CRU
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
0 1 2 3 4 5 6 7 8
gauges/grid
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
Maximum Number of Gauges/grid over time − GPCC
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
0 1 2 3 4 5 6 7 8
gauges/grid
70˚
70˚
75˚
75˚
80˚
80˚
85˚
85˚
90˚
90˚
95˚
95˚
25˚ 25˚
30˚ 30˚
35˚ 35˚
Maximum	
  number	
  of	
  
gauges/pixel	
  
(1901-­‐2013).	
  ElevaOon	
  
>	
  1000	
  m	
  a.s.l.	
  
Maximum	
  number	
  of	
  
gauges/pixel	
  
(1901-­‐2013).	
  	
  
Time	
  series	
  of	
  the	
  total	
  
number	
  of	
  gauges	
  in	
  
the	
  HKK	
  and	
  Himalaya	
  
GPCC	
  raw	
  
GPCC	
  interpolated	
  
GPCC	
  Gridded	
  dataset	
  
PrecipitaOon	
  datasets	
  &	
  issues	
  
–  Satellite	
  Data	
  
•  SpaOally-­‐complete	
  coverage	
  of	
  precipitaOon	
  esOmates	
  
•  They	
  do	
  not	
  extend	
  back	
  beyond	
  the	
  1970s	
  à	
  not	
  yet	
  suitable	
  for	
  
assessing	
  long-­‐term	
  trends	
  and	
  for	
  climatological	
  studies.	
  
•  Problems	
  in	
  measuring	
  snow	
  accurately	
  
PrecipitaOon	
  datasets	
  &	
  issues	
  
–  Merged	
  in-­‐situ	
  and	
  satellite	
  Datasets	
  (e.g.,	
  GPCP)	
  
–  Reanalyses	
  (use	
  data	
  assimila(on	
  techniques	
  to	
  keep	
  the	
  output	
  of	
  a	
  
numerical	
  model	
  close	
  to	
  observa(ons)	
  
•  Reanalysis	
  data	
  do	
  account	
  for	
  total	
  precipitaOon	
  (rainfall	
  plus	
  snow).	
  	
  
•  Global	
  &	
  conOnuos	
  data	
  
•  Climate	
  trends	
  obtained	
  from	
  reanalyses	
  should	
  be	
  regarded	
  with	
  cauOon,	
  
since	
  conOnuous	
  changes	
  in	
  the	
  observing	
  systems	
  and	
  biases	
  in	
  both	
  
observaOons	
  and	
  models	
  can	
  introduce	
  spurious	
  variability	
  and	
  trends	
  into	
  
reanalysis	
  output	
  	
  
DATASET
Spatial
domain
Temporal
domain
Spatial
resolution
Temporal
resolution
TRMM
3B42
50°S-50°N 1998-2010 0.25°x0.25° 3-hr
GPCP Global 1979-2010 2.5°x2.5° Monthly
APHRODITE
APHRO_V1003R1
60°E-150°E
15°S-55°S
1951-2007
0.25°x0.25°
Daily
GPCC
V5
Land 1901-2009
0.5°x0.5° Monthly
CRU
TS3.01.01
Land 1901-2009
0.5°x0.5° Monthly
ERA-Interim Global 1979-2011 0.75°x0.75° Daily
EC-Earth GCM Global
1850-2005
+ scenarios
1.125°x1.125° Daily
HKKH	
  precipitaOon	
  datasets	
  
*	
  Palazzi,	
  E.,	
  J.	
  von	
  Hardenberg,	
  and	
  A.	
  Provenzale.	
  2013.	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  
Karakoram	
  Himalaya:	
  Observa<ons	
  and	
  future	
  scenarios,	
  J.	
  Geophys.	
  Res.	
  Atmos.,	
  118,	
  85–
100	
  
Summer	
  precipitaOon	
  (JJAS),	
  MulOannual	
  average	
  1998-­‐2007	
  
Aphrodite JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
CRU JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
GPCC JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
TRMM JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
GPCP JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
ERA−Interim JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
EC−Earth JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
UncertainOes	
  in	
  observaOonal	
  data	
  
*	
  Palazzi,	
  E.,	
  J.	
  von	
  Hardenberg,	
  and	
  A.	
  Provenzale.	
  2013.	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  
Karakoram	
  Himalaya:	
  Observa<ons	
  and	
  future	
  scenarios,	
  J.	
  Geophys.	
  Res.	
  Atmos.,	
  118,	
  85–100	
  
Aphrodite DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
CRU DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
GPCC DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
TRMM DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
GPCP DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
ERA−Interim DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
EC−Earth DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5
mm/day
Winter	
  precipitaOon	
  (DJFMA),	
  MulOannual	
  average	
  1998-­‐2007	
  
*	
  Palazzi,	
  E.,	
  J.	
  von	
  Hardenberg,	
  and	
  A.	
  Provenzale.	
  2013.	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  
Karakoram	
  Himalaya:	
  Observa<ons	
  and	
  future	
  scenarios,	
  J.	
  Geophys.	
  Res.	
  Atmos.,	
  118,	
  85–100	
  
UncertainOes	
  in	
  observaOonal	
  data	
  
Bimodal distribution: similar amplitudes in
the observations → two different large-
scale mechanisms: WWP in the N-NW;
summer monsoon in the S-E part of the
HKK “box”
ERA-Interim and EC-Earth overestimate
total precipitation with respect to the
observations (snow)
Unimodal distribution peaking in July
APHRODITE, TRMM: ~ 5 mm/day
CRU, GPCC: ~ 6.5 mm/day
GPCP: ~ 6 mm/day
ERA-Interim overestimates
precipitation; EC-Earth is in better
agreement with observations
HKK	
  Himalaya	
  
Annual	
  cycle	
  climatology	
  of	
  PrecipitaOon	
  
PrecipitaOon	
  Ome	
  series:	
  1901-­‐2009	
  
http://cmip-pcmdi.llnl.gov/cmip5/	
  
CMIP5 GCMs
Precipitation in the Karakoram-Himalaya: A CMIP5 view 35
Table 1 The CMIP5 models used in this study. Starred entries indicate models with a fully-
interactive aerosol module.
Model ID Resolution Institution ID First/second Key
Lon⇥Lat Lev indirect aerosol e↵ect reference
bcc-csm1-1-m 1.125⇥1.125L26 (T106) BCC No Wu et al (2013)
bcc-csm1-1 2.8125⇥2.8125L26 (T42) BCC No Wu et al (2013)
CCSM4 1.25⇥0.9L27 (T63) NCAR No Meehl et al (2012)
CESM1-BGC 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013)
*CESM1-CAM5 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013)
EC-Earth 1.125⇥1.125L62 (T159) EC-EARTH No Hazeleger et al (2012)
FIO-ESM 2.8125⇥2.8125L26 (T42) FIO No Song et al (2012)
GFDL-ESM2G 2.5⇥2L24 (M45) GFDL No Delworth et al (2006)
GFDL-ESM2M 2.5⇥2L24 (M45) GFDL No Delworth et al (2006)
MPI-ESM-LR 1.875⇥1.875L47 (T63) MPI-M No Giorgetta et al (2013)
MPI-ESM-MR 1.875⇥1.875L95 (T63) MPI-M No Giorgetta et al (2013)
*CanESM2 2.8125⇥2.8125L35 (T63) CCCMA Yes / No Arora et al (2011)
CMCC-CMS 1.875⇥1.875L95 (T63) CMCC Yes / No Davini et al (2013)
CNRM-CM5 1.40625⇥1.40625L31 (T127) CNRM- Yes / No Voldoire et al (2013)
CERFACS
*CSIRO-Mk3-6-0 1.875⇥1.875L18 (T63) CSIRO- Yes / No Rotstayn et al (2012)
QCCCE
*GFDL-CM3 2.5⇥2L48 (C48) GFDL Yes / No Delworth et al (2006)
INM-CM4 2⇥1.5L21 INM Yes / No Volodin et al (2010)
IPSL-CM5A-LR 3.75⇥1.89L39 IPSL Yes / No Hourdin et al (2013)
IPSL-CM5A-MR 2.5⇥1.2587L39 IPSL Yes / No Hourdin et al (2013)
IPSL-CM5B-LR 3.75⇥1.9L39 IPSL Yes / No Hourdin et al (2013)
*MRI-CGCM3 1.125⇥1.125L48 (T159) MRI Yes / No Yukimoto et al (2012)
CMCC-CM 0.75⇥0.75L31 (T159) CMCC Yes / N/A Scoccimarro et al (2011)
FGOALS-g2 2.8125⇥2.8125L26 LASG-CESS Yes / N/A Li et al (2013)
*HadGEM2-AO 1.875⇥1.24L60 MOHC Yes / N/A Martin et al (2011)
*ACCESS1-0 1.875⇥1.25L38 (N96) CSIRO-BOM Yes / Yes Bi et al (2013)
*ACCESS1-3 1.875⇥1.25L38 CSIRO-BOM Yes / Yes Bi et al (2013)
*HadGEM2-CC 1.875⇥1.24L60 (N96) MOHC Yes / Yes Martin et al (2011)
*HadGEM2-ES 1.875⇥1.24L38 (N96) MOHC Yes / Yes Bellouin et al (2011)
*MIROC5 1.40625⇥1.40625L40 (T85) MIROC Yes / Yes Watanabe et al (2010)
*MIROC-ESM 2.8125⇥2.8125L80 (T42) MIROC Yes / Yes Watanabe et al (2011)
*NorESM1-M 2.5⇥1.9L26 (F19) NCC Yes / Yes Bentsen et al (2013)
*NorESM1-ME 2.5⇥1.9L26 NCC Yes / Yes Bentsen et al (2013)
32 GCMs
0.75°-3.75° lon
Aerosols
Fully-Interactive
chemistry
HKKH	
  PrecipitaOon:	
  models	
  
*	
  Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
CMCC−CM JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
CESM1−CAM5 JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
MIROC5 JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
HadGEM2−ES JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
inmcm4 JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
NorESM1−ME JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
FGOALS−g2 JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
IPSL−CM5A−LR JJAS
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 2 4 6 8 10 12 14 16 18 20
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0.75°	
   1.25°	
   1.40°	
  
1.875°	
   2°	
   2.5°	
  
2.8125°	
   3.75°	
  
Spread	
  between	
  CMIP5	
  models	
  
JJAS	
  precipitaOon	
  
Average	
  1901-­‐2005	
  
CMIP5	
  
*	
  Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
CMCC−CM DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
CESM1−CAM5 DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
MIROC5 DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
HadGEM2−ES DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
inmcm4 DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
NorESM1−ME DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
FGOALS−g2 DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
IPSL−CM5A−LR DJFMA
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0 1 2 3 4 5 6 7 8
mm/day
70˚
70˚
80˚
80˚
90˚
90˚
30˚ 30˚
0.75°	
   1.25°	
   1.40°	
  
1.875°	
   2°	
   2.5°	
  
2.8125°	
   3.75°	
  
DJFMA	
  precipitaOon	
  
Average	
  1901-­‐2005	
  
CMIP5	
  
Spread	
  between	
  CMIP5	
  models	
  
*	
  Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
36 Elisa Palazzi et al.
Table 2 Multi-annual mean monthly (Jan to Dec) and seasonal (DJFMA and JJAS) values
of the coe cient of variation (CV, the ratio of the multi-model standard deviation to the
multi-model mean expressed as a percentage [%] of the multi-model mean) in the Himalaya
and HKK sub-regions. The time averages are performed over the period 1901-2005 (historical
period) and over the years 2006-2100 for the future scenarios. Please note that the monthly
CV values are obtained from the multiannual mean of montly precipitation from each CMIP5
model shown in Figs. 2a and 2b, while the DJFMA and JJAS CV values are obtained by
averaging in time the seasonal precipitation time series from each model shown in Fig. 3.
(a) (b) (c) (d) (e) (f) (g) (h) (i) (l) (m) (n) (o)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec DJFMA
Historical
Himalaya 49 39 30 34 38 43 37 32 39 36 47 47 40
HKK 38 32 27 26 38 53 59 53 43 30 30 35 36
RCP 4.5
Himalaya 51 40 30 37 39 42 37 31 39 35 50 56 41
HKK 36 32 30 30 39 53 58 53 42 33 32 34 36
RCP 8.5
Himalaya 51 39 29 39 40 41 37 31 37 37 48 55 40
HKK 36 30 29 31 40 52 57 52 44 33 29 35 37
STD	
  DEV	
  
SPREAD
MMM	
  
Himalaya	
  vs	
  HKK	
  	
  
No	
  GCM	
  feature	
  has	
  clearly	
  emerged	
  as	
  one	
  playing	
  a	
  key	
  role	
  in	
  providing	
  
the	
  best	
  results	
  in	
  terms	
  of	
  precipita(on	
  annual	
  cycle	
  in	
  the	
  two	
  regions.	
  	
  
Figure 4:
Spread	
  between	
  CMIP5	
  models	
  
HKKH	
  precipita(on:	
  example	
  
Figure 4:
HIMALAYA	
   HKK	
  
Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
Is	
  there	
  one	
  model,	
  or	
  group	
  of	
  models,	
  that	
  provides	
  the	
  best	
  
results	
  in	
  terms	
  of	
  precipita(on	
  annual	
  cycle	
  in	
  one	
  or	
  both	
  
regions?	
  
Annual	
  Cycle	
  
HKKH	
  precipita(on:	
  example	
  
Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
HIMALAYA	
   HKK	
  
Are	
  there	
  any	
  model	
  features	
  that	
  have	
  emerged	
  as	
  those	
  
providing	
  the	
  best	
  results?	
  
Annual	
  Cycle	
  
CMIP5	
  and	
  RepresentaOve	
  concentraOon	
  pathways	
  
EC-­‐Earth	
   CMIP5	
  
Global	
  PrecipitaOon	
  (RCP	
  4.5)	
  
RH Moss et al. Nature 463, 747-756 (2010) doi:10.1038/nature08823
HKKH	
  precipita(on:	
  example	
  
Palazzi	
  E.,	
  J.	
  von	
  Hardenberg,	
  S.	
  Terzago,	
  A.	
  Provenzale.	
  2014.	
  Precipita<on	
  in	
  the	
  Karakoram-­‐
Himalaya:	
  A	
  CMIP5	
  view,	
  Climate	
  Dynamics,	
  doi:	
  10.1007/s00382-­‐014-­‐2341-­‐z	
  
CMIP5	
  Mul(-­‐model	
  ensemble	
  
Long-­‐term	
  trends	
  
HKKH	
  precipita(on:	
  example	
  
Palazzi,	
  E.,	
  J.	
  von	
  Hardenberg,	
  and	
  A.	
  Provenzale.	
  2013.	
  Precipita<on	
  in	
  the	
  Hindu-­‐Kush	
  
Karakoram	
  Himalaya:	
  Observa<ons	
  and	
  future	
  scenarios,	
  J.	
  Geophys.	
  Res.	
  Atmos.,	
  118,	
  85–100,	
  
doi:	
  10.1029/2012JD018697	
  	
  	
  
EC-­‐Earth	
  mul(-­‐member	
  ensemble	
   Long-­‐term	
  trends	
  
Decreasing	
  snow	
  depth	
  trends	
  	
  
in	
  the	
  HKKH	
  from	
  CMIP5	
  models	
  
*	
  Terzago,	
  S.,	
  J.	
  von	
  Hardenberg,	
  E.	
  Palazzi,	
  and	
  A.	
  Provenzale	
  (2014),	
  Snowpack	
  changes	
  in	
  the	
  Hindu-­‐
Kush	
  Karakoram	
  Himalaya	
  from	
  CMIP5	
  Global	
  Climate	
  Models,	
  J.	
  Hydrometeorol.,	
  15	
  (6),	
  2293-­‐2313	
  
Snow	
  depth	
  in	
  the	
  Alps:	
  example	
  
DJFMA snow depth projections Alps above 1000 m a.s.l.
Year
AverageSND[m]
1850 1900 1950 2000 2050 2100
0.00.20.40.6
CMIP5 ENS HIST
CMIP5 ENS RCP45
CMIP5 ENS RCP85
ERAI Land
CFSR
MERRA
20CRv2
DJFMA snow depth reanalyses Alps above 1000 m a.s.l.
Year
AverageSND[m]
1980 1985 1990 1995 2000 2005
0.00.20.40.6
ERAI Land
CFSR
MERRA
20CRv2
CMIP5 ENS HIST
The	
  EC-­‐Earth	
  Global	
  Climate	
  Model	
  
Ref.:	
  	
  	
  Hazeleger,	
  W.	
  et	
  al.,	
  2009.	
  EC-­‐Earth:	
  A	
  Seamless	
  Earth	
  
System	
  PredicOon	
  Approach	
  in	
  AcOon.	
  	
  Bull.	
  Amer.	
  Meteor.	
  	
  
ECMWF	
  IFS	
  atmosphere	
  (36r4	
  –	
  T255L91/N128)+	
  H-­‐Tessel	
  Land/veg	
  module	
  	
  
+	
  NEMO	
  3.3.1	
  ocean	
  (ORCA1	
  L46)	
  (will	
  be	
  3.6)	
  +	
  LIM	
  3	
  sea	
  ice	
  	
  
Integrated	
  
Forecast	
  
System	
  	
  
ECMWF	
  
Louvain	
  La	
  Neuve	
  Ice	
  Model	
  
(LIM2	
  (ECE	
  v2)	
  LIM3	
  (ECE	
  v3)	
  )	
  	
  
H-­‐Tessel	
  Land-­‐surface	
  
model	
  
The	
  EC-­‐Earth	
  Global	
  Earth-­‐System	
  Model	
  
Ref.:	
  	
  	
  Hazeleger,	
  W.	
  et	
  al.,	
  2009.	
  EC-­‐Earth:	
  A	
  Seamless	
  Earth	
  
System	
  PredicOon	
  Approach	
  in	
  AcOon.	
  	
  Bull.	
  Amer.	
  Meteor.	
  
Soc.	
  
ECMWF	
  IFS	
  atmosphere	
  (36r4	
  –	
  T255L91/N128)+	
  H-­‐Tessel	
  Land/veg	
  module	
  	
  
+	
  NEMO	
  3.3.1	
  ocean	
  (ORCA1	
  L46)	
  (will	
  be	
  3.6)	
  +	
  LIM	
  3	
  sea	
  ice	
  
+	
  TM5	
  chemistry/aerosols	
  (6°x4°	
  /	
  3°x2°)	
  
TM5	
  atmospheric	
  
chemistry	
  and	
  
transport	
  model	
  	
  
Integrated	
  
Forecast	
  
System	
  	
  
ECMWF	
  
Louvain	
  La	
  Neuve	
  Ice	
  Model	
  
(LIM2	
  (ECE	
  v2)	
  LIM3	
  (ECE	
  v3)	
  )	
  	
  
H-­‐Tessel	
  Land-­‐surface	
  
model	
  
LPJ-­‐Guess	
  dynamic	
  
vegetaOon	
  
28	
  Research	
  insOtuOons	
  from	
  12	
  different	
  European	
  countries.	
  	
  
Technical	
  support	
  by	
  ECMWF.	
  
	
  
	
  
	
  
+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)
*/,454-,%65/#-7,54-)
0#835-,%.32)
)
9':,-/)#3))
&-#;7<0"#%#2.-,%):"#-&55&5)
A:/!<#$%&'()*%+L*9.('1!':(*%!The	
  downscaling-­‐impact	
  chain	
  
Dynamical	
  downscaling	
  of	
  global	
  
climate	
  model	
  outputs	
  
•  High	
  resoluOon	
  Regional	
  Climate	
  Models	
  nested	
  into	
  
Global	
  Climate	
  Model	
  outputs	
  as	
  part	
  of	
  a	
  downscaling	
  
change	
  
•  One-­‐way	
  nesOng	
  strategy	
  (the	
  RCM	
  does	
  not	
  feed	
  back	
  
on	
  the	
  GCM)	
  
•  Advantages	
  over	
  stochasOc	
  and	
  staOsOcal	
  downscaling:	
  
realisOc	
  representaOon	
  of	
  	
  
–  topography	
  
–  land	
  surface	
  properOes	
  
–  Dynamical	
  and	
  physical	
  processes	
  
–  Based	
  on	
  the	
  same	
  equaOons	
  and	
  similar	
  
parameterizaOons	
  as	
  the	
  GCMs	
  
•  Technique	
  originally	
  developed	
  for	
  numerical	
  weather	
  
predicOon,	
  first	
  used	
  for	
  climate	
  runs	
  e.g	
  by	
  Giorgi	
  
1990	
  
	
  
Dynamical	
  downscaling	
  with	
  the	
  WRF	
  model	
  	
  
(0.04°	
  and	
  0.11°)	
  
Advanced	
  Research	
  Weather	
  and	
  
Forecas(ng	
  Model	
  (ARW-­‐WRF),	
  a	
  non-­‐
hydrostaOc,	
  compressible	
  and	
  scalar	
  
conserving	
  state-­‐of-­‐the-­‐art	
  atmospheric	
  
model	
  
“Perfect	
  boundary”	
  experiments:	
  
•  Period:	
  1979-­‐1998	
  (some	
  up	
  to	
  2008)	
  	
  
•  Large	
  scale	
  driver:	
  ERA-­‐Interim	
  
reanalysis	
  (0.75°	
  resoluOon).	
  
Provides	
  BCs	
  and	
  iniOal	
  condiOons	
  
Model	
  resolu(ons:	
  0.11°	
  and	
  0.37°	
  
•  Different	
  microphysical	
  schemes:	
  
Thompson,	
  Morrison,	
  WSMS6	
  
•  Convec(ve	
  schemes:	
  Kain-­‐Fritsch,	
  
Be^s-­‐	
  Miller-­‐Janjic	
  ,	
  explicit	
  
•  ResoluOon:	
  901x805,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  56	
  verOcal	
  levels	
   SimulaOons	
  	
  @	
  LRZ/SuperMUC,	
  Munich	
  
ObservaOonal	
  climatologies	
  1979-­‐1998	
  
WRF	
  PrecipitaOon	
  climatology	
  1979-­‐1998	
  
Kain-­‐Fritsch	
  -­‐	
  Thompson	
   Kain-­‐Fritsch	
  -­‐	
  Morrison	
   Kain-­‐Fritsch	
  –	
  WSM6	
  
Be^s-­‐Miller-­‐Janjic	
  	
  -­‐	
  Th.	
   Explicit	
  0.04°-­‐	
  Th.	
   E-­‐OBS.	
  
Kain-­‐Fritsch	
  -­‐	
  Thompson	
   Kain-­‐Fritsch	
  -­‐	
  Morrison	
   Kain-­‐Fritsch	
  –	
  WSM6	
  
Be^s-­‐Miller-­‐Janjic	
  	
  -­‐	
  Th.	
   Explicit	
  0.04°-­‐	
  Th.	
   E-­‐OBS.	
  
WRF	
  PrecipitaOon	
  climatology	
  1979-­‐1998	
  
Significant	
  biases,	
  parOcularly	
  over	
  areas	
  with	
  complex	
  topography	
  
….but	
  we	
  have	
  also	
  to	
  keep	
  into	
  account	
  uncertainiOes	
  in	
  the	
  observaOonal	
  datasets	
  
Such	
  as	
  significant	
  underesOmaOon	
  of	
  rain-­‐gauge	
  precipitaOon	
  
	
  	
  
Summer	
  precipitaOon	
  biases	
  in	
  the	
  Alpine	
  Region	
  
WRF	
  0.04°/0.11°	
  vs.	
  EURO4M	
  
Kain-­‐Fritsch,	
  0.11°	
   Be^s-­‐	
  Miller-­‐Janjic,	
  0.11°	
  	
  
Explicit	
  convecOon,	
  0.04°	
  	
   KF	
  
Morrison	
  
WSM6	
  
BMJ	
  
0.04°	
  
PrecipitaOon	
  seasonal	
  cycle	
  
European	
  domain	
   Greater	
  Alpine	
  Region	
  
Thompson	
  
Morrison	
  
WSM6	
  
BMJ	
  
0.04°	
  
Thompson	
  
Morrison	
  
WSM6	
  
BMJ	
  
0.04°	
  
•  The	
  0.04°	
  run	
  with	
  explicit	
  
convecOon	
  manages	
  to	
  reproduce	
  
JJA	
  precipitaOon	
  averages	
  
compaOble	
  with	
  observed.	
  
•  Different	
  microphysics	
  à	
  no	
  
improvement	
  in	
  winter,	
  role	
  of	
  
humidity	
  transport	
  
*	
  Pieri	
  A.,	
  von	
  Hardenberg	
  J.,	
  Parodi	
  A.,	
  Provenzale	
  A.:	
  Sensi<vity	
  of	
  precipita<on	
  sta<s<cs	
  to	
  resolu<on,	
  
microphysics	
  and	
  convec<ve	
  parameteriza<on:	
  a	
  case	
  study	
  with	
  the	
  high-­‐resolu<on	
  WRF	
  climate	
  model	
  
over	
  Europe,	
  Journal	
  of	
  Hydrometeorology,	
  sub	
  judice.	
  
	
  	
  
What	
  if	
  we	
  compare	
  with	
  raingauges?	
  
DistribuOon	
  of	
  daily	
  precipitaOon	
  intensity	
  	
  
(>	
  0.1	
  mm/day)	
  for	
  127	
  staOons	
  in	
  TrenOno	
  1979-­‐1998	
  	
  	
  
Rain	
  Gauge	
  
0.04°	
  run	
  
+%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%)
*/,454-,%65/#-7,54-)
0#835-,%.32)
)
9':,-/)#3))
&-#;7<0"#%#2.-,%):"#-&55&5)
A:/!<#$%&'()*%+L*9.('1!':(*%!The	
  modeling	
  chain	
  
StochasOc	
  downscaling:	
  
the	
  RainFARM	
  downscaling	
  procedure	
  
α	
  
Slope	
  derived	
  from	
  P	
  
and	
  propagated	
  to	
  
smaller	
  scales	
  
¨  	
   Belongs	
   to	
   the	
   family	
   of	
  
“Metagaussian	
  models”,	
  based	
  on	
  the	
  
nonlinear	
   transformaOon	
   of	
   a	
   linearly	
  
correlated	
  process	
  
¨ 	
  Uses	
  simple	
  staOsOcal	
  properOes	
  of	
  
large-­‐scale	
   meteorological	
   predicOons	
  
(shape	
   of	
   the	
   power	
   spectrum)	
   and	
  
generates	
   small-­‐scale	
   rainfall	
   fields	
  
propagaOng	
  this	
  informaOon	
  to	
  smaller	
  
scale,	
   provided	
   that	
   the	
   input	
   field	
  
shows	
   a	
   (approximate)	
   scaling	
  
behavior	
  
SPATIAL	
  Power	
  spectrum	
  of	
  rainfall	
  field	
  
P(X,	
  Y,	
  T),	
  input	
  field,	
  reliability	
  scales	
  L0,	
  T0	
  
r(x,y,t),	
  output	
  field,	
  resoluOon	
  λ,	
  τ 	

RAINFarm:	
  Rainfall	
  Filtered	
  
Auto	
  Regressive	
  Model	
  
*	
  N.	
  Rebora,	
  L.	
  Ferraris,	
  J.	
  von	
  Hardenberg,	
  A.	
  Provenzale	
  ,	
  2006;	
  RainFARM:	
  Rainfall	
  	
  
	
  	
  	
  Downscaling	
  by	
  a	
  Filtered	
  Autoregressive	
  Model.	
  J.	
  Hydrometeorology,	
  7,	
  724-­‐738	
  	
  
RainFARM	
  downscaling:	
  example	
  
30	
  km	
   1	
  km	
  
PrecipitaOon	
  field	
  from	
  PROTHEUS	
   StochasOc	
  realizaOon	
  of	
  the	
  PROTHEUS	
  
downscaled	
  field,	
  obtained	
  with	
  
RainFARM	
  
Example	
  SON	
  1958	
  
! )=>>)",.3)2,?2&5)
! )=@AB;>CC=)
! )D,.%<)"&5#%?4#3)
) )
!1EFGHI*()JKLMCN')
)
4 6 8 10 12
41
42
43
44
45
46
47
48
Longitude [°]
Latitude[°]
1
2
3
4
5
6
7
8
9
10
11
! )O%4/?0&)',K()>A>P)')
! )O%4/?0&)'.3()=>Q)')
MM):.K&%5)
DRE3#S".#)&/),%TU))
!"#$%&'()*+*('(,(-%.##
/0.#1234152.#63/5)
0 50 100 150 200 250 300 350
10
−6
10
−4
10
−2
10
0
precipitation [mm/day]
probabilitydensity
Stations
Downscaled PROTHEUS
PROTHEUS
;1#':(&2'!<#$%&'()*%+)
C(*%M3CD)V1,.3S,%%)W.%/&"&0)O?/#)1&2"&55.X&)Y#0&%Z)
*	
  D'Onofrio,	
  D.;	
  Palazzi,	
  E.;	
  von	
  Hardenberg,	
  J.,	
  Provenzale	
  A.,	
  Calman<	
  S.;	
  Stochas<c	
  Rainfall	
  
Downscaling	
  of	
  Climate	
  Models.	
  J	
  of	
  Hydrometeorology	
  15	
  (2),	
  830-­‐843	
  (2014)	
  
OBSERVATIONS	
   	
  WRF	
  RCM	
  11	
  km 	
  Downscaled	
  WRF	
  1	
  km	
  
Precipita(on	
  PDFs	
  (2003-­‐2014)	
  
WRF	
  Simula(ons	
  	
  	
  
@	
  LRZ/SuperMUC	
  
Munich	
  
An	
  applicaOon	
  to	
  the	
  Upper	
  Tiber	
  basin	
  
Hydrological	
  impacts	
  
Observed	
  vs	
  modeled	
  discharges	
  
Gabellani	
  S,	
  Boni	
  G,	
  Ferraris	
  L,	
  von	
  Hardenberg	
  J,	
  Provenzale	
  A,	
  Propaga<on	
  of	
  uncertainty	
  
from	
  rainfall	
  to	
  runoff:	
  A	
  case	
  study	
  with	
  a	
  stochas<c	
  rainfall	
  generator.	
  Adv.	
  Water	
  
Resources,	
  30,	
  2061-­‐2071	
  (2007)	
  
 Open	
  quesOons	
  and	
  perspecOves	
  
•  Coupling	
  of	
  feedback	
  at	
  mul(ple	
  scales	
  
in	
  climate	
  models	
  	
  (including	
  local	
  
feedbacks)	
  is	
  an	
  essenOal	
  step	
  to	
  be^er	
  
understand	
  and	
  predict	
  global	
  climate	
  
changes	
  
•  Need	
  for	
  mul(-­‐scale	
  models	
  to	
  
adequately	
  address	
  feedbacks	
  at	
  
disparate	
  scales	
  à	
  modelling	
  chain	
  from	
  
GCMs	
  to	
  models	
  represenOng	
  local-­‐
vegetaOon	
  feedbacks	
  through	
  
downscaling	
  
•  Can	
  we	
  develop	
  vegetaOon/land-­‐surface	
  
models	
  properly	
  parameterizing	
  small-­‐
scale	
  processes	
  such	
  as	
  mulOple	
  steady	
  
states	
  of	
  vegetaOon	
  ?
Rietkerk,	
  M.	
  et	
  al.	
  (2011)	
  	
  
Ecological	
  Complexity	
  8	
  (3):223-­‐228	
  
Equivalent	
  resoluOon	
  at	
  50N:	
  
270	
  km	
  
135	
  km	
  
90	
  km	
  
60	
  km	
  
40	
  km	
  
25	
  km	
  
•  Classic	
  GCMs	
  too	
  
dependent	
  on	
  physical	
  
parameterisaOon	
  because	
  
of	
  unresolved	
  atmospheric	
  
transports	
  
•  Role	
  of	
  resolved	
  seaàland	
  
transport	
  larger	
  at	
  high	
  
resoluOon	
  
•  Hydrological	
  cycle	
  more	
  
intense	
  at	
  high	
  resoluOon	
  
What	
  changes	
  with	
  resoluOon?	
  
The	
  global	
  hydrological	
  cycle	
  depends	
  on	
  model	
  resolu(on:	
  
Figure	
  adapted	
  from	
  Trenberth	
  et	
  al,	
  2007,	
  2011	
   Demory	
  et	
  al.,	
  Clim.	
  Dyn.,	
  2013	
  
EU’s Horizon 2020
PRIMAVERA: 2015-2020
Overarching objective of PRIMAVERA:
Develop a new generation of well-evaluated high-resolution global
climate models, capable of simulating and predicting regional climate
with unprecedented fidelity.
ISAC-CNR will actively contribute to most of the research activities
proposed in PRIMAVERA:
•  development of a process-based metrics tailored for different
regions and seasons.
•  assessment of the benefits of increasing model resolution on Pacific
variability and its teleconnection to Europe.
•  investigate novel stochastic approaches to represent sub-grid scale
processes
•  investigate the climate variability and predictability in the Extra-
Tropics in order to quantify the respective influence of Interdecadal
Pacific Variabiliy, Atlantic Multidecadal Variability and anthropogenic
forcing on recent and future changes in European climate.
PRACE project “Climate SPHINX”
CLIMATE Stochastic Physics HIgh resolutioN eXperiments
•  20 Mln core hours on SuperMUC (LRZ),
10th PRACE call, March 2015-February 2016.
•  Goal: To investigate the impact stochastic
parameterisations and high resolutions on the
representation of the main features of climate variability
•  Experiments with EC-Earth 3.1:
–  Coupled experiments at (IFS) T255L91+ (NEMO) ORCA1
–  AMIP experiments at T255 (~80 km), T799 (~25 km) and T1279
(~16 km), coupled runs at T255 and T511.
–  Sim. period: 1979-2005 (historical) 2040-2070 (RCP 8.5 scenario)
–  3 ensemble members each for stochastic physics and standard
simulations (at T255, T511, T799)
* Weisheimer, A., T.N. Palmer and F. Doblas-Reyes, (2011) Geophys. Res. Lett., 38, L16703
* Dawson, A. and T. N. Palmer (2014), Climate Dyn. doi:10.1007/s00382-014-2238-x
* Dawson, A., T. N. Palmer, and S. Corti (2012) Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.
 
ISAC-­‐CNR	
  will	
  contribute	
  in	
  CRESCENDO	
  to:	
  
•  improvement	
  of	
  the	
  land	
  surface	
  component	
  of	
  the	
  EC-­‐
Earth	
  model,	
  in	
  parOcular	
  the	
  representaOon	
  of	
  ecosystem	
  
mulO-­‐stability,	
  including	
  fire	
  disturbances	
  and	
  transiOons	
  
from	
  forest	
  to	
  savannah	
  in	
  tropical	
  and	
  subtropical	
  regions.	
  	
  
•  invesOgate	
  impacts	
  of	
  land	
  hydrology	
  on	
  climate	
  (including	
  
vegetaOon-­‐mediated	
  effects)	
  in	
  LS3MIP	
  experiments	
  	
  
•  using	
  simple	
  process	
  models	
  nested	
  in	
  the	
  outputs	
  of	
  the	
  
ESM	
  runs	
  as	
  diagnosOc	
  tools	
  
	
  
EU’s Horizon 2020
CRESCENDO: 2015-2020
Overarching	
  objec(ve	
  of	
  CRESCENDO:	
  
Improve	
  the	
  process	
  realism	
  and	
  future	
  projecOon	
  reliability	
  of	
  European	
  Earth-­‐
System	
  Models,	
  while	
  evaluaOng	
  and	
  documenOng	
  the	
  performance	
  quality	
  of	
  
these	
  models	
  …	
  

More Related Content

Similar to Trento june2015 slides

Jaya r pudashine
Jaya r pudashineJaya r pudashine
Jaya r pudashine
ClimDev15
 
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINEGROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
University of the Philippines Diliman; Tokyo Institute of Technology
 
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
Decision and Policy Analysis Program
 
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
intasave-caribsavegroup
 
Ozwater 12 Presentation on Climate Change Impacts On Sydney S Water Supply
Ozwater 12 Presentation on  Climate Change Impacts On Sydney S Water SupplyOzwater 12 Presentation on  Climate Change Impacts On Sydney S Water Supply
Ozwater 12 Presentation on Climate Change Impacts On Sydney S Water Supply
MahesMaheswaran
 
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
ICIMOD
 
Extending rhem from hillslopes to watersheds
Extending rhem from hillslopes to watershedsExtending rhem from hillslopes to watersheds
Extending rhem from hillslopes to watersheds
Soil and Water Conservation Society
 
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
TERN Australia
 
Navarro C - Results Climate Projection Development (CIAT-IDB Project)
Navarro C - Results Climate Projection Development (CIAT-IDB Project) Navarro C - Results Climate Projection Development (CIAT-IDB Project)
Navarro C - Results Climate Projection Development (CIAT-IDB Project)
Decision and Policy Analysis Program
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
India UK Water Centre (IUKWC)
 
Climate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
Climate Change Scenarios for Tourist Destinations in the Bahamas: EluthreaClimate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
Climate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
intasave-caribsavegroup
 
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
Integrated Carbon Observation System (ICOS)
 
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
Deltares
 
1.1 Climate change and impacts on hydrological extremes (P.Willems)
1.1 Climate change and impacts on hydrological extremes (P.Willems)1.1 Climate change and impacts on hydrological extremes (P.Willems)
1.1 Climate change and impacts on hydrological extremes (P.Willems)
Stevie Swenne
 
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
ICRISAT
 
RunoffEstimation from a given catchment area.pptx
RunoffEstimation from a given catchment area.pptxRunoffEstimation from a given catchment area.pptx
RunoffEstimation from a given catchment area.pptx
remyanr1
 
Hermesquispecuadros
HermesquispecuadrosHermesquispecuadros
Hermesquispecuadros
jairoflorespea
 
Scwrc2014 savannah basinresourceoptimization-20141021
Scwrc2014 savannah basinresourceoptimization-20141021Scwrc2014 savannah basinresourceoptimization-20141021
Scwrc2014 savannah basinresourceoptimization-20141021
John B. Cook, PE, CEO
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
Iasir Journals
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
Siri Jodha Singh Khalsa
 

Similar to Trento june2015 slides (20)

Jaya r pudashine
Jaya r pudashineJaya r pudashine
Jaya r pudashine
 
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINEGROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
GROUNDWATER FLOW SIMULATION IN GUIMARAS ISLAND, PHILIPPINE
 
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
Carlos N - CIAT Experience In Climate Modeling; Scenarios of future climate c...
 
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
Climate Change Scenarios for Tourist Destinations in Jamaica: Montego Bay and...
 
Ozwater 12 Presentation on Climate Change Impacts On Sydney S Water Supply
Ozwater 12 Presentation on  Climate Change Impacts On Sydney S Water SupplyOzwater 12 Presentation on  Climate Change Impacts On Sydney S Water Supply
Ozwater 12 Presentation on Climate Change Impacts On Sydney S Water Supply
 
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
Day 2 akm saiful islam, institute of water and flood management, arrcc-cariss...
 
Extending rhem from hillslopes to watersheds
Extending rhem from hillslopes to watershedsExtending rhem from hillslopes to watersheds
Extending rhem from hillslopes to watersheds
 
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
Michael Hutchinson_Topographic-dependent modelling of surface climate for ear...
 
Navarro C - Results Climate Projection Development (CIAT-IDB Project)
Navarro C - Results Climate Projection Development (CIAT-IDB Project) Navarro C - Results Climate Projection Development (CIAT-IDB Project)
Navarro C - Results Climate Projection Development (CIAT-IDB Project)
 
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
IUKWC Workshop Nov16: Developing Hydro-climatic Services for Water Security –...
 
Climate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
Climate Change Scenarios for Tourist Destinations in the Bahamas: EluthreaClimate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
Climate Change Scenarios for Tourist Destinations in the Bahamas: Eluthrea
 
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
Klosterhalfen, Anne: Two-level Eddy Covariance Measurements Improve Land-atmo...
 
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
DSD-INT 2019 Understanding impact of extreme sea levels under climate change ...
 
1.1 Climate change and impacts on hydrological extremes (P.Willems)
1.1 Climate change and impacts on hydrological extremes (P.Willems)1.1 Climate change and impacts on hydrological extremes (P.Willems)
1.1 Climate change and impacts on hydrological extremes (P.Willems)
 
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
Climate and crop modeling by Gummadi Sridhar,Gizachew Legesse,Pauline Chiveng...
 
RunoffEstimation from a given catchment area.pptx
RunoffEstimation from a given catchment area.pptxRunoffEstimation from a given catchment area.pptx
RunoffEstimation from a given catchment area.pptx
 
Hermesquispecuadros
HermesquispecuadrosHermesquispecuadros
Hermesquispecuadros
 
Scwrc2014 savannah basinresourceoptimization-20141021
Scwrc2014 savannah basinresourceoptimization-20141021Scwrc2014 savannah basinresourceoptimization-20141021
Scwrc2014 savannah basinresourceoptimization-20141021
 
Ijetcas14 589
Ijetcas14 589Ijetcas14 589
Ijetcas14 589
 
The Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model DataThe Role of Semantics in Harmonizing YOPP Observation and Model Data
The Role of Semantics in Harmonizing YOPP Observation and Model Data
 

More from Riccardo Rigon

Models for hazards mapping
Models for hazards mappingModels for hazards mapping
Models for hazards mapping
Riccardo Rigon
 
A short introduction to some hydrological extreme phenomena
A short introduction to some hydrological extreme phenomenaA short introduction to some hydrological extreme phenomena
A short introduction to some hydrological extreme phenomena
Riccardo Rigon
 
EvaporAzione
EvaporAzioneEvaporAzione
EvaporAzione
Riccardo Rigon
 
Francesco Serafin
Francesco Serafin Francesco Serafin
Francesco Serafin
Riccardo Rigon
 
Meledrio
MeledrioMeledrio
Meledrio
Riccardo Rigon
 
Lisbon talk for SteepStreams
Lisbon talk  for SteepStreamsLisbon talk  for SteepStreams
Lisbon talk for SteepStreams
Riccardo Rigon
 
Grids implementation
Grids implementationGrids implementation
Grids implementation
Riccardo Rigon
 
Grids
GridsGrids
Some photos from the field
Some photos from the fieldSome photos from the field
Some photos from the field
Riccardo Rigon
 
Virtual water fem 07032017
Virtual water fem 07032017Virtual water fem 07032017
Virtual water fem 07032017
Riccardo Rigon
 
Dalton Prize Lecture 2017 by Dani Or
Dalton Prize Lecture 2017 by Dani OrDalton Prize Lecture 2017 by Dani Or
Dalton Prize Lecture 2017 by Dani Or
Riccardo Rigon
 
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
Riccardo Rigon
 
The modern flood forecasting
The modern flood forecastingThe modern flood forecasting
The modern flood forecasting
Riccardo Rigon
 
La moderna previsione delle piene
La moderna previsione delle pieneLa moderna previsione delle piene
La moderna previsione delle piene
Riccardo Rigon
 
Hydrological Extremes and Human societies
Hydrological Extremes and Human societies Hydrological Extremes and Human societies
Hydrological Extremes and Human societies
Riccardo Rigon
 
The Science of Water Transport and Floods from Theory to Relevant Application...
The Science of Water Transport and Floods from Theory to Relevant Application...The Science of Water Transport and Floods from Theory to Relevant Application...
The Science of Water Transport and Floods from Theory to Relevant Application...
Riccardo Rigon
 
The Science of Water Transport and Floods from Theory to Relevant Applications
The Science of Water Transport and Floods from Theory to Relevant ApplicationsThe Science of Water Transport and Floods from Theory to Relevant Applications
The Science of Water Transport and Floods from Theory to Relevant Applications
Riccardo Rigon
 
Climaware at the end
Climaware at the endClimaware at the end
Climaware at the end
Riccardo Rigon
 
Hymod model for catchments
Hymod model for catchmentsHymod model for catchments
Hymod model for catchments
Riccardo Rigon
 
Egu2017 pico
Egu2017 picoEgu2017 pico
Egu2017 pico
Riccardo Rigon
 

More from Riccardo Rigon (20)

Models for hazards mapping
Models for hazards mappingModels for hazards mapping
Models for hazards mapping
 
A short introduction to some hydrological extreme phenomena
A short introduction to some hydrological extreme phenomenaA short introduction to some hydrological extreme phenomena
A short introduction to some hydrological extreme phenomena
 
EvaporAzione
EvaporAzioneEvaporAzione
EvaporAzione
 
Francesco Serafin
Francesco Serafin Francesco Serafin
Francesco Serafin
 
Meledrio
MeledrioMeledrio
Meledrio
 
Lisbon talk for SteepStreams
Lisbon talk  for SteepStreamsLisbon talk  for SteepStreams
Lisbon talk for SteepStreams
 
Grids implementation
Grids implementationGrids implementation
Grids implementation
 
Grids
GridsGrids
Grids
 
Some photos from the field
Some photos from the fieldSome photos from the field
Some photos from the field
 
Virtual water fem 07032017
Virtual water fem 07032017Virtual water fem 07032017
Virtual water fem 07032017
 
Dalton Prize Lecture 2017 by Dani Or
Dalton Prize Lecture 2017 by Dani OrDalton Prize Lecture 2017 by Dani Or
Dalton Prize Lecture 2017 by Dani Or
 
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
Projecting Climate Change Impacts on Water Resources in Regions of Complex To...
 
The modern flood forecasting
The modern flood forecastingThe modern flood forecasting
The modern flood forecasting
 
La moderna previsione delle piene
La moderna previsione delle pieneLa moderna previsione delle piene
La moderna previsione delle piene
 
Hydrological Extremes and Human societies
Hydrological Extremes and Human societies Hydrological Extremes and Human societies
Hydrological Extremes and Human societies
 
The Science of Water Transport and Floods from Theory to Relevant Application...
The Science of Water Transport and Floods from Theory to Relevant Application...The Science of Water Transport and Floods from Theory to Relevant Application...
The Science of Water Transport and Floods from Theory to Relevant Application...
 
The Science of Water Transport and Floods from Theory to Relevant Applications
The Science of Water Transport and Floods from Theory to Relevant ApplicationsThe Science of Water Transport and Floods from Theory to Relevant Applications
The Science of Water Transport and Floods from Theory to Relevant Applications
 
Climaware at the end
Climaware at the endClimaware at the end
Climaware at the end
 
Hymod model for catchments
Hymod model for catchmentsHymod model for catchments
Hymod model for catchments
 
Egu2017 pico
Egu2017 picoEgu2017 pico
Egu2017 pico
 

Recently uploaded

C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
mulvey2
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
Nicholas Montgomery
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
Colégio Santa Teresinha
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
adhitya5119
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
Celine George
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
Krassimira Luka
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
MJDuyan
 
Solutons Maths Escape Room Spatial .pptx
Solutons Maths Escape Room Spatial .pptxSolutons Maths Escape Room Spatial .pptx
Solutons Maths Escape Room Spatial .pptx
spdendr
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
สมใจ จันสุกสี
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
MysoreMuleSoftMeetup
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
BoudhayanBhattachari
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
GeorgeMilliken2
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
siemaillard
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 

Recently uploaded (20)

C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptxC1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
C1 Rubenstein AP HuG xxxxxxxxxxxxxx.pptx
 
Film vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movieFilm vocab for eal 3 students: Australia the movie
Film vocab for eal 3 students: Australia the movie
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
MARY JANE WILSON, A “BOA MÃE” .
MARY JANE WILSON, A “BOA MÃE”           .MARY JANE WILSON, A “BOA MÃE”           .
MARY JANE WILSON, A “BOA MÃE” .
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
Advanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docxAdvanced Java[Extra Concepts, Not Difficult].docx
Advanced Java[Extra Concepts, Not Difficult].docx
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17How to Make a Field Mandatory in Odoo 17
How to Make a Field Mandatory in Odoo 17
 
Temple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation resultsTemple of Asclepius in Thrace. Excavation results
Temple of Asclepius in Thrace. Excavation results
 
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) CurriculumPhilippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
Philippine Edukasyong Pantahanan at Pangkabuhayan (EPP) Curriculum
 
Solutons Maths Escape Room Spatial .pptx
Solutons Maths Escape Room Spatial .pptxSolutons Maths Escape Room Spatial .pptx
Solutons Maths Escape Room Spatial .pptx
 
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
คำศัพท์ คำพื้นฐานการอ่าน ภาษาอังกฤษ ระดับชั้น ม.1
 
Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47Mule event processing models | MuleSoft Mysore Meetup #47
Mule event processing models | MuleSoft Mysore Meetup #47
 
B. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdfB. Ed Syllabus for babasaheb ambedkar education university.pdf
B. Ed Syllabus for babasaheb ambedkar education university.pdf
 
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
What is Digital Literacy? A guest blog from Andy McLaughlin, University of Ab...
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptxPrésentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
Présentationvvvvvvvvvvvvvvvvvvvvvvvvvvvv2.pptx
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 

Trento june2015 slides

  • 1. Observa(ons  and  modelling  of  precipita(on  and  the   hydrological  cycle:     uncertain(es  and  downscaling   Jost  von  Hardenberg    -­‐    Elisa  Palazzi  –  Silvia  Terzago   ISAC-­‐CNR,  Torino   with:  L.  Filippi,  P.  Davini,  D.  D’Onofrio  (ISAC-­‐CNR)  
  • 2. From  large  to  small  scales  (and  back)   •  Climate  projecOons  from  global  climate   models  are  available  at  coarse  resoluOons   (~100  km)       •  Climate  change  impacts  act  mostly  at  local   scales  (impacts  on  ecosystems,  hydrology,   risks,  surface  processes)   à   Scale  mismatch  and  need  for  downscaling     •  Local  surface  processes  may  feed  back  on   large  scales     à   need  for  upscaling  
  • 4. +%#$,%)-%.',/&)'#0&%) 1&2.#3,%)-%.',/&)'#0&%) */,454-,%65/#-7,54-) 0#835-,%.32) ) 9':,-/)#3)) &-#;7<0"#%#2.-,%):"#-&55&5) A:/!<#$%&'()*%+L*9.('1!':(*%!The  downscaling  modeling  chain   •  All  elements  in  this  chain  are   characterized  by  sources  of  uncertainty    
  • 6. Global  Climate  Models     -­‐  Examples  of  applicaOons  to  precipitaOon  and  snow   depth  in  the  mountains  (Karakoram-­‐Himalaya  and   the  Alps)     using  the  CMIP5  Global  Climate  Models  and     the  EC-­‐Earth  GCM  
  • 7. Winter   Westerlies   Indian  summer  Monsoon   ITCZ  (NH  SUMMER)   L L HKK   Himalaya   Hindu-­‐Kush  Karakoram  Himalaya:  example   *  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush  Karakoram  Himalaya:   Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100   *  Filippi,  L.,  Palazzi,  E.,  von  Hardenberg,  J.  &  Provenzale,  A.  2014.  Mul<decadal  Varia<ons  in  the  Rela<onship   between  the  NAO  and  Winter  Precipita<on  in  the  Hindu-­‐Kush  Karakoram.  Journal  of  Climate  (2014).  doi: 10.1175/JCLI-­‐D-­‐14-­‐00286.1,  
  • 8. SpaOal  averages  over  the  two  boxes  of   ² Gridded  precipitaOon  data  +  reanalyses   ² Data  from  GCMs     Annual  cycle  climatology,  long-­‐term  trends,  PrecipitaOon  changes   70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1000 2000 3000 4000 5000 6000 m We  consider  only  the  data  and   model  outputs  from  pixels/grid   points  with  mean  elevaOon   higher  than  1000  m  above   mean  sea  level.   HKK Himalaya Approach   HKKH  precipitaOon  
  • 9. –  In-­‐situ  sta(ons   •  CharacterizaOon  of  the  local  condiOons   •  Long  temporal  coverage     •  Unevenly  distributed,  mainly  in  the  valleys  and  lowland   areas,  leading  to  a  bias  toward  the  lower  elevaOons     •  UnderesOmaOon  of  total  precipitaOon  (snow) –  Interpolated  (gridded)  datasets   •  Gridding:  reduces  biases  arising  from  the  irregular  staOon   distribuOon  and  is  essenOal  for  the  analysis  of  regional   precipitaOon  trends     •  Poor  spaOal  coverage  and  high  sparseness  of  the   underlying  staOons  à  source  of  uncertainty  when   interpolaOng  grid  point  values.     •  For  short  averaging  Ome  scales  the  spaOal  intermi^ency   of  precipitaOon  represents  a  major  source  of  uncertainty   for  these  approaches   PrecipitaOon  datasets  &  issues   GPCC  raw   GPCC  interpolated  
  • 10. Maximum Number of Gauges/grid over time − CRU 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 0 1 2 3 4 5 6 7 8 gauges/grid 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ Maximum Number of Gauges/grid over time − GPCC 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 0 1 2 3 4 5 6 7 8 gauges/grid 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ Maximum Number of Gauges/grid over time − CRU 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 0 1 2 3 4 5 6 7 8 gauges/grid 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ Maximum Number of Gauges/grid over time − GPCC 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ 0 1 2 3 4 5 6 7 8 gauges/grid 70˚ 70˚ 75˚ 75˚ 80˚ 80˚ 85˚ 85˚ 90˚ 90˚ 95˚ 95˚ 25˚ 25˚ 30˚ 30˚ 35˚ 35˚ Maximum  number  of   gauges/pixel   (1901-­‐2013).  ElevaOon   >  1000  m  a.s.l.   Maximum  number  of   gauges/pixel   (1901-­‐2013).     Time  series  of  the  total   number  of  gauges  in   the  HKK  and  Himalaya   GPCC  raw   GPCC  interpolated   GPCC  Gridded  dataset   PrecipitaOon  datasets  &  issues  
  • 11. –  Satellite  Data   •  SpaOally-­‐complete  coverage  of  precipitaOon  esOmates   •  They  do  not  extend  back  beyond  the  1970s  à  not  yet  suitable  for   assessing  long-­‐term  trends  and  for  climatological  studies.   •  Problems  in  measuring  snow  accurately   PrecipitaOon  datasets  &  issues   –  Merged  in-­‐situ  and  satellite  Datasets  (e.g.,  GPCP)   –  Reanalyses  (use  data  assimila(on  techniques  to  keep  the  output  of  a   numerical  model  close  to  observa(ons)   •  Reanalysis  data  do  account  for  total  precipitaOon  (rainfall  plus  snow).     •  Global  &  conOnuos  data   •  Climate  trends  obtained  from  reanalyses  should  be  regarded  with  cauOon,   since  conOnuous  changes  in  the  observing  systems  and  biases  in  both   observaOons  and  models  can  introduce  spurious  variability  and  trends  into   reanalysis  output    
  • 12. DATASET Spatial domain Temporal domain Spatial resolution Temporal resolution TRMM 3B42 50°S-50°N 1998-2010 0.25°x0.25° 3-hr GPCP Global 1979-2010 2.5°x2.5° Monthly APHRODITE APHRO_V1003R1 60°E-150°E 15°S-55°S 1951-2007 0.25°x0.25° Daily GPCC V5 Land 1901-2009 0.5°x0.5° Monthly CRU TS3.01.01 Land 1901-2009 0.5°x0.5° Monthly ERA-Interim Global 1979-2011 0.75°x0.75° Daily EC-Earth GCM Global 1850-2005 + scenarios 1.125°x1.125° Daily HKKH  precipitaOon  datasets   *  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush   Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85– 100  
  • 13. Summer  precipitaOon  (JJAS),  MulOannual  average  1998-­‐2007   Aphrodite JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day CRU JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day GPCC JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day TRMM JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day GPCP JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day ERA−Interim JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day EC−Earth JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day UncertainOes  in  observaOonal  data   *  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush   Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100  
  • 14. Aphrodite DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day CRU DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day GPCC DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day TRMM DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day GPCP DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day ERA−Interim DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day EC−Earth DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 mm/day Winter  precipitaOon  (DJFMA),  MulOannual  average  1998-­‐2007   *  Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush   Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100   UncertainOes  in  observaOonal  data  
  • 15. Bimodal distribution: similar amplitudes in the observations → two different large- scale mechanisms: WWP in the N-NW; summer monsoon in the S-E part of the HKK “box” ERA-Interim and EC-Earth overestimate total precipitation with respect to the observations (snow) Unimodal distribution peaking in July APHRODITE, TRMM: ~ 5 mm/day CRU, GPCC: ~ 6.5 mm/day GPCP: ~ 6 mm/day ERA-Interim overestimates precipitation; EC-Earth is in better agreement with observations HKK  Himalaya   Annual  cycle  climatology  of  PrecipitaOon  
  • 16. PrecipitaOon  Ome  series:  1901-­‐2009  
  • 17. http://cmip-pcmdi.llnl.gov/cmip5/   CMIP5 GCMs Precipitation in the Karakoram-Himalaya: A CMIP5 view 35 Table 1 The CMIP5 models used in this study. Starred entries indicate models with a fully- interactive aerosol module. Model ID Resolution Institution ID First/second Key Lon⇥Lat Lev indirect aerosol e↵ect reference bcc-csm1-1-m 1.125⇥1.125L26 (T106) BCC No Wu et al (2013) bcc-csm1-1 2.8125⇥2.8125L26 (T42) BCC No Wu et al (2013) CCSM4 1.25⇥0.9L27 (T63) NCAR No Meehl et al (2012) CESM1-BGC 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013) *CESM1-CAM5 1.25⇥0.9L27 NSF-DOE-NCAR No Hurrell et al (2013) EC-Earth 1.125⇥1.125L62 (T159) EC-EARTH No Hazeleger et al (2012) FIO-ESM 2.8125⇥2.8125L26 (T42) FIO No Song et al (2012) GFDL-ESM2G 2.5⇥2L24 (M45) GFDL No Delworth et al (2006) GFDL-ESM2M 2.5⇥2L24 (M45) GFDL No Delworth et al (2006) MPI-ESM-LR 1.875⇥1.875L47 (T63) MPI-M No Giorgetta et al (2013) MPI-ESM-MR 1.875⇥1.875L95 (T63) MPI-M No Giorgetta et al (2013) *CanESM2 2.8125⇥2.8125L35 (T63) CCCMA Yes / No Arora et al (2011) CMCC-CMS 1.875⇥1.875L95 (T63) CMCC Yes / No Davini et al (2013) CNRM-CM5 1.40625⇥1.40625L31 (T127) CNRM- Yes / No Voldoire et al (2013) CERFACS *CSIRO-Mk3-6-0 1.875⇥1.875L18 (T63) CSIRO- Yes / No Rotstayn et al (2012) QCCCE *GFDL-CM3 2.5⇥2L48 (C48) GFDL Yes / No Delworth et al (2006) INM-CM4 2⇥1.5L21 INM Yes / No Volodin et al (2010) IPSL-CM5A-LR 3.75⇥1.89L39 IPSL Yes / No Hourdin et al (2013) IPSL-CM5A-MR 2.5⇥1.2587L39 IPSL Yes / No Hourdin et al (2013) IPSL-CM5B-LR 3.75⇥1.9L39 IPSL Yes / No Hourdin et al (2013) *MRI-CGCM3 1.125⇥1.125L48 (T159) MRI Yes / No Yukimoto et al (2012) CMCC-CM 0.75⇥0.75L31 (T159) CMCC Yes / N/A Scoccimarro et al (2011) FGOALS-g2 2.8125⇥2.8125L26 LASG-CESS Yes / N/A Li et al (2013) *HadGEM2-AO 1.875⇥1.24L60 MOHC Yes / N/A Martin et al (2011) *ACCESS1-0 1.875⇥1.25L38 (N96) CSIRO-BOM Yes / Yes Bi et al (2013) *ACCESS1-3 1.875⇥1.25L38 CSIRO-BOM Yes / Yes Bi et al (2013) *HadGEM2-CC 1.875⇥1.24L60 (N96) MOHC Yes / Yes Martin et al (2011) *HadGEM2-ES 1.875⇥1.24L38 (N96) MOHC Yes / Yes Bellouin et al (2011) *MIROC5 1.40625⇥1.40625L40 (T85) MIROC Yes / Yes Watanabe et al (2010) *MIROC-ESM 2.8125⇥2.8125L80 (T42) MIROC Yes / Yes Watanabe et al (2011) *NorESM1-M 2.5⇥1.9L26 (F19) NCC Yes / Yes Bentsen et al (2013) *NorESM1-ME 2.5⇥1.9L26 NCC Yes / Yes Bentsen et al (2013) 32 GCMs 0.75°-3.75° lon Aerosols Fully-Interactive chemistry HKKH  PrecipitaOon:  models   *  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  
  • 18. CMCC−CM JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ CESM1−CAM5 JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ MIROC5 JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ HadGEM2−ES JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ inmcm4 JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ NorESM1−ME JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ FGOALS−g2 JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ IPSL−CM5A−LR JJAS 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 2 4 6 8 10 12 14 16 18 20 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0.75°   1.25°   1.40°   1.875°   2°   2.5°   2.8125°   3.75°   Spread  between  CMIP5  models   JJAS  precipitaOon   Average  1901-­‐2005   CMIP5   *  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  
  • 19. CMCC−CM DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ CESM1−CAM5 DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ MIROC5 DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ HadGEM2−ES DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ inmcm4 DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ NorESM1−ME DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ FGOALS−g2 DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ IPSL−CM5A−LR DJFMA 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0 1 2 3 4 5 6 7 8 mm/day 70˚ 70˚ 80˚ 80˚ 90˚ 90˚ 30˚ 30˚ 0.75°   1.25°   1.40°   1.875°   2°   2.5°   2.8125°   3.75°   DJFMA  precipitaOon   Average  1901-­‐2005   CMIP5   Spread  between  CMIP5  models   *  Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z  
  • 20. 36 Elisa Palazzi et al. Table 2 Multi-annual mean monthly (Jan to Dec) and seasonal (DJFMA and JJAS) values of the coe cient of variation (CV, the ratio of the multi-model standard deviation to the multi-model mean expressed as a percentage [%] of the multi-model mean) in the Himalaya and HKK sub-regions. The time averages are performed over the period 1901-2005 (historical period) and over the years 2006-2100 for the future scenarios. Please note that the monthly CV values are obtained from the multiannual mean of montly precipitation from each CMIP5 model shown in Figs. 2a and 2b, while the DJFMA and JJAS CV values are obtained by averaging in time the seasonal precipitation time series from each model shown in Fig. 3. (a) (b) (c) (d) (e) (f) (g) (h) (i) (l) (m) (n) (o) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec DJFMA Historical Himalaya 49 39 30 34 38 43 37 32 39 36 47 47 40 HKK 38 32 27 26 38 53 59 53 43 30 30 35 36 RCP 4.5 Himalaya 51 40 30 37 39 42 37 31 39 35 50 56 41 HKK 36 32 30 30 39 53 58 53 42 33 32 34 36 RCP 8.5 Himalaya 51 39 29 39 40 41 37 31 37 37 48 55 40 HKK 36 30 29 31 40 52 57 52 44 33 29 35 37 STD  DEV   SPREAD MMM   Himalaya  vs  HKK     No  GCM  feature  has  clearly  emerged  as  one  playing  a  key  role  in  providing   the  best  results  in  terms  of  precipita(on  annual  cycle  in  the  two  regions.     Figure 4: Spread  between  CMIP5  models  
  • 21. HKKH  precipita(on:  example   Figure 4: HIMALAYA   HKK   Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z   Is  there  one  model,  or  group  of  models,  that  provides  the  best   results  in  terms  of  precipita(on  annual  cycle  in  one  or  both   regions?   Annual  Cycle  
  • 22. HKKH  precipita(on:  example   Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z   HIMALAYA   HKK   Are  there  any  model  features  that  have  emerged  as  those   providing  the  best  results?   Annual  Cycle  
  • 23. CMIP5  and  RepresentaOve  concentraOon  pathways   EC-­‐Earth   CMIP5   Global  PrecipitaOon  (RCP  4.5)   RH Moss et al. Nature 463, 747-756 (2010) doi:10.1038/nature08823
  • 24. HKKH  precipita(on:  example   Palazzi  E.,  J.  von  Hardenberg,  S.  Terzago,  A.  Provenzale.  2014.  Precipita<on  in  the  Karakoram-­‐ Himalaya:  A  CMIP5  view,  Climate  Dynamics,  doi:  10.1007/s00382-­‐014-­‐2341-­‐z   CMIP5  Mul(-­‐model  ensemble   Long-­‐term  trends  
  • 25. HKKH  precipita(on:  example   Palazzi,  E.,  J.  von  Hardenberg,  and  A.  Provenzale.  2013.  Precipita<on  in  the  Hindu-­‐Kush   Karakoram  Himalaya:  Observa<ons  and  future  scenarios,  J.  Geophys.  Res.  Atmos.,  118,  85–100,   doi:  10.1029/2012JD018697       EC-­‐Earth  mul(-­‐member  ensemble   Long-­‐term  trends  
  • 26. Decreasing  snow  depth  trends     in  the  HKKH  from  CMIP5  models   *  Terzago,  S.,  J.  von  Hardenberg,  E.  Palazzi,  and  A.  Provenzale  (2014),  Snowpack  changes  in  the  Hindu-­‐ Kush  Karakoram  Himalaya  from  CMIP5  Global  Climate  Models,  J.  Hydrometeorol.,  15  (6),  2293-­‐2313  
  • 27. Snow  depth  in  the  Alps:  example   DJFMA snow depth projections Alps above 1000 m a.s.l. Year AverageSND[m] 1850 1900 1950 2000 2050 2100 0.00.20.40.6 CMIP5 ENS HIST CMIP5 ENS RCP45 CMIP5 ENS RCP85 ERAI Land CFSR MERRA 20CRv2 DJFMA snow depth reanalyses Alps above 1000 m a.s.l. Year AverageSND[m] 1980 1985 1990 1995 2000 2005 0.00.20.40.6 ERAI Land CFSR MERRA 20CRv2 CMIP5 ENS HIST
  • 28. The  EC-­‐Earth  Global  Climate  Model   Ref.:      Hazeleger,  W.  et  al.,  2009.  EC-­‐Earth:  A  Seamless  Earth   System  PredicOon  Approach  in  AcOon.    Bull.  Amer.  Meteor.     ECMWF  IFS  atmosphere  (36r4  –  T255L91/N128)+  H-­‐Tessel  Land/veg  module     +  NEMO  3.3.1  ocean  (ORCA1  L46)  (will  be  3.6)  +  LIM  3  sea  ice     Integrated   Forecast   System     ECMWF   Louvain  La  Neuve  Ice  Model   (LIM2  (ECE  v2)  LIM3  (ECE  v3)  )     H-­‐Tessel  Land-­‐surface   model  
  • 29. The  EC-­‐Earth  Global  Earth-­‐System  Model   Ref.:      Hazeleger,  W.  et  al.,  2009.  EC-­‐Earth:  A  Seamless  Earth   System  PredicOon  Approach  in  AcOon.    Bull.  Amer.  Meteor.   Soc.   ECMWF  IFS  atmosphere  (36r4  –  T255L91/N128)+  H-­‐Tessel  Land/veg  module     +  NEMO  3.3.1  ocean  (ORCA1  L46)  (will  be  3.6)  +  LIM  3  sea  ice   +  TM5  chemistry/aerosols  (6°x4°  /  3°x2°)   TM5  atmospheric   chemistry  and   transport  model     Integrated   Forecast   System     ECMWF   Louvain  La  Neuve  Ice  Model   (LIM2  (ECE  v2)  LIM3  (ECE  v3)  )     H-­‐Tessel  Land-­‐surface   model   LPJ-­‐Guess  dynamic   vegetaOon  
  • 30. 28  Research  insOtuOons  from  12  different  European  countries.     Technical  support  by  ECMWF.        
  • 32. Dynamical  downscaling  of  global   climate  model  outputs   •  High  resoluOon  Regional  Climate  Models  nested  into   Global  Climate  Model  outputs  as  part  of  a  downscaling   change   •  One-­‐way  nesOng  strategy  (the  RCM  does  not  feed  back   on  the  GCM)   •  Advantages  over  stochasOc  and  staOsOcal  downscaling:   realisOc  representaOon  of     –  topography   –  land  surface  properOes   –  Dynamical  and  physical  processes   –  Based  on  the  same  equaOons  and  similar   parameterizaOons  as  the  GCMs   •  Technique  originally  developed  for  numerical  weather   predicOon,  first  used  for  climate  runs  e.g  by  Giorgi   1990    
  • 33. Dynamical  downscaling  with  the  WRF  model     (0.04°  and  0.11°)   Advanced  Research  Weather  and   Forecas(ng  Model  (ARW-­‐WRF),  a  non-­‐ hydrostaOc,  compressible  and  scalar   conserving  state-­‐of-­‐the-­‐art  atmospheric   model   “Perfect  boundary”  experiments:   •  Period:  1979-­‐1998  (some  up  to  2008)     •  Large  scale  driver:  ERA-­‐Interim   reanalysis  (0.75°  resoluOon).   Provides  BCs  and  iniOal  condiOons   Model  resolu(ons:  0.11°  and  0.37°   •  Different  microphysical  schemes:   Thompson,  Morrison,  WSMS6   •  Convec(ve  schemes:  Kain-­‐Fritsch,   Be^s-­‐  Miller-­‐Janjic  ,  explicit   •  ResoluOon:  901x805,                                              56  verOcal  levels   SimulaOons    @  LRZ/SuperMUC,  Munich  
  • 35. WRF  PrecipitaOon  climatology  1979-­‐1998   Kain-­‐Fritsch  -­‐  Thompson   Kain-­‐Fritsch  -­‐  Morrison   Kain-­‐Fritsch  –  WSM6   Be^s-­‐Miller-­‐Janjic    -­‐  Th.   Explicit  0.04°-­‐  Th.   E-­‐OBS.  
  • 36. Kain-­‐Fritsch  -­‐  Thompson   Kain-­‐Fritsch  -­‐  Morrison   Kain-­‐Fritsch  –  WSM6   Be^s-­‐Miller-­‐Janjic    -­‐  Th.   Explicit  0.04°-­‐  Th.   E-­‐OBS.   WRF  PrecipitaOon  climatology  1979-­‐1998   Significant  biases,  parOcularly  over  areas  with  complex  topography   ….but  we  have  also  to  keep  into  account  uncertainiOes  in  the  observaOonal  datasets   Such  as  significant  underesOmaOon  of  rain-­‐gauge  precipitaOon      
  • 37. Summer  precipitaOon  biases  in  the  Alpine  Region   WRF  0.04°/0.11°  vs.  EURO4M   Kain-­‐Fritsch,  0.11°   Be^s-­‐  Miller-­‐Janjic,  0.11°     Explicit  convecOon,  0.04°     KF   Morrison   WSM6   BMJ   0.04°  
  • 38. PrecipitaOon  seasonal  cycle   European  domain   Greater  Alpine  Region   Thompson   Morrison   WSM6   BMJ   0.04°   Thompson   Morrison   WSM6   BMJ   0.04°   •  The  0.04°  run  with  explicit   convecOon  manages  to  reproduce   JJA  precipitaOon  averages   compaOble  with  observed.   •  Different  microphysics  à  no   improvement  in  winter,  role  of   humidity  transport   *  Pieri  A.,  von  Hardenberg  J.,  Parodi  A.,  Provenzale  A.:  Sensi<vity  of  precipita<on  sta<s<cs  to  resolu<on,   microphysics  and  convec<ve  parameteriza<on:  a  case  study  with  the  high-­‐resolu<on  WRF  climate  model   over  Europe,  Journal  of  Hydrometeorology,  sub  judice.      
  • 39. What  if  we  compare  with  raingauges?   DistribuOon  of  daily  precipitaOon  intensity     (>  0.1  mm/day)  for  127  staOons  in  TrenOno  1979-­‐1998       Rain  Gauge   0.04°  run  
  • 41. StochasOc  downscaling:   the  RainFARM  downscaling  procedure   α   Slope  derived  from  P   and  propagated  to   smaller  scales   ¨    Belongs   to   the   family   of   “Metagaussian  models”,  based  on  the   nonlinear   transformaOon   of   a   linearly   correlated  process   ¨   Uses  simple  staOsOcal  properOes  of   large-­‐scale   meteorological   predicOons   (shape   of   the   power   spectrum)   and   generates   small-­‐scale   rainfall   fields   propagaOng  this  informaOon  to  smaller   scale,   provided   that   the   input   field   shows   a   (approximate)   scaling   behavior   SPATIAL  Power  spectrum  of  rainfall  field   P(X,  Y,  T),  input  field,  reliability  scales  L0,  T0   r(x,y,t),  output  field,  resoluOon  λ,  τ RAINFarm:  Rainfall  Filtered   Auto  Regressive  Model   *  N.  Rebora,  L.  Ferraris,  J.  von  Hardenberg,  A.  Provenzale  ,  2006;  RainFARM:  Rainfall          Downscaling  by  a  Filtered  Autoregressive  Model.  J.  Hydrometeorology,  7,  724-­‐738    
  • 42. RainFARM  downscaling:  example   30  km   1  km   PrecipitaOon  field  from  PROTHEUS   StochasOc  realizaOon  of  the  PROTHEUS   downscaled  field,  obtained  with   RainFARM   Example  SON  1958  
  • 43. ! )=>>)",.3)2,?2&5) ! )=@AB;>CC=) ! )D,.%<)"&5#%?4#3) ) ) !1EFGHI*()JKLMCN') ) 4 6 8 10 12 41 42 43 44 45 46 47 48 Longitude [°] Latitude[°] 1 2 3 4 5 6 7 8 9 10 11 ! )O%4/?0&)',K()>A>P)') ! )O%4/?0&)'.3()=>Q)') MM):.K&%5) DRE3#S".#)&/),%TU)) !"#$%&'()*+*('(,(-%.## /0.#1234152.#63/5) 0 50 100 150 200 250 300 350 10 −6 10 −4 10 −2 10 0 precipitation [mm/day] probabilitydensity Stations Downscaled PROTHEUS PROTHEUS ;1#':(&2'!<#$%&'()*%+) C(*%M3CD)V1,.3S,%%)W.%/&"&0)O?/#)1&2"&55.X&)Y#0&%Z) *  D'Onofrio,  D.;  Palazzi,  E.;  von  Hardenberg,  J.,  Provenzale  A.,  Calman<  S.;  Stochas<c  Rainfall   Downscaling  of  Climate  Models.  J  of  Hydrometeorology  15  (2),  830-­‐843  (2014)  
  • 44. OBSERVATIONS    WRF  RCM  11  km  Downscaled  WRF  1  km   Precipita(on  PDFs  (2003-­‐2014)   WRF  Simula(ons       @  LRZ/SuperMUC   Munich   An  applicaOon  to  the  Upper  Tiber  basin  
  • 45. Hydrological  impacts   Observed  vs  modeled  discharges   Gabellani  S,  Boni  G,  Ferraris  L,  von  Hardenberg  J,  Provenzale  A,  Propaga<on  of  uncertainty   from  rainfall  to  runoff:  A  case  study  with  a  stochas<c  rainfall  generator.  Adv.  Water   Resources,  30,  2061-­‐2071  (2007)  
  • 46.  Open  quesOons  and  perspecOves   •  Coupling  of  feedback  at  mul(ple  scales   in  climate  models    (including  local   feedbacks)  is  an  essenOal  step  to  be^er   understand  and  predict  global  climate   changes   •  Need  for  mul(-­‐scale  models  to   adequately  address  feedbacks  at   disparate  scales  à  modelling  chain  from   GCMs  to  models  represenOng  local-­‐ vegetaOon  feedbacks  through   downscaling   •  Can  we  develop  vegetaOon/land-­‐surface   models  properly  parameterizing  small-­‐ scale  processes  such  as  mulOple  steady   states  of  vegetaOon  ? Rietkerk,  M.  et  al.  (2011)     Ecological  Complexity  8  (3):223-­‐228  
  • 47. Equivalent  resoluOon  at  50N:   270  km   135  km   90  km   60  km   40  km   25  km   •  Classic  GCMs  too   dependent  on  physical   parameterisaOon  because   of  unresolved  atmospheric   transports   •  Role  of  resolved  seaàland   transport  larger  at  high   resoluOon   •  Hydrological  cycle  more   intense  at  high  resoluOon   What  changes  with  resoluOon?   The  global  hydrological  cycle  depends  on  model  resolu(on:   Figure  adapted  from  Trenberth  et  al,  2007,  2011   Demory  et  al.,  Clim.  Dyn.,  2013  
  • 48. EU’s Horizon 2020 PRIMAVERA: 2015-2020 Overarching objective of PRIMAVERA: Develop a new generation of well-evaluated high-resolution global climate models, capable of simulating and predicting regional climate with unprecedented fidelity. ISAC-CNR will actively contribute to most of the research activities proposed in PRIMAVERA: •  development of a process-based metrics tailored for different regions and seasons. •  assessment of the benefits of increasing model resolution on Pacific variability and its teleconnection to Europe. •  investigate novel stochastic approaches to represent sub-grid scale processes •  investigate the climate variability and predictability in the Extra- Tropics in order to quantify the respective influence of Interdecadal Pacific Variabiliy, Atlantic Multidecadal Variability and anthropogenic forcing on recent and future changes in European climate.
  • 49. PRACE project “Climate SPHINX” CLIMATE Stochastic Physics HIgh resolutioN eXperiments •  20 Mln core hours on SuperMUC (LRZ), 10th PRACE call, March 2015-February 2016. •  Goal: To investigate the impact stochastic parameterisations and high resolutions on the representation of the main features of climate variability •  Experiments with EC-Earth 3.1: –  Coupled experiments at (IFS) T255L91+ (NEMO) ORCA1 –  AMIP experiments at T255 (~80 km), T799 (~25 km) and T1279 (~16 km), coupled runs at T255 and T511. –  Sim. period: 1979-2005 (historical) 2040-2070 (RCP 8.5 scenario) –  3 ensemble members each for stochastic physics and standard simulations (at T255, T511, T799) * Weisheimer, A., T.N. Palmer and F. Doblas-Reyes, (2011) Geophys. Res. Lett., 38, L16703 * Dawson, A. and T. N. Palmer (2014), Climate Dyn. doi:10.1007/s00382-014-2238-x * Dawson, A., T. N. Palmer, and S. Corti (2012) Geophys. Res. Lett., 39, L21805, doi:10.1029/2012GL053284.
  • 50.   ISAC-­‐CNR  will  contribute  in  CRESCENDO  to:   •  improvement  of  the  land  surface  component  of  the  EC-­‐ Earth  model,  in  parOcular  the  representaOon  of  ecosystem   mulO-­‐stability,  including  fire  disturbances  and  transiOons   from  forest  to  savannah  in  tropical  and  subtropical  regions.     •  invesOgate  impacts  of  land  hydrology  on  climate  (including   vegetaOon-­‐mediated  effects)  in  LS3MIP  experiments     •  using  simple  process  models  nested  in  the  outputs  of  the   ESM  runs  as  diagnosOc  tools     EU’s Horizon 2020 CRESCENDO: 2015-2020 Overarching  objec(ve  of  CRESCENDO:   Improve  the  process  realism  and  future  projecOon  reliability  of  European  Earth-­‐ System  Models,  while  evaluaOng  and  documenOng  the  performance  quality  of   these  models  …