SlideShare a Scribd company logo
Model of a Fluidic Toroidal Drive
Martin Jones
MARS44 CONSULTING, LLC
July 14, 2012
Abstract
We have determined parametric equations for the geometrical curve that defines
the wrapping of a toriodal core. Using the trajectory of the wrapping or fluid
flow, a Newtonian model has been developed for calculating the forces induced on
a specifically wrapped toriodal core (although other wrappings may be applied to
this methodology). It has not been necessary to use the equations of fluid motion to
calculate the Newtonian forces induced by fluid elements arranged symmetrically
around the axis of rotation of the core because it was not required to calculate the
dynamics of the fluid rather than the forces induced by imposed kinematics. A
few ‘special’ numbers of turns for the wrapping concerned were found to produce
an uncompensated thrust that can be used for propulsion.
1
1 Introduction
Some intro here on history of the development of uncompensated forces.
2 Model
To approximate a fluid in the model, the cumulative forces of a finite number of sym-
metrically aligned fluid elements being pumped through the coil at an arbitrary mass
flow rate are modelled. The following figure shows a toroid core that is wrapped with
8 turns, and each yellow dot represents a fluid element along the trajectory of the fluid
(red line). There are 12 total fluid elements shown for simplicity. Where there is no
intersection of a yellow marker and the red line (trajectory of the fluid) represents the
fluid element on the bottom surface of the toroid at those same planar coordinates.
The equation describing the force created by the motion of these 12 fluid elements around
the coil is as follows: First one must define a vector, or trajectory of the fluid elements
around the toroid core, ri, where i represents the i-th fluid element.
F =
12
i=1
mi
d2
ri
dt2
(1)
ri = xii + yij + zik (2)
ri =
a sinh (τ) cos (φi)
cosh (τ) − cos (σ(φi))
i +
a sinh (τ) sin (φi)
cosh (τ) − cos (σ(φi))
j +
a sin (σ(φi))
cosh (τ) − cos (σ(φi))
k (3)
Where τ is a constant parameter defining the cross-section of the toroid, σ is a function
of φi, and φi = ωt + φi(0). (ω is the frequency the fluid moves around the toroid and
φi(0) is the azimuthal angle of the i-th fluid element at t = 0.
3 Results
The Figures (1-3) show a contour of the forces in the x, y, and z directions versus the
number of turns in the winding of the tube around the toroid that carries the fluid (water
in this case) and the time. For a pump that rates at about 4 kg/s mass flow rate, the
model predicts the following results. In time, 4 periods are shown (the water circulates
4 times around the toroid). Force is in Newtons.
4 Future Work
Future work begs the question of space-time structure around this toroid. The same
methodology employed previously can be applied to the Einstein field equations to derive
the dynamic space-time structure caused by the moving fluid. Furthermore, once the
kinematics of the fluid are imposed, any space-time structure should be able to be derived
and vice-versa.
5 Acknowledgment
Thank you to Dan Winter for funding to accomplish these results. Also thank you to
both William Donavan and Winter for discussions and guidance during the development
of this model.
3
Figure 1: Shows the contour of the x-Force for time and number of turns on the torus.
This simulation used 500 fluid elements.
4
Figure 2: Shows the contour of the y-Force for time and number of turns on the torus.
This simulation used 500 fluid elements.
5
Figure 3: Shows the contour of the z-Force for time and number of turns on the torus.
This simulation used 500 fluid elements.
6

More Related Content

What's hot

Spatial Transformation
Spatial TransformationSpatial Transformation
Spatial Transformation
Ehsan Hamzei
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
Theoretical mechanics department
 
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitLattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
IAEME Publication
 
Robotics position and orientation
Robotics position and orientationRobotics position and orientation
Robotics position and orientation
Thiyagarajan Palanisamy
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingTheoretical mechanics department
 
robot kinematics
robot kinematicsrobot kinematics
robot kinematics
Sumit Kumar
 
Kinematics final
Kinematics finalKinematics final
Kinematics final
Angga Fajarianto
 
Chapter 3 mechanical systems part1 forclass
Chapter 3 mechanical systems part1 forclassChapter 3 mechanical systems part1 forclass
Chapter 3 mechanical systems part1 forclass
Eng,Simon Makala
 
Az simple harmonic motion
Az simple harmonic motionAz simple harmonic motion
Az simple harmonic motion
Muhammad Azhar
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
Younes Sina
 
Ch3 平面運動 part1
Ch3 平面運動 part1Ch3 平面運動 part1
Ch3 平面運動 part1
阿Samn的物理課本
 
Chapter 07 impulse and momentum
Chapter 07 impulse and momentumChapter 07 impulse and momentum
Chapter 07 impulse and momentumDarwin Quinsaat
 
Robot kinematics
Robot kinematicsRobot kinematics
Robot kinematics
SAMEER VISHWAKARMA
 
Review of optimal speed model
Review of optimal speed modelReview of optimal speed model
Review of optimal speed model
Gazali S.F
 
Joukowsky Project_Carpenter
Joukowsky Project_CarpenterJoukowsky Project_Carpenter
Joukowsky Project_CarpenterLaura Carpenter
 
AP Calculus Slides February 12, 2008
AP Calculus Slides February 12, 2008AP Calculus Slides February 12, 2008
AP Calculus Slides February 12, 2008
Darren Kuropatwa
 

What's hot (20)

Spatial Transformation
Spatial TransformationSpatial Transformation
Spatial Transformation
 
The Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space TugThe Removal of Large Space Debris Using Tethered Space Tug
The Removal of Large Space Debris Using Tethered Space Tug
 
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavitLattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
Lattice boltzmann simulation of non newtonian fluid flow in a lid driven cavit
 
Linear motion
Linear motionLinear motion
Linear motion
 
Robotics position and orientation
Robotics position and orientationRobotics position and orientation
Robotics position and orientation
 
On problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towingOn problems of active space debris removal using tethered towing
On problems of active space debris removal using tethered towing
 
robot kinematics
robot kinematicsrobot kinematics
robot kinematics
 
Kinematics final
Kinematics finalKinematics final
Kinematics final
 
Chapter 3 mechanical systems part1 forclass
Chapter 3 mechanical systems part1 forclassChapter 3 mechanical systems part1 forclass
Chapter 3 mechanical systems part1 forclass
 
Chapter 14 Statics
Chapter 14 StaticsChapter 14 Statics
Chapter 14 Statics
 
Robotics: 3D Movements
Robotics: 3D MovementsRobotics: 3D Movements
Robotics: 3D Movements
 
Az simple harmonic motion
Az simple harmonic motionAz simple harmonic motion
Az simple harmonic motion
 
Chapter 3
Chapter 3Chapter 3
Chapter 3
 
Ch3 平面運動 part1
Ch3 平面運動 part1Ch3 平面運動 part1
Ch3 平面運動 part1
 
Chapter 07 impulse and momentum
Chapter 07 impulse and momentumChapter 07 impulse and momentum
Chapter 07 impulse and momentum
 
Robot kinematics
Robot kinematicsRobot kinematics
Robot kinematics
 
Review of optimal speed model
Review of optimal speed modelReview of optimal speed model
Review of optimal speed model
 
Joukowsky Project_Carpenter
Joukowsky Project_CarpenterJoukowsky Project_Carpenter
Joukowsky Project_Carpenter
 
Pedro Gil Ferreira
Pedro Gil FerreiraPedro Gil Ferreira
Pedro Gil Ferreira
 
AP Calculus Slides February 12, 2008
AP Calculus Slides February 12, 2008AP Calculus Slides February 12, 2008
AP Calculus Slides February 12, 2008
 

Viewers also liked

Constancia fallo
Constancia falloConstancia fallo
Constancia falloPlazasVega
 
メタバーコーディングのフレームワークとアルゴリズム
メタバーコーディングのフレームワークとアルゴリズムメタバーコーディングのフレームワークとアルゴリズム
メタバーコーディングのフレームワークとアルゴリズム
astanabe
 
Decreto Tribunale Spezia
Decreto Tribunale SpeziaDecreto Tribunale Spezia
Decreto Tribunale Spezia
Claudia Bertanza
 
Các kỹ năng của thế kỷ 21
Các kỹ năng của thế kỷ 21Các kỹ năng của thế kỷ 21
Các kỹ năng của thế kỷ 21
đại học sư phạm
 
Book for the burg march2014
Book for the burg march2014Book for the burg march2014
Book for the burg march2014Nadene Brunk
 
Topologia redes
Topologia redesTopologia redes
Topologia redes
Roberto Caballero
 
Moving infographics provided by Moving van
Moving infographics provided by Moving vanMoving infographics provided by Moving van
Moving infographics provided by Moving van
Andrei Petrov
 
Bab i%2 c vii%2c daftar pustaka
Bab i%2 c vii%2c daftar pustakaBab i%2 c vii%2c daftar pustaka
Bab i%2 c vii%2c daftar pustaka
Nurul Rohmah
 
David Bellatalla, intervista
David Bellatalla, intervistaDavid Bellatalla, intervista
David Bellatalla, intervista
Claudia Bertanza
 
ток шоу «місто як екосистема»
ток шоу «місто як екосистема»ток шоу «місто як екосистема»
ток шоу «місто як екосистема»
Poltava municipal lyceum #1
 
ознаки отруєння газом
ознаки отруєння газомознаки отруєння газом
ознаки отруєння газом
Poltava municipal lyceum #1
 
пожежонебезпечні об’єкти
пожежонебезпечні об’єктипожежонебезпечні об’єкти
пожежонебезпечні об’єкти
Poltava municipal lyceum #1
 
пожежонебезпечні речовини
пожежонебезпечні речовинипожежонебезпечні речовини
пожежонебезпечні речовини
Poltava municipal lyceum #1
 
分子系統樹推定に適した配列データセットの作成 講義編
分子系統樹推定に適した配列データセットの作成 講義編分子系統樹推定に適した配列データセットの作成 講義編
分子系統樹推定に適した配列データセットの作成 講義編
astanabe
 
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
Prakash Prakash
 
Energía Eólica
Energía EólicaEnergía Eólica
Energía Eólica
Tarariras HOY
 
вг час і досі не загоїв рани, цей одвічний біль афганістану…
вг час і досі не загоїв рани, цей одвічний біль афганістану…вг час і досі не загоїв рани, цей одвічний біль афганістану…
вг час і досі не загоїв рани, цей одвічний біль афганістану…
Poltava municipal lyceum #1
 

Viewers also liked (20)

Constancia fallo
Constancia falloConstancia fallo
Constancia fallo
 
メタバーコーディングのフレームワークとアルゴリズム
メタバーコーディングのフレームワークとアルゴリズムメタバーコーディングのフレームワークとアルゴリズム
メタバーコーディングのフレームワークとアルゴリズム
 
Decreto Tribunale Spezia
Decreto Tribunale SpeziaDecreto Tribunale Spezia
Decreto Tribunale Spezia
 
Các kỹ năng của thế kỷ 21
Các kỹ năng của thế kỷ 21Các kỹ năng của thế kỷ 21
Các kỹ năng của thế kỷ 21
 
Tháp eiffei
Tháp eiffeiTháp eiffei
Tháp eiffei
 
Book for the burg march2014
Book for the burg march2014Book for the burg march2014
Book for the burg march2014
 
KemmittSarahCV2014
KemmittSarahCV2014KemmittSarahCV2014
KemmittSarahCV2014
 
Topologia redes
Topologia redesTopologia redes
Topologia redes
 
Moving infographics provided by Moving van
Moving infographics provided by Moving vanMoving infographics provided by Moving van
Moving infographics provided by Moving van
 
Bab i%2 c vii%2c daftar pustaka
Bab i%2 c vii%2c daftar pustakaBab i%2 c vii%2c daftar pustaka
Bab i%2 c vii%2c daftar pustaka
 
David Bellatalla, intervista
David Bellatalla, intervistaDavid Bellatalla, intervista
David Bellatalla, intervista
 
emad cv2
emad cv2emad cv2
emad cv2
 
ток шоу «місто як екосистема»
ток шоу «місто як екосистема»ток шоу «місто як екосистема»
ток шоу «місто як екосистема»
 
ознаки отруєння газом
ознаки отруєння газомознаки отруєння газом
ознаки отруєння газом
 
пожежонебезпечні об’єкти
пожежонебезпечні об’єктипожежонебезпечні об’єкти
пожежонебезпечні об’єкти
 
пожежонебезпечні речовини
пожежонебезпечні речовинипожежонебезпечні речовини
пожежонебезпечні речовини
 
分子系統樹推定に適した配列データセットの作成 講義編
分子系統樹推定に適した配列データセットの作成 講義編分子系統樹推定に適した配列データセットの作成 講義編
分子系統樹推定に適した配列データセットの作成 講義編
 
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
Right to Information Act, 2005 Procedure for Requesting Information Under RTI...
 
Energía Eólica
Energía EólicaEnergía Eólica
Energía Eólica
 
вг час і досі не загоїв рани, цей одвічний біль афганістану…
вг час і досі не загоїв рани, цей одвічний біль афганістану…вг час і досі не загоїв рани, цей одвічний біль афганістану…
вг час і досі не загоїв рани, цей одвічний біль афганістану…
 

Similar to toroidwork07-12-2012

H013164652
H013164652H013164652
H013164652
IOSR Journals
 
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
vasishta bhargava
 
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
Michael Patterson
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Charlton Inao
 
Class 11 Cbse Physics Syllabus 2012-13
Class 11 Cbse Physics Syllabus 2012-13Class 11 Cbse Physics Syllabus 2012-13
Class 11 Cbse Physics Syllabus 2012-13
Sunaina Rawat
 
Experimental flow visualization for flow around multiple side-by-side circula...
Experimental flow visualization for flow around multiple side-by-side circula...Experimental flow visualization for flow around multiple side-by-side circula...
Experimental flow visualization for flow around multiple side-by-side circula...
Santosh Sivaramakrishnan
 
To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...Kirtan Gohel
 
Km229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicleKm229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicle
1000kv technologies
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
theijes
 
Circular Motion (AIS).ppt
Circular Motion (AIS).pptCircular Motion (AIS).ppt
Circular Motion (AIS).ppt
JohnHoban6
 
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
sadiq emad
 
Ppt unit 2
Ppt unit 2Ppt unit 2
Ppt unit 2
MD ATEEQUE KHAN
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
inventionjournals
 
1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main
Mesfin Demise
 
Moment of Inertia.pdf
Moment of Inertia.pdfMoment of Inertia.pdf
Moment of Inertia.pdf
AshwinKushwaha2
 
Application of DRP scheme solving for rotating disk-driven cavity
Application of DRP scheme solving for rotating disk-driven cavityApplication of DRP scheme solving for rotating disk-driven cavity
Application of DRP scheme solving for rotating disk-driven cavity
ijceronline
 
Dynamics and Structure of Janus Particles
Dynamics and Structure of Janus ParticlesDynamics and Structure of Janus Particles
Dynamics and Structure of Janus Particles
Tatsuya Ohkura
 
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
zoya rizvi
 

Similar to toroidwork07-12-2012 (20)

H013164652
H013164652H013164652
H013164652
 
Vortex Modeling
Vortex ModelingVortex Modeling
Vortex Modeling
 
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
Prediction of aerodynamic characteristics for slender bluff bodies with nose ...
 
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
Alterations of the Tip Vortex Structure from a Hovering Rotor using Passive T...
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electrical
 
Class 11 Cbse Physics Syllabus 2012-13
Class 11 Cbse Physics Syllabus 2012-13Class 11 Cbse Physics Syllabus 2012-13
Class 11 Cbse Physics Syllabus 2012-13
 
Experimental flow visualization for flow around multiple side-by-side circula...
Experimental flow visualization for flow around multiple side-by-side circula...Experimental flow visualization for flow around multiple side-by-side circula...
Experimental flow visualization for flow around multiple side-by-side circula...
 
Physics details
Physics detailsPhysics details
Physics details
 
To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...
 
Km229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicleKm229 automobile diwheel motorized vehicle
Km229 automobile diwheel motorized vehicle
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
Circular Motion (AIS).ppt
Circular Motion (AIS).pptCircular Motion (AIS).ppt
Circular Motion (AIS).ppt
 
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
 
Ppt unit 2
Ppt unit 2Ppt unit 2
Ppt unit 2
 
International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)International Journal of Engineering and Science Invention (IJESI)
International Journal of Engineering and Science Invention (IJESI)
 
1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main
 
Moment of Inertia.pdf
Moment of Inertia.pdfMoment of Inertia.pdf
Moment of Inertia.pdf
 
Application of DRP scheme solving for rotating disk-driven cavity
Application of DRP scheme solving for rotating disk-driven cavityApplication of DRP scheme solving for rotating disk-driven cavity
Application of DRP scheme solving for rotating disk-driven cavity
 
Dynamics and Structure of Janus Particles
Dynamics and Structure of Janus ParticlesDynamics and Structure of Janus Particles
Dynamics and Structure of Janus Particles
 
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
A study-to-understand-differential-equations-applied-to-aerodynamics-using-cf...
 

toroidwork07-12-2012

  • 1. Model of a Fluidic Toroidal Drive Martin Jones MARS44 CONSULTING, LLC July 14, 2012 Abstract We have determined parametric equations for the geometrical curve that defines the wrapping of a toriodal core. Using the trajectory of the wrapping or fluid flow, a Newtonian model has been developed for calculating the forces induced on a specifically wrapped toriodal core (although other wrappings may be applied to this methodology). It has not been necessary to use the equations of fluid motion to calculate the Newtonian forces induced by fluid elements arranged symmetrically around the axis of rotation of the core because it was not required to calculate the dynamics of the fluid rather than the forces induced by imposed kinematics. A few ‘special’ numbers of turns for the wrapping concerned were found to produce an uncompensated thrust that can be used for propulsion. 1
  • 2. 1 Introduction Some intro here on history of the development of uncompensated forces. 2 Model To approximate a fluid in the model, the cumulative forces of a finite number of sym- metrically aligned fluid elements being pumped through the coil at an arbitrary mass flow rate are modelled. The following figure shows a toroid core that is wrapped with 8 turns, and each yellow dot represents a fluid element along the trajectory of the fluid (red line). There are 12 total fluid elements shown for simplicity. Where there is no intersection of a yellow marker and the red line (trajectory of the fluid) represents the fluid element on the bottom surface of the toroid at those same planar coordinates. The equation describing the force created by the motion of these 12 fluid elements around the coil is as follows: First one must define a vector, or trajectory of the fluid elements around the toroid core, ri, where i represents the i-th fluid element. F = 12 i=1 mi d2 ri dt2 (1) ri = xii + yij + zik (2) ri = a sinh (τ) cos (φi) cosh (τ) − cos (σ(φi)) i + a sinh (τ) sin (φi) cosh (τ) − cos (σ(φi)) j + a sin (σ(φi)) cosh (τ) − cos (σ(φi)) k (3) Where τ is a constant parameter defining the cross-section of the toroid, σ is a function of φi, and φi = ωt + φi(0). (ω is the frequency the fluid moves around the toroid and φi(0) is the azimuthal angle of the i-th fluid element at t = 0.
  • 3. 3 Results The Figures (1-3) show a contour of the forces in the x, y, and z directions versus the number of turns in the winding of the tube around the toroid that carries the fluid (water in this case) and the time. For a pump that rates at about 4 kg/s mass flow rate, the model predicts the following results. In time, 4 periods are shown (the water circulates 4 times around the toroid). Force is in Newtons. 4 Future Work Future work begs the question of space-time structure around this toroid. The same methodology employed previously can be applied to the Einstein field equations to derive the dynamic space-time structure caused by the moving fluid. Furthermore, once the kinematics of the fluid are imposed, any space-time structure should be able to be derived and vice-versa. 5 Acknowledgment Thank you to Dan Winter for funding to accomplish these results. Also thank you to both William Donavan and Winter for discussions and guidance during the development of this model. 3
  • 4. Figure 1: Shows the contour of the x-Force for time and number of turns on the torus. This simulation used 500 fluid elements. 4
  • 5. Figure 2: Shows the contour of the y-Force for time and number of turns on the torus. This simulation used 500 fluid elements. 5
  • 6. Figure 3: Shows the contour of the z-Force for time and number of turns on the torus. This simulation used 500 fluid elements. 6