Page 1
Tolerance stackup
analysis
Winson Mao
August 22, 2012
Page 2
Tolerance stackup analysis
Performed to determine the variation of a single untoleranced
dimension or distance on a component or in an assembly.
Page 3
Tolerancing
Page 4
Methods
Arithmetic method
Worst case method (WC)
Statistical method
Root sum square method (RSS)
Modified root sum square method (MRSS)
Six sigma method (6S)
Page 5
Formulas
WC RSS MRSS 6S
Mean
dimension
Standard
deviation
N/A
Bilateral
tolerance
Close
dimension
∑∑ =
−
=
−=
n
ki
i
k
i
i µµµ
1
1
∑=
=
n
i
iTTWC
1
WCTD ±= µ
∑∑ =
−
=
−=
n
ki
i
k
i
i µµµ
1
1
∑∑ =
−
=
−=
n
ki
i
k
i
i µµµ
1
1
σ3=RSST
RSSTD ±= µ
CT f
MRSS ×= σ3
MRSSTD ±= µ
∑∑ =
−
=
−=
n
ki
i
k
i
i µµµ
1
1
∑=
=
n
i
Ti
1
2
)
3
(σ
σ×= aT t eS6
TD S6
±= µ
∑ 





=
=
n
i
Ti
1
2
3
σ ∑ 







=
=
n
i
e
C
T
pki
i
1
2
3
σ
Page 6
Process capability
σ6
LSLUSL
Cp
−
= ( )CCC puplpk
,min=
σ
µ
3
LSL
Cpl
−
=
σ
µ
3
−
=
USL
Cpu
where
,
,
Page 7
Coefficients
( )
( ) 1
1
5.0
+
−
−
=
nT
TTC
RSS
RSSWC
f
• MRSS coefficient,
• Limit size coefficient,
Cf
6~3=at
at
Page 8
Coefficients
( )
( ) 1
1
5.0
+
−
−
=
nT
TTC
RSS
RSSWC
f
• MRSS coefficient,
• Limit size coefficient,
Cf
6~3=at
at
Limit sizes Process yield
(%)
Number of
rejects per
million
component
produced
µ±1σ 68.2 317310
µ±2σ 95.4 45500
µ±3σ 99.73 2700
µ±3.5σ 99.95 465
µ±4σ 99.994 63
µ±4.5σ 99.9993 6.8
µ±5σ 99.99994 0.6
µ±6σ 99.9999998 0.002
Page 9
Arithmetic vs. statistical
• Number of tolerances in the tolerance stackup.
• The quantity of parts to be manufactures.
• Manufacturing process controls.
• Past company practices.
• Willingness to accept risk.
Page 10
Step-by-step procedure
Equal bilateral
tolerancing
Define direction
of dimensions
Ite
m
+
Dim
-
Dim
Tol
1 30 ±0.2
2 45.5 ±0.5
3 13.5 ±0.5
Total 45.5 43.5 ±1.2
25.435.45 =−=µ 2.1±=Tol
Fill in table

ToleranceStackup

  • 1.
  • 2.
    Page 2 Tolerance stackupanalysis Performed to determine the variation of a single untoleranced dimension or distance on a component or in an assembly.
  • 3.
  • 4.
    Page 4 Methods Arithmetic method Worstcase method (WC) Statistical method Root sum square method (RSS) Modified root sum square method (MRSS) Six sigma method (6S)
  • 5.
    Page 5 Formulas WC RSSMRSS 6S Mean dimension Standard deviation N/A Bilateral tolerance Close dimension ∑∑ = − = −= n ki i k i i µµµ 1 1 ∑= = n i iTTWC 1 WCTD ±= µ ∑∑ = − = −= n ki i k i i µµµ 1 1 ∑∑ = − = −= n ki i k i i µµµ 1 1 σ3=RSST RSSTD ±= µ CT f MRSS ×= σ3 MRSSTD ±= µ ∑∑ = − = −= n ki i k i i µµµ 1 1 ∑= = n i Ti 1 2 ) 3 (σ σ×= aT t eS6 TD S6 ±= µ ∑       = = n i Ti 1 2 3 σ ∑         = = n i e C T pki i 1 2 3 σ
  • 6.
    Page 6 Process capability σ6 LSLUSL Cp − =( )CCC puplpk ,min= σ µ 3 LSL Cpl − = σ µ 3 − = USL Cpu where , ,
  • 7.
    Page 7 Coefficients ( ) () 1 1 5.0 + − − = nT TTC RSS RSSWC f • MRSS coefficient, • Limit size coefficient, Cf 6~3=at at
  • 8.
    Page 8 Coefficients ( ) () 1 1 5.0 + − − = nT TTC RSS RSSWC f • MRSS coefficient, • Limit size coefficient, Cf 6~3=at at Limit sizes Process yield (%) Number of rejects per million component produced µ±1σ 68.2 317310 µ±2σ 95.4 45500 µ±3σ 99.73 2700 µ±3.5σ 99.95 465 µ±4σ 99.994 63 µ±4.5σ 99.9993 6.8 µ±5σ 99.99994 0.6 µ±6σ 99.9999998 0.002
  • 9.
    Page 9 Arithmetic vs.statistical • Number of tolerances in the tolerance stackup. • The quantity of parts to be manufactures. • Manufacturing process controls. • Past company practices. • Willingness to accept risk.
  • 10.
    Page 10 Step-by-step procedure Equalbilateral tolerancing Define direction of dimensions Ite m + Dim - Dim Tol 1 30 ±0.2 2 45.5 ±0.5 3 13.5 ±0.5 Total 45.5 43.5 ±1.2 25.435.45 =−=µ 2.1±=Tol Fill in table