SlideShare a Scribd company logo
1 of 17
Joukowsky Airfoil Study
Laura Carpenter
Advanced Fluid Dynamics (ME 7300)
November 2, 2015
Carpenter2
Introduction
Joukowsky,aRussianmathematician,inventedamappingfunctionthatconvertsthe geometryandflow
physicsof the rotatingcylinderintothe geometryand flow physics of the Joukowskyairfoil, displayedin
Figure 1.
Figure 1
Figure 1 shows the geometry of the Joukowsky airfoil in the (x”, y”) coordinate system.
Whenworkingwithairfoilsthe goal isoftentoincrease the liftforce anddecrease the dragforce. The
liftforce isthe force perpendiculartothe incomingfreestreamvelocity andthe dragforce is the force
parallel tothe incomingfreestreamvelocity. Inorderto calculate the liftanddrag forcesit is necessary
to knowthe velocitydistribution aroundthe airfoil. The velocitydistributioncanthenbe usedto
calculate the pressure distribution,andthe pressure distributioncanbe integratedalongthe surface to
calculate the force. Whenworkingwithliftanddragit iscommon to speakof the coefficientof liftand
the coefficientof dragwhichare dimensionless numbers. Dimensionlessnumbersallow experimenters
to conductlessexperimentswhilestudyingthe effectsof anumberof variables. Theyare alsocompact,
easyto use,andcan be understoodinanycoordinate system. The thicknessandcamberof the airfoil
can be adjustedtomaximizethe coefficientof lift.
Carpenter3
The z’ Transformation and Joukowsky Transformation
Two transformationsare utilizedtoconvertacircle intothe Joukowskyairfoilshape. The firstisthe z’
transformation followedbythe Joukowsky transformation. The z’transformation (Equation 2) isapplied
to the equationof a circle centeredat (0, 0) inthe (x, y) plane witharadiusof 𝑎 = 1 (Equation 1).
𝑧 = 𝑎𝑒 𝑖𝜃 Equation 1
𝑧′ = 𝑧 + 𝑧 𝑐′, 𝑤ℎ𝑒𝑟𝑒 𝑧 𝑐′ = 𝑥 𝑐′+ 𝑖𝑦𝑐′ Equation 2
The z’ transformation convertsthe coordinatestothe new z’ coordinate system, changing the centerof
the circle as seenin Figure 2.
Figure 2
Figure 2 illustrates the conversion from the z coordinate system to the z’ coordinate system.
The blue circle representsthe original circle andthe redcircle isa resultof the z’ transformationwhere
𝑥 𝑐
′ = −0.1 and 𝑦𝑐
′ = 0.1. The second transformationisthe Joukowsky transformationwhichcanbe
expressedinthe followingway.
𝑧" = 𝑧′ +
𝑏2
𝑧′
Equation 3
The expressionforb inthe Joukowskytransformation isconveyedbelow.
𝑏 = 𝑥 𝑐
′ + √𝑎2 − 𝑦𝑐
′2 Equation 4
Thistransformationconvertsthe circle centeredat (xc’, yc’) inred intoanairfoil shape asshownin Figure
3.
Carpenter4
Figure 3
Figure 3 displays the Joukowsky transformation which converts a circle into an airfoil shape.
Withthe airfoil coordinatesdefineditisnow possibletocalculate the fluidvelocitiesatthe surface of
the airfoil. Thisisassuminginviscidflow.
Velocity Distribution
The velocitycalculationbeginswithastudyof the flow pasta circular cylinderwithcirculation. The
correspondingcomplex potential,w, expressionfollows.
𝑤 = 𝑧𝑈∗ +
𝑎2
𝑧
𝑈 +
𝑖Γ
2𝜋
𝑙𝑛
𝑧
𝑎
Equation 5
The complex potential forthe rotatingcircularcylinderincludesauniformstreamterm, adoubletterm,
and a vortex termfor the circulationwhichisnecessaryforlift. 𝑈∗ isthe complex conjugate of the
incomingfreestreamvelocity,while U issimplythe incomingfreestreamvelocity. Γisthe circulation.
Γ = 4πa| 𝑈| 𝑠𝑖𝑛𝛽, 𝑤ℎ𝑒𝑟𝑒 𝛽 = 𝛼 + 𝑠𝑖𝑛−1 𝑦𝑐
′
𝑎
Equation 6
| 𝑈| is the magnitude of the incomingfreestreamvelocity whichis1,and 𝛼 isthe angle of attack. Upon
differentiatingthe complex potentialthe x-velocity,vx, andy-velocity,vy,become apparent.
Carpenter5
𝑑𝑤
𝑑𝑧
= 𝑣𝑥 − 𝑖𝑣 𝑦 Equation 7
Differentiatingthe complexpotential functionyields Equation 8.
𝑑𝑤
𝑑𝑧
= 𝑈∗ −
𝑎2
𝑧2
𝑈 +
𝑖Γ
2𝜋𝑧
Equation 8
Thisis the velocityaroundthe rotatingcylinder. Tocalculate the velocityaroundthe Joukowskyairfoil,
the w mustbe differentiatedwithrespectthe airfoilcoordinates,z”.
𝑑𝑤
𝑑𝑧"
=
𝑑𝑤
𝑑𝑧
𝑧′2
𝑧′2−𝑏2
Equation 9
Figure 4 showsthe velocityvectorplotforthe Joukowskyairfoil foranangle of attack of zero.
Figure 4
Figure 4 representsthe velocity vectorsat each coordinateon the Joukowskyairfoil forangle of attack of
zero.
Pressure Distribution
Once the velocitydistributionhasbeencalculated,the coefficientof pressure, Cp,acrossthe airfoil can
be determinedfromthe followingequation,where v representsthe velocitydistribution.
𝐶 𝑝 = 1 − |
𝑣
𝑈
|
2
Equation 10
Carpenter6
The gage pressure, 𝑃𝑔, can be calculatedusingthe coefficientof pressure. The incomingfluiddensityis
𝜌.
𝑃𝑔 =
1
2
𝜌𝑈2 𝐶 𝑝 Equation 11
The pressure isdependentonthe coordinatesbecause the coefficientof pressure isdependenton
velocitywhichvariesacrossthe shape. Figure5 showsthe coefficientof pressure versus x”coordinates
for angle of attack of zero.
Figure 5
Figure 5 presentsthe coefficientof pressure at angle of attack of zero. The plot reveals a lower pressure
on the top of the airfoil and a higher pressure on the bottom of the airfoil.
Force Distribution
The pressure distributioncanbe utilizedtofindthe force distribution. The force isthe gage pressure
actingon the area, A,of the airfoil.
𝐹 = 𝐴𝑃𝑔 Equation 12
The differential force iscalculatedforelementsof the airfoil surfacebymultiplyingthe average pressure
appliedtothe elementbythe distance it’sappliedover,assumingthe spanwise thicknessinthe z-
directionisone.
𝑑𝐹𝑖𝑥 =
𝑃 𝑔𝑖+𝑃 𝑔(𝑖+1)
2
(𝑦𝑖
"
− 𝑦𝑖+1
"
) Equation 13
𝑑𝐹𝑖𝑦 =
𝑃 𝑔𝑖+𝑃 𝑔(𝑖+1)
2
(𝑥𝑖+1
"
− 𝑥 𝑖
"
) Equation 14
The total x-force, 𝐹𝑥,andy-force, 𝐹𝑦, are simplythe sumof the elementsof 𝑑𝐹𝑖𝑥 and 𝑑𝐹𝑖𝑦.
𝐹𝑥 = ∑ 𝑑𝐹𝑖𝑥 Equation 15
Carpenter7
𝐹𝑦 = ∑ 𝑑𝐹𝑖𝑦 Equation 16
Coefficient of Lift
To evaluate the coefficientof lift,the airfoil’sliftforce, L,mustfirstbe determined. Thisisthe force
perpendiculartothe incomingfreestreamvelocity.
𝐿 = −𝐹𝑥 𝑠𝑖𝑛𝛼 + 𝐹𝑦sin(
𝜋
2
− 𝛼) Equation 17
Finallythe coefficientof lift, 𝐶 𝐿, canbe calculatedas follows,where cisthe chordlength.
𝐶 𝐿 =
𝐿
1
2
𝜌𝑈2 𝑐
Equation 18
Results
Figure 6 showsthe velocitydistributionandthe coefficientof pressureforα=-10, -5, 0, 5, 10.
Figure 6
Carpenter8
Carpenter9
Figure 6 presents the velocity distribution and the coefficient of pressure versus x” for various angles of
attack.
In the velocityplotforzeroangle of attack the velocityissplitaroundthe leadingedge at 𝑦” = 0. For
the two negative anglesof attack (-5⁰,-10⁰) the flow issplitslightlyabove 𝑦” = 0,whileforthe two
positive anglesof attack (5⁰, 10⁰) it issplitslightlybelow 𝑦” = 0. Afterthe splitthe fluidflowstangential
to the airfoil shape. Forthe largermagnitude of anglesof attackthere are largervectorsat the leading
edge. Inthe 10⁰ angle of attack vectorplotthe vectorsare verycloselyattachedtothe bottomsurface,
showingthe fluidpushingagainstthe bottomsurface. Onthe topsurface the fluidisgoingawayfrom
the surface on the leadingedge end. Thisindicatesareductionof pressure onthe topsurface. Withthe
vectorspushingagainstthe surface onthe bottomand movingawayfromthe surface onthe top,the lift
phenomenaispresent.
In the pressure plotsthere isalowpressure onthe top of the airfoil anda higherpressure onthe
bottomof the airfoil. Goingfrom 5⁰ to 10⁰ the pressure difference increases. The plotswith negative
angle of attacks have an interestingpatternwhere the topsurface andbottomsurface pressures
intersectsothat towardthe trailingedge the topsurface hasa higherpressure insteadof lower. At 0⁰
angle of attack the pressure difference isthe smallest.
Figure 7 givesthe coefficientof liftversusangleof attackwiththe followingparameters: 𝑎 = 1, 𝑥 𝑐
′ =
−0.1, 𝑦𝑐
′ = 0.1, | 𝑈| = 1. The coefficientof liftconvertsfromnegative topositive at around 𝛼 = −6⁰.
It linearlyincreasesfrom -10⁰to 10⁰. Thus,as the angle of attack increasesthe liftingforce increases.
Carpenter10
The maximumcoefficientof liftis 1.8763 at 10⁰. At0⁰ the value is 0.6917. The minimumvalue at -10⁰is
-0.5142.
Figure 7
Figure 7 expresses the coefficient of lift for a range of negative and positive angles of attack.
Accordingto Figure8 the coefficientof liftincreasesasthe camberor yc
’
increases. The thicknessorxc
’
doesn’tseemtohave aneffectonthe liftvalue. If thisproblemwasconcernedwithviscousflowthe
thicknesswouldhave aneffectondrag. A Joukowskyairfoil withthe followingparametershasahigher
liftcoefficientthanthe original plottedJoukowskyairfoil: 𝑎 = 1, 𝑥 𝑐
′ = −0.3, 𝑦𝑐
′ = 0.5,| 𝑈| = 1. This
airfoil isplottedin Figure9.
Carpenter11
Figure 8
Carpenter12
Figure 8 shows plots of the coefficient of lift versus the angle of attack for various xc
’
and yc
’
values.
Figure 9
In Figure 9 the Joukowsky airfoil is optimized by changing the 𝑥 𝑐
′ from -0.1 to 0.3 and the 𝑦𝑐
′ from 0.1 to
0.5. This magnified thecamberto increase lift and enlarged the thicknessto increase structural support.
Carpenter13
Thisnewairfoil designhasanincreasedcamberandthicknesscomparedtothe Joukowskyairfoil in
Figure 3.4.3 of AdvanceFluid Mechanics by W.P.Graebel. The new airfoil providesmore liftasseenin
Figure 10.
Figure 10
Figure 10 shows the coefficient of lift for the original Joukowsky airfoil with xc
’
=-0.1 and yc
’
=0.1 and the
coefficient of lift for the optimized airfoil with xc
’
=-0.3 and yc
’
=0.5.
Conclusion
To conclude,the Joukowskyairfoil shapewasformedbycompletingthe z’ transformationandthe
Joukowskytransformation. The complex potential of the rotatingcylinderwasdifferentiatedwith
respectto the Joukowskycoordinatesinordertofindthe velocityaroundthe airfoil. Then,the equation
for the coefficientof pressure wasusedtoobtainthe correspondingpressures. Finally,the pressures
were integratedoverthe areaof the airfoil tofindthe forcesandultimatelythe liftforce. Withthe lift
force,density,freestreamvelocity,andchordlengththe liftcoefficientwascalculated.
The liftcoefficientlineincreasedwhenthe camberof the airfoil was increasedbyenlargingthe yc
’
value.
The thicknessterm, xc,’
didn’thave mucheffectonthe lift. Bychangingthe parametersfrom xc
’
=-0.1
and yc
’
=0.1 to xc
’
=-0.3 and yc
’
=0.5 the liftcoefficientof the Joukowskyairfoil wasincreased.
Carpenter14
MATLAB Code
Part1.
function [CL] = lift_coefficient2( xc1,yc1,alpha )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
a=1;
U=1;
rho=1000;
chord=3.6312;
b=xc1+sqrt(a^2-yc1^2);
Beta=alpha+asin(yc1/a);
Circulation=4*pi()*a*U*sin(Beta);
Uconj=U*exp(-i*alpha);
UU=U*exp(i*alpha);
zc1=xc1+yc1*i;
theta=linspace(0,2*pi(),100);
theta=theta(:);
z=a*exp(i*theta);
x=real(z);
y=imag(z);
figure();
plot(x,y);
xlabel('x');
ylabel('y');
title('Circle');
grid('on');
Circle=[x y];
xlswrite('Circle',Circle);
z1=z+zc1;
x1=real(z1);
y1=imag(z1);
figure();
plot(x1,y1);
xlabel('x1');
ylabel('y1');
title('Circle with Center (xc1,yc1)');
grid('on');
Circle2=[x1 y1];
Carpenter15
xlswrite('Circle2',Circle2);
z2=z1+(b^2./z1);
x2=real(z2);
y2=imag(z2);
figure();
plot(x2,y2);
axis([-2,2,-1,2]);
xlabel('x"');
ylabel('y"');
title('Optimal Joukowsky Airfoil Shape');
grid('on');
Joukowsky=[x2 y2];
xlswrite('Joukowsky2',Joukowsky);
dwdz=Uconj-(UU./z.^2)+((i*Circulation)./(2*pi()*z));
dwdz2=dwdz.*(z1.^2./(z1.^2-b^2));
vx=real(dwdz2);
vy=-imag(dwdz2);
v=[x2 y2 vx vy];
xlswrite('vectorplot',v);
v2=sqrt(vx.^2+vy.^2);
Cp=(1-(abs(v2/U)).^2);
figure();
plot(x2,Cp);
xlabel('x2');
ylabel('Cp');
title('Coefficient of Pressure');
grid('on');
PP=.5*rho*UU^2*Cp;
figure();
plot(x2,PP);
xlabel('x2');
ylabel('PP');
title('Pressure Distribution');
Carpenter16
grid('on');
for g=1:99;
dFiy=((PP(g,1)+PP(g+1,1))/2).*(x2(g+1,1)-x2(g,1));
dFix=((PP(g,1)+PP(g+1,1))/2).*(y2(g,1)-y2(g+1,1));
dFy(g,1)=dFiy;
dFx(g,1)=dFix;
end
Fy=sum(dFy);
Fx=sum(dFx);
L=-Fx*sin(alpha)+Fy*sin((pi()/2)-alpha);
CL=L/(.5*rho*UU^2*chord)
end
Part2.
alphad=linspace(-10,10,21)
alpha=alphad*2*pi()/360
alpha=alpha(:)
liftcoeffs=zeros(21,1)
for k=1:21
al=alpha(k,1);
coeff=lift_coefficient2(-0.1,0.1,al)
liftcoeffs(k,1)=coeff
end
plot(alphad,liftcoeffs,'r')
xlabel('alpha (degrees)')
ylabel('CL')
title('Coefficient of Lift vs Angle of Attack')
grid('on')
axis([-12,12,-1,2.5])
Part3.
alphad=linspace(-10,10,21)
alpha=alphad*2*pi()/360
alpha=alpha(:)
liftcoeffs=zeros(21,1)
for k=1:21
al=alpha(k,1);
coeff=lift_coefficient2(-0.1,0.1,al)
Carpenter17
liftcoeffs(k,1)=coeff
end
a1=plot(alphad,liftcoeffs,'r'); M1='x_c^''=-0.1, y_c^''=0.1'
xlabel('alpha (degrees)')
ylabel('CL')
title('Coefficient of Lift vs Angle of Attack')
grid('on')
axis([-12,12,-1,5])
hold on
for k=1:21
al=alpha(k,1);
coeff=lift_coefficient2(-0.3,0.5,al)
liftcoeffs(k,1)=coeff
end
a2=plot(alphad,liftcoeffs,'k'); M2='x_c^''=-0.3, y_c^''=0.5'
legend([a1; a2], [M1; M2],'Location','SouthEast');

More Related Content

What's hot

Grade 12, U3-L2B, Vert PM
Grade 12, U3-L2B, Vert PMGrade 12, U3-L2B, Vert PM
Grade 12, U3-L2B, Vert PMgruszecki1
 
3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)Rabea A. G. Rabih_Sch2009
 
1 s2.0-002980189090003 o-main
1 s2.0-002980189090003 o-main1 s2.0-002980189090003 o-main
1 s2.0-002980189090003 o-mainhamidkm69
 
Fundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsFundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsSpringer
 
circular motion Mechanics
circular motion Mechanicscircular motion Mechanics
circular motion Mechanicsnethmina1
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamicsCik Minn
 
Grade 12, U3-L2A - Horiz PM
Grade 12, U3-L2A - Horiz PMGrade 12, U3-L2A - Horiz PM
Grade 12, U3-L2A - Horiz PMgruszecki1
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-studentTommy Moss
 

What's hot (17)

Grade 12, U3-L2B, Vert PM
Grade 12, U3-L2B, Vert PMGrade 12, U3-L2B, Vert PM
Grade 12, U3-L2B, Vert PM
 
3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)3 motion of a particule in a plane (part iii)
3 motion of a particule in a plane (part iii)
 
1 s2.0-002980189090003 o-main
1 s2.0-002980189090003 o-main1 s2.0-002980189090003 o-main
1 s2.0-002980189090003 o-main
 
Fundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamicsFundamentals of geophysical hydrodynamics
Fundamentals of geophysical hydrodynamics
 
Drone Equations
Drone EquationsDrone Equations
Drone Equations
 
circular motion Mechanics
circular motion Mechanicscircular motion Mechanics
circular motion Mechanics
 
Fluid dynamics
Fluid dynamicsFluid dynamics
Fluid dynamics
 
Moment of inertia revision
Moment of inertia revisionMoment of inertia revision
Moment of inertia revision
 
Newton's Laws of Motion L2.1
Newton's Laws of Motion L2.1Newton's Laws of Motion L2.1
Newton's Laws of Motion L2.1
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Solution 3 i ph o 36
Solution 3 i ph o 36Solution 3 i ph o 36
Solution 3 i ph o 36
 
Projectile motion
Projectile motionProjectile motion
Projectile motion
 
Grade 12, U3-L2A - Horiz PM
Grade 12, U3-L2A - Horiz PMGrade 12, U3-L2A - Horiz PM
Grade 12, U3-L2A - Horiz PM
 
4 motion of a particle in a plane (part iv)
4 motion of a particle in a plane (part iv)4 motion of a particle in a plane (part iv)
4 motion of a particle in a plane (part iv)
 
Sol37
Sol37Sol37
Sol37
 
PhD_defence_Filonovich_2015
PhD_defence_Filonovich_2015PhD_defence_Filonovich_2015
PhD_defence_Filonovich_2015
 
Chapter 2-student
Chapter 2-studentChapter 2-student
Chapter 2-student
 

Viewers also liked (14)

Bab iii
Bab iiiBab iii
Bab iii
 
Blogging
BloggingBlogging
Blogging
 
Student Center Operations INSIGHT PROGRAM
Student Center Operations INSIGHT PROGRAMStudent Center Operations INSIGHT PROGRAM
Student Center Operations INSIGHT PROGRAM
 
KB_Sample_REO_Inventory
KB_Sample_REO_InventoryKB_Sample_REO_Inventory
KB_Sample_REO_Inventory
 
MÁY CHÀ SÀN NGỒI LÁI GRANDE
MÁY CHÀ SÀN NGỒI LÁI GRANDEMÁY CHÀ SÀN NGỒI LÁI GRANDE
MÁY CHÀ SÀN NGỒI LÁI GRANDE
 
Bonnac murie when_thetextbookdoesntfit
Bonnac murie when_thetextbookdoesntfitBonnac murie when_thetextbookdoesntfit
Bonnac murie when_thetextbookdoesntfit
 
Eve Reed-Hill 2015
Eve Reed-Hill 2015Eve Reed-Hill 2015
Eve Reed-Hill 2015
 
Creation & Nature
Creation & NatureCreation & Nature
Creation & Nature
 
Expoferia 2015
Expoferia 2015Expoferia 2015
Expoferia 2015
 
VITAMIN D TO THE RESCUE OF YOUR HEART
VITAMIN D TO THE RESCUE OF YOUR HEARTVITAMIN D TO THE RESCUE OF YOUR HEART
VITAMIN D TO THE RESCUE OF YOUR HEART
 
Visita Educativa al Museo de Ingeniero Withe ppt
Visita Educativa al Museo de Ingeniero Withe pptVisita Educativa al Museo de Ingeniero Withe ppt
Visita Educativa al Museo de Ingeniero Withe ppt
 
PMO0216_P
PMO0216_PPMO0216_P
PMO0216_P
 
Dioses lovecraftnianos
Dioses lovecraftnianosDioses lovecraftnianos
Dioses lovecraftnianos
 
General Overview
General OverviewGeneral Overview
General Overview
 

Similar to Joukowsky Project_Carpenter

To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...Kirtan Gohel
 
Rock dynamics-presentation -javid.pdf
Rock dynamics-presentation -javid.pdfRock dynamics-presentation -javid.pdf
Rock dynamics-presentation -javid.pdfAbdolhakim Javid
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalCharlton Inao
 
Closed-Form Solutions For Optimum Rotor in Hover and Climb
Closed-Form Solutions For Optimum Rotor in Hover and ClimbClosed-Form Solutions For Optimum Rotor in Hover and Climb
Closed-Form Solutions For Optimum Rotor in Hover and ClimbWilliam Luer
 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...Wasswaderrick3
 
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Mehmet Bariskan
 
11 rocket dyanmics.pdf
11 rocket dyanmics.pdf11 rocket dyanmics.pdf
11 rocket dyanmics.pdfa a
 
Chapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxChapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxPooja M
 
Chapter one.pptx
Chapter one.pptxChapter one.pptx
Chapter one.pptxhaymanot16
 
The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...iosrjce
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)Pooja M
 

Similar to Joukowsky Project_Carpenter (20)

To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...To compare different turbulence models for the simulation of the flow over NA...
To compare different turbulence models for the simulation of the flow over NA...
 
Shear and torsion
Shear and torsionShear and torsion
Shear and torsion
 
Rock dynamics-presentation -javid.pdf
Rock dynamics-presentation -javid.pdfRock dynamics-presentation -javid.pdf
Rock dynamics-presentation -javid.pdf
 
Week 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electricalWeek 10 part 3 pe 6282 mecchanical liquid and electrical
Week 10 part 3 pe 6282 mecchanical liquid and electrical
 
Closed-Form Solutions For Optimum Rotor in Hover and Climb
Closed-Form Solutions For Optimum Rotor in Hover and ClimbClosed-Form Solutions For Optimum Rotor in Hover and Climb
Closed-Form Solutions For Optimum Rotor in Hover and Climb
 
Problem and solution i ph o 22
Problem and solution i ph o 22Problem and solution i ph o 22
Problem and solution i ph o 22
 
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
DERIVATION OF THE MODIFIED BERNOULLI EQUATION WITH VISCOUS EFFECTS AND TERMIN...
 
THE KUYPERS EFFECT: ANGULARMOMENTUM CONSERVATION IMPLIES GLOBAL C IN GRAVITY
THE KUYPERS EFFECT: ANGULARMOMENTUM CONSERVATION IMPLIES GLOBAL C IN GRAVITYTHE KUYPERS EFFECT: ANGULARMOMENTUM CONSERVATION IMPLIES GLOBAL C IN GRAVITY
THE KUYPERS EFFECT: ANGULARMOMENTUM CONSERVATION IMPLIES GLOBAL C IN GRAVITY
 
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
Vibration Midterm-THEORETICAL SOLUTION AND STATIC ANALYSES STUDY OF VIBRATION...
 
11 rocket dyanmics.pdf
11 rocket dyanmics.pdf11 rocket dyanmics.pdf
11 rocket dyanmics.pdf
 
Chapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptxChapter 1 - Rotational Dynamics.pptx
Chapter 1 - Rotational Dynamics.pptx
 
Chapter one.pptx
Chapter one.pptxChapter one.pptx
Chapter one.pptx
 
pRO
pROpRO
pRO
 
A012620107
A012620107A012620107
A012620107
 
The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...The Interaction Forces between Two Identical Cylinders Spinning around their ...
The Interaction Forces between Two Identical Cylinders Spinning around their ...
 
A012620107
A012620107A012620107
A012620107
 
lec4.ppt
lec4.pptlec4.ppt
lec4.ppt
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
1.3428190.pdf
1.3428190.pdf1.3428190.pdf
1.3428190.pdf
 
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
PHYSICS - Rotational dynamics (MAHARASHTRA STATE BOARD)
 

Joukowsky Project_Carpenter

  • 1. Joukowsky Airfoil Study Laura Carpenter Advanced Fluid Dynamics (ME 7300) November 2, 2015
  • 2. Carpenter2 Introduction Joukowsky,aRussianmathematician,inventedamappingfunctionthatconvertsthe geometryandflow physicsof the rotatingcylinderintothe geometryand flow physics of the Joukowskyairfoil, displayedin Figure 1. Figure 1 Figure 1 shows the geometry of the Joukowsky airfoil in the (x”, y”) coordinate system. Whenworkingwithairfoilsthe goal isoftentoincrease the liftforce anddecrease the dragforce. The liftforce isthe force perpendiculartothe incomingfreestreamvelocity andthe dragforce is the force parallel tothe incomingfreestreamvelocity. Inorderto calculate the liftanddrag forcesit is necessary to knowthe velocitydistribution aroundthe airfoil. The velocitydistributioncanthenbe usedto calculate the pressure distribution,andthe pressure distributioncanbe integratedalongthe surface to calculate the force. Whenworkingwithliftanddragit iscommon to speakof the coefficientof liftand the coefficientof dragwhichare dimensionless numbers. Dimensionlessnumbersallow experimenters to conductlessexperimentswhilestudyingthe effectsof anumberof variables. Theyare alsocompact, easyto use,andcan be understoodinanycoordinate system. The thicknessandcamberof the airfoil can be adjustedtomaximizethe coefficientof lift.
  • 3. Carpenter3 The z’ Transformation and Joukowsky Transformation Two transformationsare utilizedtoconvertacircle intothe Joukowskyairfoilshape. The firstisthe z’ transformation followedbythe Joukowsky transformation. The z’transformation (Equation 2) isapplied to the equationof a circle centeredat (0, 0) inthe (x, y) plane witharadiusof 𝑎 = 1 (Equation 1). 𝑧 = 𝑎𝑒 𝑖𝜃 Equation 1 𝑧′ = 𝑧 + 𝑧 𝑐′, 𝑤ℎ𝑒𝑟𝑒 𝑧 𝑐′ = 𝑥 𝑐′+ 𝑖𝑦𝑐′ Equation 2 The z’ transformation convertsthe coordinatestothe new z’ coordinate system, changing the centerof the circle as seenin Figure 2. Figure 2 Figure 2 illustrates the conversion from the z coordinate system to the z’ coordinate system. The blue circle representsthe original circle andthe redcircle isa resultof the z’ transformationwhere 𝑥 𝑐 ′ = −0.1 and 𝑦𝑐 ′ = 0.1. The second transformationisthe Joukowsky transformationwhichcanbe expressedinthe followingway. 𝑧" = 𝑧′ + 𝑏2 𝑧′ Equation 3 The expressionforb inthe Joukowskytransformation isconveyedbelow. 𝑏 = 𝑥 𝑐 ′ + √𝑎2 − 𝑦𝑐 ′2 Equation 4 Thistransformationconvertsthe circle centeredat (xc’, yc’) inred intoanairfoil shape asshownin Figure 3.
  • 4. Carpenter4 Figure 3 Figure 3 displays the Joukowsky transformation which converts a circle into an airfoil shape. Withthe airfoil coordinatesdefineditisnow possibletocalculate the fluidvelocitiesatthe surface of the airfoil. Thisisassuminginviscidflow. Velocity Distribution The velocitycalculationbeginswithastudyof the flow pasta circular cylinderwithcirculation. The correspondingcomplex potential,w, expressionfollows. 𝑤 = 𝑧𝑈∗ + 𝑎2 𝑧 𝑈 + 𝑖Γ 2𝜋 𝑙𝑛 𝑧 𝑎 Equation 5 The complex potential forthe rotatingcircularcylinderincludesauniformstreamterm, adoubletterm, and a vortex termfor the circulationwhichisnecessaryforlift. 𝑈∗ isthe complex conjugate of the incomingfreestreamvelocity,while U issimplythe incomingfreestreamvelocity. Γisthe circulation. Γ = 4πa| 𝑈| 𝑠𝑖𝑛𝛽, 𝑤ℎ𝑒𝑟𝑒 𝛽 = 𝛼 + 𝑠𝑖𝑛−1 𝑦𝑐 ′ 𝑎 Equation 6 | 𝑈| is the magnitude of the incomingfreestreamvelocity whichis1,and 𝛼 isthe angle of attack. Upon differentiatingthe complex potentialthe x-velocity,vx, andy-velocity,vy,become apparent.
  • 5. Carpenter5 𝑑𝑤 𝑑𝑧 = 𝑣𝑥 − 𝑖𝑣 𝑦 Equation 7 Differentiatingthe complexpotential functionyields Equation 8. 𝑑𝑤 𝑑𝑧 = 𝑈∗ − 𝑎2 𝑧2 𝑈 + 𝑖Γ 2𝜋𝑧 Equation 8 Thisis the velocityaroundthe rotatingcylinder. Tocalculate the velocityaroundthe Joukowskyairfoil, the w mustbe differentiatedwithrespectthe airfoilcoordinates,z”. 𝑑𝑤 𝑑𝑧" = 𝑑𝑤 𝑑𝑧 𝑧′2 𝑧′2−𝑏2 Equation 9 Figure 4 showsthe velocityvectorplotforthe Joukowskyairfoil foranangle of attack of zero. Figure 4 Figure 4 representsthe velocity vectorsat each coordinateon the Joukowskyairfoil forangle of attack of zero. Pressure Distribution Once the velocitydistributionhasbeencalculated,the coefficientof pressure, Cp,acrossthe airfoil can be determinedfromthe followingequation,where v representsthe velocitydistribution. 𝐶 𝑝 = 1 − | 𝑣 𝑈 | 2 Equation 10
  • 6. Carpenter6 The gage pressure, 𝑃𝑔, can be calculatedusingthe coefficientof pressure. The incomingfluiddensityis 𝜌. 𝑃𝑔 = 1 2 𝜌𝑈2 𝐶 𝑝 Equation 11 The pressure isdependentonthe coordinatesbecause the coefficientof pressure isdependenton velocitywhichvariesacrossthe shape. Figure5 showsthe coefficientof pressure versus x”coordinates for angle of attack of zero. Figure 5 Figure 5 presentsthe coefficientof pressure at angle of attack of zero. The plot reveals a lower pressure on the top of the airfoil and a higher pressure on the bottom of the airfoil. Force Distribution The pressure distributioncanbe utilizedtofindthe force distribution. The force isthe gage pressure actingon the area, A,of the airfoil. 𝐹 = 𝐴𝑃𝑔 Equation 12 The differential force iscalculatedforelementsof the airfoil surfacebymultiplyingthe average pressure appliedtothe elementbythe distance it’sappliedover,assumingthe spanwise thicknessinthe z- directionisone. 𝑑𝐹𝑖𝑥 = 𝑃 𝑔𝑖+𝑃 𝑔(𝑖+1) 2 (𝑦𝑖 " − 𝑦𝑖+1 " ) Equation 13 𝑑𝐹𝑖𝑦 = 𝑃 𝑔𝑖+𝑃 𝑔(𝑖+1) 2 (𝑥𝑖+1 " − 𝑥 𝑖 " ) Equation 14 The total x-force, 𝐹𝑥,andy-force, 𝐹𝑦, are simplythe sumof the elementsof 𝑑𝐹𝑖𝑥 and 𝑑𝐹𝑖𝑦. 𝐹𝑥 = ∑ 𝑑𝐹𝑖𝑥 Equation 15
  • 7. Carpenter7 𝐹𝑦 = ∑ 𝑑𝐹𝑖𝑦 Equation 16 Coefficient of Lift To evaluate the coefficientof lift,the airfoil’sliftforce, L,mustfirstbe determined. Thisisthe force perpendiculartothe incomingfreestreamvelocity. 𝐿 = −𝐹𝑥 𝑠𝑖𝑛𝛼 + 𝐹𝑦sin( 𝜋 2 − 𝛼) Equation 17 Finallythe coefficientof lift, 𝐶 𝐿, canbe calculatedas follows,where cisthe chordlength. 𝐶 𝐿 = 𝐿 1 2 𝜌𝑈2 𝑐 Equation 18 Results Figure 6 showsthe velocitydistributionandthe coefficientof pressureforα=-10, -5, 0, 5, 10. Figure 6
  • 9. Carpenter9 Figure 6 presents the velocity distribution and the coefficient of pressure versus x” for various angles of attack. In the velocityplotforzeroangle of attack the velocityissplitaroundthe leadingedge at 𝑦” = 0. For the two negative anglesof attack (-5⁰,-10⁰) the flow issplitslightlyabove 𝑦” = 0,whileforthe two positive anglesof attack (5⁰, 10⁰) it issplitslightlybelow 𝑦” = 0. Afterthe splitthe fluidflowstangential to the airfoil shape. Forthe largermagnitude of anglesof attackthere are largervectorsat the leading edge. Inthe 10⁰ angle of attack vectorplotthe vectorsare verycloselyattachedtothe bottomsurface, showingthe fluidpushingagainstthe bottomsurface. Onthe topsurface the fluidisgoingawayfrom the surface on the leadingedge end. Thisindicatesareductionof pressure onthe topsurface. Withthe vectorspushingagainstthe surface onthe bottomand movingawayfromthe surface onthe top,the lift phenomenaispresent. In the pressure plotsthere isalowpressure onthe top of the airfoil anda higherpressure onthe bottomof the airfoil. Goingfrom 5⁰ to 10⁰ the pressure difference increases. The plotswith negative angle of attacks have an interestingpatternwhere the topsurface andbottomsurface pressures intersectsothat towardthe trailingedge the topsurface hasa higherpressure insteadof lower. At 0⁰ angle of attack the pressure difference isthe smallest. Figure 7 givesthe coefficientof liftversusangleof attackwiththe followingparameters: 𝑎 = 1, 𝑥 𝑐 ′ = −0.1, 𝑦𝑐 ′ = 0.1, | 𝑈| = 1. The coefficientof liftconvertsfromnegative topositive at around 𝛼 = −6⁰. It linearlyincreasesfrom -10⁰to 10⁰. Thus,as the angle of attack increasesthe liftingforce increases.
  • 10. Carpenter10 The maximumcoefficientof liftis 1.8763 at 10⁰. At0⁰ the value is 0.6917. The minimumvalue at -10⁰is -0.5142. Figure 7 Figure 7 expresses the coefficient of lift for a range of negative and positive angles of attack. Accordingto Figure8 the coefficientof liftincreasesasthe camberor yc ’ increases. The thicknessorxc ’ doesn’tseemtohave aneffectonthe liftvalue. If thisproblemwasconcernedwithviscousflowthe thicknesswouldhave aneffectondrag. A Joukowskyairfoil withthe followingparametershasahigher liftcoefficientthanthe original plottedJoukowskyairfoil: 𝑎 = 1, 𝑥 𝑐 ′ = −0.3, 𝑦𝑐 ′ = 0.5,| 𝑈| = 1. This airfoil isplottedin Figure9.
  • 12. Carpenter12 Figure 8 shows plots of the coefficient of lift versus the angle of attack for various xc ’ and yc ’ values. Figure 9 In Figure 9 the Joukowsky airfoil is optimized by changing the 𝑥 𝑐 ′ from -0.1 to 0.3 and the 𝑦𝑐 ′ from 0.1 to 0.5. This magnified thecamberto increase lift and enlarged the thicknessto increase structural support.
  • 13. Carpenter13 Thisnewairfoil designhasanincreasedcamberandthicknesscomparedtothe Joukowskyairfoil in Figure 3.4.3 of AdvanceFluid Mechanics by W.P.Graebel. The new airfoil providesmore liftasseenin Figure 10. Figure 10 Figure 10 shows the coefficient of lift for the original Joukowsky airfoil with xc ’ =-0.1 and yc ’ =0.1 and the coefficient of lift for the optimized airfoil with xc ’ =-0.3 and yc ’ =0.5. Conclusion To conclude,the Joukowskyairfoil shapewasformedbycompletingthe z’ transformationandthe Joukowskytransformation. The complex potential of the rotatingcylinderwasdifferentiatedwith respectto the Joukowskycoordinatesinordertofindthe velocityaroundthe airfoil. Then,the equation for the coefficientof pressure wasusedtoobtainthe correspondingpressures. Finally,the pressures were integratedoverthe areaof the airfoil tofindthe forcesandultimatelythe liftforce. Withthe lift force,density,freestreamvelocity,andchordlengththe liftcoefficientwascalculated. The liftcoefficientlineincreasedwhenthe camberof the airfoil was increasedbyenlargingthe yc ’ value. The thicknessterm, xc,’ didn’thave mucheffectonthe lift. Bychangingthe parametersfrom xc ’ =-0.1 and yc ’ =0.1 to xc ’ =-0.3 and yc ’ =0.5 the liftcoefficientof the Joukowskyairfoil wasincreased.
  • 14. Carpenter14 MATLAB Code Part1. function [CL] = lift_coefficient2( xc1,yc1,alpha ) %UNTITLED2 Summary of this function goes here % Detailed explanation goes here a=1; U=1; rho=1000; chord=3.6312; b=xc1+sqrt(a^2-yc1^2); Beta=alpha+asin(yc1/a); Circulation=4*pi()*a*U*sin(Beta); Uconj=U*exp(-i*alpha); UU=U*exp(i*alpha); zc1=xc1+yc1*i; theta=linspace(0,2*pi(),100); theta=theta(:); z=a*exp(i*theta); x=real(z); y=imag(z); figure(); plot(x,y); xlabel('x'); ylabel('y'); title('Circle'); grid('on'); Circle=[x y]; xlswrite('Circle',Circle); z1=z+zc1; x1=real(z1); y1=imag(z1); figure(); plot(x1,y1); xlabel('x1'); ylabel('y1'); title('Circle with Center (xc1,yc1)'); grid('on'); Circle2=[x1 y1];
  • 15. Carpenter15 xlswrite('Circle2',Circle2); z2=z1+(b^2./z1); x2=real(z2); y2=imag(z2); figure(); plot(x2,y2); axis([-2,2,-1,2]); xlabel('x"'); ylabel('y"'); title('Optimal Joukowsky Airfoil Shape'); grid('on'); Joukowsky=[x2 y2]; xlswrite('Joukowsky2',Joukowsky); dwdz=Uconj-(UU./z.^2)+((i*Circulation)./(2*pi()*z)); dwdz2=dwdz.*(z1.^2./(z1.^2-b^2)); vx=real(dwdz2); vy=-imag(dwdz2); v=[x2 y2 vx vy]; xlswrite('vectorplot',v); v2=sqrt(vx.^2+vy.^2); Cp=(1-(abs(v2/U)).^2); figure(); plot(x2,Cp); xlabel('x2'); ylabel('Cp'); title('Coefficient of Pressure'); grid('on'); PP=.5*rho*UU^2*Cp; figure(); plot(x2,PP); xlabel('x2'); ylabel('PP'); title('Pressure Distribution');
  • 17. Carpenter17 liftcoeffs(k,1)=coeff end a1=plot(alphad,liftcoeffs,'r'); M1='x_c^''=-0.1, y_c^''=0.1' xlabel('alpha (degrees)') ylabel('CL') title('Coefficient of Lift vs Angle of Attack') grid('on') axis([-12,12,-1,5]) hold on for k=1:21 al=alpha(k,1); coeff=lift_coefficient2(-0.3,0.5,al) liftcoeffs(k,1)=coeff end a2=plot(alphad,liftcoeffs,'k'); M2='x_c^''=-0.3, y_c^''=0.5' legend([a1; a2], [M1; M2],'Location','SouthEast');