SlideShare a Scribd company logo
IPVS – Institute for Parallel and Distributed Systems
Analytic Computing
Symbolic Background Knowledge
for Machine Learning
Steffen Staab
https://www.ipvs.uni-stuttgart.de/departments/ac/
With slides contributed by
Alexandra Baier, Luis Chamon, Tim Schneider, Bo Xiong, Thomas Monninger
• What is machine learning?
• Why (symbolic) background knowledge in machine learning?
• Which background knowledge?
• In which applications?
• How to apply in machine learning?
•A broad range of methods
for applying background knowledge in ML
So, background knowledge helps, but....
Classification: predict discrete label for given examples
• Given a news article, assign a topic
Regression: predict continuous value for given examples
• Given meteorological conditions today, predict temperature tomorrow
Sequence Prediction: predict sequence for given sequence
• Given text, identify all noun phrases in the text
Supervised Learning
Machine Learning
Model
lore ipsum
dolores
lore ipsum
lore ipsum
dolores
lore ipsum
dolores
lore ipsum
Politics Culture Lifestyle Sports
0
From KnowGraphs Winter School 2021
Unsupervised Learning
Clustering: summarize similar examples in clusters
• Given articles, form k clusters of most similar articles
Visualization and Dimensionality reduction: map high-
dimensional data into lower-dimensional space
• Map documents in d-dimensional space
such that similar documents are close
Rule Mining: learn general rules from data
• Given gene network, find rules about frequent relationships
Machine Learning
Model
lore ipsum
dolores
lore ipsum
lore ipsum
dolores
lore ipsum
dolores
lore ipsum
From KnowGraphs Winter School 2021
Supervised vs. Unsupervised
Many supervised methods now include some form of unsupervised learning:
• Word embedding layers: can encode interesting linguistic patterns
• Convolutional layers: can encode interesting visual or sequential patterns
From KnowGraphs Winter School 2021
One but last layer
encodes learned
features:
• embeddings
• implicit, re-usable,
non-symbolic
background knowledge
Parameters 𝜽
Loss-based Machine Learning
• Define loss function that evaluates errors of a model wrt training data:
• Training data: 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁
, 𝑥𝑛 ∈ ℝ𝑑, 𝑦𝑛 ∈ ℝ
• Adjust model parameters 𝜃 to minimize empirical risk
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Machine Learning
Model 𝑓𝜽
Data
{(𝑥𝑛, 𝑦𝑛)}
Output 𝑓𝜽 𝒙𝒏
From KnowGraphs Winter School 2021
Training 𝑓𝜽: Gradient-Based Adaptation of 𝜽
Minimize 𝒏=𝟏
𝑵
𝐋𝐨𝐬𝐬 𝒇𝜽 𝒙𝒏 , 𝒚𝒏 locally:
1. initialize parameters 𝜃 randomly,
2. change parameters 𝜃 in the direction
of the negative gradient,
3. repeat until a local minimum is reached
• Training data: 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁
, 𝑥𝑛 ∈ ℝ, 𝑦𝑛 ∈ ℝ
• Linear function: 𝑓𝜃(x) = 𝜃1𝑥 + 𝜃0
• Loss function
𝐿𝑜𝑠𝑠 𝑦, 𝑦 = 𝑦 − 𝑦 2
• Minimization of
empirical risk:
min
𝜽
1
𝑁 𝑛=1
𝑁
𝑓𝜽 𝒙𝑛 − 𝑦𝑛
2
12.03.2023 8
Example: Linear Regression
Why (Symbolic)
Background Knowledge?
Slid
e 9
Classify unseen data
Zero shot learning
No training data about unicorns
Background knowledge
Unicorn is a horse with a horn
Classify unseen data
Few shot learning
one/few training examples
Sparse data
General differential equation for water flux
𝜕𝑢
𝜕𝑡
= 𝐷(𝑢)
𝜕2𝑢
𝜕𝑥2
− 𝑣(𝑢)
𝜕𝑢
𝜕𝑥
+ 𝑞(𝑢)
Approximate for all finite volumes 𝑖.
Flux kernel ℱ𝑖
ℱ𝑖 = 𝑗=1
𝑁𝑠𝑖
𝑓𝑗 ≈ ∮ 𝜔⊆Ω 𝐷(𝑢)
𝜕2
𝑢
𝜕𝑥2
− 𝑣(𝑢)
𝜕𝑢
𝜕𝑥
⋅ 𝑛𝑑Γ
Simulation: numerically solve for all ℱ𝑖
exchange with neighbors given boundary
conditions
ML alternative (Karlbauer et al 2022):
1. learn behavior of finite volumes
2. interleave with numerical solving
Learning physics
Picture (cc) by Shu, L., Ullrich, P. A., Duffy, C. J. (2020)
in Geosci. Model Dev.:
https://gmd.copernicus.org/articles/13/2743/2020/
ML alternative (Karlbauer et al 2022):
1. learn behavior of finite volumes
2. interleave with numerical solving
Background knowledge:
• water does not appear or disappear
• sum of amount of water is constant
• energy must be constant
• water cannot rise arbitrarily
• bedrock does not allow entry of water
• ...
Learning physics
Picture (cc) by Shu, L., Ullrich, P. A., Duffy, C. J. (2020) in Geosci. Model Dev.:
https://gmd.copernicus.org/articles/13/2743/2020/#&gid=1&pid=1
Given
• Perception
• Tracked dynamic agents
• Background knowledge
High definition map
• Lane topology
• Infrastructure
• Semantic information
• Predict: Intention of others, sensing mistakes
Traffic Scene Understanding
13
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 14
Knowledge Representations in Informed ML
(von Rueden et al 2021)
We will look at
several of them
and some others
Pre-trained non-
symbolic models
are missing here
12.03.2023 15
Influencing ML by Empirical Risk Minimization
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Given training data 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1
𝑁
, 𝑥𝑛 ∈ ℝ𝑑
, 𝑦𝑛 ∈ ℝ
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Specific algorithms often modify several elements at once
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 16
A pipeline view of the same consideration
(von Rueden et al 2021)
Knowledge-informed
Data Modification
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 17
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Slide 18
Text Clustering
Clustering
Similarity
Measure
Document Representation
Background
Knowledge
Explanation
(Hotho, Staab, Stumme 2003a;2003b)
Slid
e
Ontology-based representation
2
1
1
1
2
1
1
1
..
.
Oman
granted
term
crude
oil
lipid
compound
customer
retroactive
discount
...
2
1
1
1
2
2
2
1
1
1
..
.
Cosinus as similarity metrics
Oman
has
granted
term
crude
oil
customers
retroactive
discounts
...
2
1
1
1
1
2
1
1
1
..
.
Oman
granted
term
crude
oil
customer
retroactive
discount
...
1 2 3
(Hotho, Staab, Stumme 2003a;2003b)
Slide 20
WordNet as ontology
144684 lexical
entries
Root
entity
something
physical object
artifact
substance
chemical
compound
organic
compound
lipid
oil
EN:oil
covering
coating
paint
oil paint
cover
cover with oil
bless
oil, anoint
EN:anoint EN:inunct
109377 Concepts
(synsets)
oil color
crude oil
(Hotho, Staab, Stumme 2003a;2003b)
• Kernel methods as data augmentation
• 𝑥 ↦ 𝑥2, 𝑥, 1 = 𝑥′
• Linear regression: 𝑓𝜃 𝑥 = 𝜃1𝑥1 + 𝜃0 = 𝜃𝑥
• Quadratic regression: 𝑓𝜃′ 𝑥′ = 𝜃1
′
𝑥2 + 𝜃1
′
𝑥 + 𝜃0
′
= 𝜃0
′
𝑥′
• Kernel trick in many methods (e.g. SVMs)
• explicit data augmentation not required, but built into loss function
• kernel defines similarity between data points
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 21
Kernel Methods (Bloehdorn & Hotho 2004; 2009)
Knowledge-informed
Loss Definition
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 22
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
TBox statements can be normalized into:
1. concept subsumption: 𝐶 ⊑ 𝐷,
2. concept intersection: 𝐶1 ⊓ 𝐶2 ⊑ 𝐷,
3. right existential: ∃𝑟. 𝐶1 ⊑ 𝐷,
4. left existential: 𝐶1 ⊑ ∃𝑟. 𝐶2,
EL++ Knowledge Bases
23
Baader, F., Brandt, S., & Lutz, C. Pushing the EL envelope. In IJCAI 2005.
ABox contains:
1. concept assertion: C(a)
2. role assertion: r(a,b)
• EL++ is a lightweight description logic that
• balances expressive power and reasoning complexity (polynomial)
• is applied for large-scale ontologies, e.g. Gene Ontology
Box EL++ Embedding
2
4
• designing one loss term for each logical statement
• such that the KB is satisfiable when the loss is 0 (a.k.a. soundness)
• satisfiability implies that there is a geometric interpretation satisfying all
logical statements
Idea: mapping logical constraints to geometric (soft) constraints
Solution: finding a geometric interpretation for each statement
Geometric Interpretations of ABox
2
5
Concept assertion 𝐶(𝑎)
𝑎
𝐶
r(𝑎, 𝑏)
𝑇𝑟
𝑏
𝑎
Role assertion
Geometric membership
Affine transformation
between two points
Geometric Interpretations of TBox
2
6
Box affine
transformation
Box entailment Box intersection
Box disjointedness
Toy Family Example
2
7
• Super important and successful class of ML methods for
supporting scientific problem solving
• 3 pages, short easy read:
• Chris Edwards. 2022. Neural networks learn to speed up simulations.
Commun. ACM 65, 5 (May 2022), 27–29. https://doi.org/10.1145/3524015
• A bit longer:
• Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and
Yang, L., ”Physics-informed machine learning,” in: Nature Reviews
Physics, 3(6), 2021, pp.422-440.
• I skip it now for lack of time
28
Physics-informed Neural Networks
Knowledge-informed
Inductive Biases
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 29
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Geometric Biases
Structured Multilabel Prediction
3
0
• Structured multilabel prediction
• assigns every instance multiple labels
• Labels are constrained by some background knowledge
• Question: can we produce predictions that are logically consistent with
structured background knowledge?
Structured background knowledge
3
1
• Labels are organized in taxonomies/hierarchies/ontologies
• 2 kinds of logical constraints
• implication: rdfs:subclassOf
• exclusion: owl:disjointFrom
WordNet Biomedical ontologies
Plant
Person
Mother
Father
Issues
• Mother classifier misclassifies
people (solvable with kernel trick)
• Boundaries are unrelated
32
Try support vector machines
Women Girl
Person
Parent
Mother
Implication Exclusion
Plant
Tree
Father
Inductive bias in Poincaré hyperbolic space
3
3
• Each label is associated with a region contained by Poincaré hyperplane
• Instances are points inside the region
• Logical constraints of labels are transformed into
geometric soft constraints of the corresponding label regions
Women Girl
Person
Parent
Mother
Implication Exclusion
Plant
Tree
Father
Geometric Interpretation
3
4
Implication / rdfs:subclassOf is geometrically interpreted as
the subject region being inside the object region
Classification
3
6
• Classification is interpreted as membership & non-membership
• Final classifier
Learning with geometric soft constraints
3
7
• Problem formulation: constraint optimization
• Learning under geometric soft constraints
Knowledge-informed
Inductive Biases
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 38
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Mapping full to limited
learning capacity
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 39
Use case: Multi-step prediction of trajectory prediction
Critical issues
Does the neural network make
catastrophic predictions
on unseen data?
• 𝑓𝜽 = 𝑔𝜃1
∘ σ ∘ MLP𝜃2
• MLP𝜃2
: ℝ𝑑1 → ℝ𝑑2
• arbitrary mapping from input to output
• full learning capacity
• σ
• component-wise sigmoid
• bounds output of MLP𝜃2
• 𝑔𝜃1
• predicting with background restrictions
Pattern: From full capacity to constrained learning
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Linear system
𝒙𝑡 = 𝑨𝒙𝑡−1 + 𝑩𝒖𝑡
Next system state 𝒙𝑡
(e.g. velocity of ship)
depends linearly
on previous state 𝒙𝑡−1
and control 𝒖𝑡 (e.g. force)
Switched linear system
𝒙𝑡 = 𝑨𝜎(𝑡)𝒙𝑡−1 + 𝑩𝜎(𝑡)𝒖𝑡
𝜎(𝑡) chooses between
different matrices 𝑨𝜎(𝑡), 𝑩𝜎(𝑡)
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 41
System identification
ReLiNet: Stable and Explainable Multistep Prediction
LSTM
ut
+
xt ut
Bt
At xt+1
W(A)
W(B)
ht
ut ht xt W(.)
Legend:
control
input
hidden
state
output
hidden state
to predicted matrix
1. LSTM predicts a linear model
at each time step
2. Prediction only depends
on linear models
→ Inherently explainable
3. ReLiNet is a
Switched Linear System
→ Stability guarantees
with simple constraints
(Baier et al 2023)
Explaining Predictions
Contribution of past
inputs to prediction
Explanation allows faithful
reconstruction of prediction
Ft,d = Feature weight
at time t for output d
ut = Input at time t
• 𝑓𝜽 = 𝑔𝜃1
∘ σ ∘ MLP𝜃2
• MLP𝜃2
: ℝ𝑑1 → ℝ𝑑2
• arbitrary mapping from input to output
• full learning capacity, maps entities and concepts
• σ
• component-wise sigmoid
• bounds output of MLP𝜃2
• 𝑔𝜃1
• encodes background restrictions
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 44
Falcon applying the pattern
(Tang et al 2023)
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
Input ALC A-Box and T-Box
1. ℝ𝑑 is the domain of interpretations
2. 𝑓𝑒 is learned to interpret concept, relation and object
names as elements of ℝ𝑑
3. E.g. Check whether an object belongs to a class by 𝑚:
𝑚 𝑥, 𝐶ℐ = 𝜎(𝑀𝐿𝑃 𝑓𝑒 𝐶 , 𝑓𝑒 𝑥 )
4. Exemplary part of the loss function: 𝐸 is sampled from ℝ𝑑
ℒ𝒯 =
1
|𝐸|
1
|𝒯| 𝐶⊑𝐷∈𝒯 𝑒∈𝐸 𝑚 𝑒, (𝐶 ⊓ ¬𝐷)ℐ
12.03.2023 45
Falcon: Faithful Neural Semantic Entailment over
𝓐𝓛𝓒 Ontologies
Knowledge-informed
Optimization
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 46
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
12.03.2023
Slide by Luis Chamon 47
From loss regularization to hard constraints
12.03.2023
Slide by Luis Chamon 48
Penalty-based vs. Dual Learning
12.03.2023
Slide by Luis Chamon 49
Learning under hard constraints in practice
Knowledge-informed Machine
Learning
to Extend Scientific Knowledge
Source: generated by Tim Schneider using Stable Diffusion AI
Use Case: Environmental Science
sorption
sorptive
concentration c
(mg/L)
background
knowledge
sorbate
concentration s
(mg/Kg)
Output
Input
Knowledge-informed Machine Learning to
Extend Scientific Knowledge
Algebraic
Equations /
Analytical
Forms
Bayesian
Machine
Scientist
Training Data
Domain Knowledge
- class of expressions
- symmetries
- …
1
2
Research Questions:
„How to represent (RQ1)
and automatically exploit
(RQ2) scientific knowledge
for inference?“
RQ1
RQ2
e.g.
symbolic structure and
continous parameters
How to represent and exploit the knowledge?
Representation (RQ1)
1
How likely does explored
solution conform to the
knowledge?
Scientific Domain
Knowledge
Probabilistic Regular
Tree Expression
(pRTE)
2
Factor Graph
3
Build a probabilistic
finite state machine
Exploitation (RQ2)
4
(Prior) Probabilies to
perform Bayesian
Inference (MCMC)
Evaluation
sorption
sorptive
concentration c
(mg/L)
background
knowledge
sorbate
concentration s
(mg/Kg)
Relational Graph
Neural Networks
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 55
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 56
Ontology of graph neural network for traffic scene
understanding (Schmidt et al 2023)
Message passing in graph neural networks
• Every instantiated node is randomly initialized with a vector
• Every instantiated node sends his vector to his neighbors
• Every instantiated node learns how to aggregate neighbor information
• Parameter sharing over same node types and edge types
57
Car 1
Car 2
Car 3
Lane B
Lane A
Stop
7
Limitations
and
Outlook
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 58
• Approaches often modify
several aspects
• The focus of my presentation was on work that was done at
Analytic Computing@University of Stuttgart
• For practical reasons:
• not doing comprehensive literature study
• but our papers point to other papers
• Existing research on knowledge-informed ML goes much
beyond this
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 59
Limitations
min
𝜽
1
𝑁
𝑛=1
𝑁
Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
• From knowledge-informed to knowledge discovery
• From interpolation to extrapolation
• including few and zero-shot learning
• From implicit knowledge to explicit knowledge
• including self-learning
• including prototypical knowledge
• From classification to non-standard queries
• similarity
• analogy
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 60
Outlook on Knowledge-informed ML
Thank you!
E-Mail
Telefon +49 (0) 711 685-
www.
Universität Stuttgart
IPVS
Universitätsstraße 32, 50569 Stuttgart
Steffen Staab
To be defined
ipvs.uni-stuttgart.de/departments/ac/
Analytic Computing, IPVS
Steffen.staab@ipvs.uni-stuttgart.de
My thanks and acknowledgements to all my collaborators
within and beyond Analytic Computing, within and beyond
EXC Simtech in particular:
Alexandra Baier, Daniel Frank, Cosimo Gregucci, Daniel
Hernandez, Wolfgang Nowak, Nico Potyka, Tim
Schneider, Amin Totounferoush, Bo Xiong, Thomas
Monninger, Julian Schmidt, and many more
References
Surveys
• Hu, Y., Chapman, A., Wen, G. and Hall, D.W., ”What Can Knowledge Bring
to Machine Learning? A Survey of Lowshot Learning for Structured Data,”
in ACM Transactions on Intelligent Systems and Technology (TIST), 13(3),
2021, pp.1-45.
• von Rueden, Laura, et al. ”Informed Machine Learning-A Taxonomy and
Survey of Integrating Prior Knowledge into Learning Systems.” IEEE
Transactions on Knowledge and Data Engineering (2021).
Factual knowledge
• J. Schmidt, T. Monninger, J. Rupprecht, D. Raba, J. Jordan, D. Frank, S.
Staab, K. Dietmayer. SCENE: Reasoning about Traffic Scenes using
Heterogeneous Graph Neural Networks. In: IEEE Robotics and Automation
Letters, 8(3), 2023.
References: Physics-informed Neural Networks
• Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and
Yang, L., ”Physics-informed machine learning,” in: Nature Reviews
Physics, 3(6), 2021, pp.422-440.
• Chris Edwards. 2022. Neural networks learn to speed up simulations.
Commun. ACM 65, 5 (May 2022), 27–29.
https://doi.org/10.1145/3524015
• Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey
Oladyshkin, Wolfgang Nowak, Martin V. Butz: Composing Partial
Differential Equations with Physics-Aware Neural Networks. ICML 2022:
10773-10801
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 63
References: Inductive Biases
• A. Baier, D. Aspandi-Latif, S. Staab. ReLiNet: Stable and Explainable Multistep Prediction with
Recurrent Linear Parameter Varying Networks. Unpublished/submitted 2023.
• Zhenwei Tang, Tilman Hinnerichs, Xi Peng, Xiangliang Zhang, Robert Hoehndorf. FALCON: Faithful
Neural Semantic Entailment over ALC Ontologies. https://arxiv.org/abs/2208.07628
Geometric inductive biases
• B. Xiong, S. Zhu, M. Nayyeri, C. Xu, S. Pan, C. Zhou, S. Staab. Ultrahyperbolic Knowledge Graph
Embeddings. In: Proc. Of KDD ’22 – The 28th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. East Lansing, MI, USA, August 14-18, 2022.
• B. Xiong, N. Potyka, T.-K. Tran, M. Nayyeri, S. Staab. Faithful Embeddings for EL++ Knowledge
Bases. In: 21st International Semantic Web Conference (ISWC2022), (virtual event) Nov, 2022,
Springer 2022.
• B. Xiong, S. Zhu, N. Potyka, S. Pan, C. Zhou, S. Staab. Pseudo-Riemannian Graph Convolutional
Networks. In: Proc of 36th Conference on Neural Information Processing Systems (NeuRIPS2022),
Nov 28-Dec 9, 2022.
• B. Xiong, M. Cochez, M. Nayyeri, S. Staab. Hyperbolic Embedding Inference for Structured Multi-Label
Prediction. In: Proc of 36th Conference on Neural Information Processing Systems (NeuRIPS2022),
Nov 28-Dec 9, 2022.
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 64
References
Data augmentation
• A. Hotho, S. Staab, G. Stumme. Ontologies Improve Text Document Clustering. Proceedings of the
International Conference on Data Mining – ICDM-2003. IEEE Press, 2003a.
• A. Hotho, S. Staab, G. Stumme. Explaining Text Clustering Results using Semantic Structures. In
Principles of Data Mining and Knowledge Discovery, 7th European Conference, PKDD 2003,
Dubrovnik, Croatia, September 22-26, 2003b.
• Stephan Bloehdorn, Andreas Hotho: Text Classification by Boosting Weak Learners based on Terms
and Concepts. ICDM 2004: 331-334
• Stephan Bloehdorn, Andreas Hotho: Ontologies for Machine Learning. Handbook on Ontologies 2009:
637-661
Optimization
• T. Schneider, A. Totounferoush, W. Nowak, S. Staab. Probabilistic Regular Tree Priors for Scientific
Symbolic Reasoning. Unpublished/submitted 2023. (grammar-induced optimization)
• L. F. O. Chamon, S. Paternain, M. Calvo-Fullana and A. Ribeiro, "Constrained Learning With Non-
Convex Losses," in IEEE Transactions on Information Theory, vol. 69, no. 3, pp. 1739-1760, March
2023, doi: 10.1109/TIT.2022.3187948.
12.03.2023
Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 65

More Related Content

Similar to Symbolic Background Knowledge for Machine Learning

Workshop nwav 47 - LVS - Tool for Quantitative Data Analysis
Workshop nwav 47 - LVS - Tool for Quantitative Data AnalysisWorkshop nwav 47 - LVS - Tool for Quantitative Data Analysis
Workshop nwav 47 - LVS - Tool for Quantitative Data Analysis
Olga Scrivner
 
Camp IT: Making the World More Efficient Using AI & Machine Learning
Camp IT: Making the World More Efficient Using AI & Machine LearningCamp IT: Making the World More Efficient Using AI & Machine Learning
Camp IT: Making the World More Efficient Using AI & Machine Learning
Krzysztof Kowalczyk
 
COM623M1.doc.doc
COM623M1.doc.docCOM623M1.doc.doc
COM623M1.doc.docbutest
 
COM623M1.doc.doc
COM623M1.doc.docCOM623M1.doc.doc
COM623M1.doc.docbutest
 
Lecture-2 Applied ML .pptx
Lecture-2 Applied ML .pptxLecture-2 Applied ML .pptx
Lecture-2 Applied ML .pptx
ZainULABIDIN496386
 
Deep learning Tutorial - Part II
Deep learning Tutorial - Part IIDeep learning Tutorial - Part II
Deep learning Tutorial - Part II
QuantUniversity
 
Lecture_2_Deep_Learning_Overview (1).pptx
Lecture_2_Deep_Learning_Overview (1).pptxLecture_2_Deep_Learning_Overview (1).pptx
Lecture_2_Deep_Learning_Overview (1).pptx
gamajima2023
 
Learning to Rank with Neural Networks
Learning to Rank with Neural NetworksLearning to Rank with Neural Networks
Learning to Rank with Neural Networks
Bhaskar Mitra
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatisticshydrologyproject0
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatisticshydrologyproject001
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatisticshydrologyproject0
 
Mat189: Cluster Analysis with NBA Sports Data
Mat189: Cluster Analysis with NBA Sports DataMat189: Cluster Analysis with NBA Sports Data
Mat189: Cluster Analysis with NBA Sports Data
KathleneNgo
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
Balázs Hidasi
 
Chapter10.pptx
Chapter10.pptxChapter10.pptx
Chapter10.pptx
adnansbp
 
Computer Design Concepts for Machine Learning
Computer Design Concepts for Machine LearningComputer Design Concepts for Machine Learning
Computer Design Concepts for Machine Learning
Facultad de Informática UCM
 
Current clustering techniques
Current clustering techniquesCurrent clustering techniques
Current clustering techniques
Poonam Kshirsagar
 
Lecture_2_Deep_Learning_Overview.pptx
Lecture_2_Deep_Learning_Overview.pptxLecture_2_Deep_Learning_Overview.pptx
Lecture_2_Deep_Learning_Overview.pptx
joaosuda
 
Lecture_2_Deep_Learning_Overview-newone1
Lecture_2_Deep_Learning_Overview-newone1Lecture_2_Deep_Learning_Overview-newone1
Lecture_2_Deep_Learning_Overview-newone1
ranjankumarbehera14
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
Julien SIMON
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
Felipe Prado
 

Similar to Symbolic Background Knowledge for Machine Learning (20)

Workshop nwav 47 - LVS - Tool for Quantitative Data Analysis
Workshop nwav 47 - LVS - Tool for Quantitative Data AnalysisWorkshop nwav 47 - LVS - Tool for Quantitative Data Analysis
Workshop nwav 47 - LVS - Tool for Quantitative Data Analysis
 
Camp IT: Making the World More Efficient Using AI & Machine Learning
Camp IT: Making the World More Efficient Using AI & Machine LearningCamp IT: Making the World More Efficient Using AI & Machine Learning
Camp IT: Making the World More Efficient Using AI & Machine Learning
 
COM623M1.doc.doc
COM623M1.doc.docCOM623M1.doc.doc
COM623M1.doc.doc
 
COM623M1.doc.doc
COM623M1.doc.docCOM623M1.doc.doc
COM623M1.doc.doc
 
Lecture-2 Applied ML .pptx
Lecture-2 Applied ML .pptxLecture-2 Applied ML .pptx
Lecture-2 Applied ML .pptx
 
Deep learning Tutorial - Part II
Deep learning Tutorial - Part IIDeep learning Tutorial - Part II
Deep learning Tutorial - Part II
 
Lecture_2_Deep_Learning_Overview (1).pptx
Lecture_2_Deep_Learning_Overview (1).pptxLecture_2_Deep_Learning_Overview (1).pptx
Lecture_2_Deep_Learning_Overview (1).pptx
 
Learning to Rank with Neural Networks
Learning to Rank with Neural NetworksLearning to Rank with Neural Networks
Learning to Rank with Neural Networks
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatistics
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatistics
 
Download-manuals-surface water-software-47basicstatistics
 Download-manuals-surface water-software-47basicstatistics Download-manuals-surface water-software-47basicstatistics
Download-manuals-surface water-software-47basicstatistics
 
Mat189: Cluster Analysis with NBA Sports Data
Mat189: Cluster Analysis with NBA Sports DataMat189: Cluster Analysis with NBA Sports Data
Mat189: Cluster Analysis with NBA Sports Data
 
Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017Deep Learning in Recommender Systems - RecSys Summer School 2017
Deep Learning in Recommender Systems - RecSys Summer School 2017
 
Chapter10.pptx
Chapter10.pptxChapter10.pptx
Chapter10.pptx
 
Computer Design Concepts for Machine Learning
Computer Design Concepts for Machine LearningComputer Design Concepts for Machine Learning
Computer Design Concepts for Machine Learning
 
Current clustering techniques
Current clustering techniquesCurrent clustering techniques
Current clustering techniques
 
Lecture_2_Deep_Learning_Overview.pptx
Lecture_2_Deep_Learning_Overview.pptxLecture_2_Deep_Learning_Overview.pptx
Lecture_2_Deep_Learning_Overview.pptx
 
Lecture_2_Deep_Learning_Overview-newone1
Lecture_2_Deep_Learning_Overview-newone1Lecture_2_Deep_Learning_Overview-newone1
Lecture_2_Deep_Learning_Overview-newone1
 
Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)Deep Learning: concepts and use cases (October 2018)
Deep Learning: concepts and use cases (October 2018)
 
DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101DEF CON 24 - Clarence Chio - machine duping 101
DEF CON 24 - Clarence Chio - machine duping 101
 

More from Steffen Staab

Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Steffen Staab
 
Knowledge graphs for knowing more and knowing for sure
Knowledge graphs for knowing more and knowing for sureKnowledge graphs for knowing more and knowing for sure
Knowledge graphs for knowing more and knowing for sure
Steffen Staab
 
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
Steffen Staab
 
Web Futures: Inclusive, Intelligent, Sustainable
Web Futures: Inclusive, Intelligent, SustainableWeb Futures: Inclusive, Intelligent, Sustainable
Web Futures: Inclusive, Intelligent, Sustainable
Steffen Staab
 
Eyeing the Web
Eyeing the WebEyeing the Web
Eyeing the Web
Steffen Staab
 
Concepts in Application Context ( How we may think conceptually )
Concepts in Application Context ( How we may think conceptually )Concepts in Application Context ( How we may think conceptually )
Concepts in Application Context ( How we may think conceptually )
Steffen Staab
 
Storing and Querying Semantic Data in the Cloud
Storing and Querying Semantic Data in the CloudStoring and Querying Semantic Data in the Cloud
Storing and Querying Semantic Data in the Cloud
Steffen Staab
 
Semantics reloaded
Semantics reloadedSemantics reloaded
Semantics reloaded
Steffen Staab
 
Ontologien und Semantic Web - Impulsvortrag Terminologietag
Ontologien und Semantic Web - Impulsvortrag TerminologietagOntologien und Semantic Web - Impulsvortrag Terminologietag
Ontologien und Semantic Web - Impulsvortrag Terminologietag
Steffen Staab
 
Opinion Formation and Spreading
Opinion Formation and SpreadingOpinion Formation and Spreading
Opinion Formation and Spreading
Steffen Staab
 
The Web We Want
The Web We WantThe Web We Want
The Web We Want
Steffen Staab
 
10 Jahre Web Science
10 Jahre Web Science10 Jahre Web Science
10 Jahre Web Science
Steffen Staab
 
(Semi-)Automatic analysis of online contents
(Semi-)Automatic analysis of online contents(Semi-)Automatic analysis of online contents
(Semi-)Automatic analysis of online contents
Steffen Staab
 
Programming with Semantic Broad Data
Programming with Semantic Broad DataProgramming with Semantic Broad Data
Programming with Semantic Broad Data
Steffen Staab
 
Text Mining using LDA with Context
Text Mining using LDA with ContextText Mining using LDA with Context
Text Mining using LDA with Context
Steffen Staab
 
Wwsss intro2016-final
Wwsss intro2016-finalWwsss intro2016-final
Wwsss intro2016-final
Steffen Staab
 
10 Years Web Science
10 Years Web Science10 Years Web Science
10 Years Web Science
Steffen Staab
 
Semantic Web Technologies: Principles and Practices
Semantic Web Technologies: Principles and PracticesSemantic Web Technologies: Principles and Practices
Semantic Web Technologies: Principles and Practices
Steffen Staab
 
Closing Session ISWC 2015
Closing Session ISWC 2015Closing Session ISWC 2015
Closing Session ISWC 2015
Steffen Staab
 
ISWC2015 Opening Session
ISWC2015 Opening SessionISWC2015 Opening Session
ISWC2015 Opening Session
Steffen Staab
 

More from Steffen Staab (20)

Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
Shapes for Sharing between Graph Data Spaces - and Epistemic Querying of RDF-...
 
Knowledge graphs for knowing more and knowing for sure
Knowledge graphs for knowing more and knowing for sureKnowledge graphs for knowing more and knowing for sure
Knowledge graphs for knowing more and knowing for sure
 
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
Soziale Netzwerke und Medien: Multi-disziplinäre Ansätze für ein multi-dimens...
 
Web Futures: Inclusive, Intelligent, Sustainable
Web Futures: Inclusive, Intelligent, SustainableWeb Futures: Inclusive, Intelligent, Sustainable
Web Futures: Inclusive, Intelligent, Sustainable
 
Eyeing the Web
Eyeing the WebEyeing the Web
Eyeing the Web
 
Concepts in Application Context ( How we may think conceptually )
Concepts in Application Context ( How we may think conceptually )Concepts in Application Context ( How we may think conceptually )
Concepts in Application Context ( How we may think conceptually )
 
Storing and Querying Semantic Data in the Cloud
Storing and Querying Semantic Data in the CloudStoring and Querying Semantic Data in the Cloud
Storing and Querying Semantic Data in the Cloud
 
Semantics reloaded
Semantics reloadedSemantics reloaded
Semantics reloaded
 
Ontologien und Semantic Web - Impulsvortrag Terminologietag
Ontologien und Semantic Web - Impulsvortrag TerminologietagOntologien und Semantic Web - Impulsvortrag Terminologietag
Ontologien und Semantic Web - Impulsvortrag Terminologietag
 
Opinion Formation and Spreading
Opinion Formation and SpreadingOpinion Formation and Spreading
Opinion Formation and Spreading
 
The Web We Want
The Web We WantThe Web We Want
The Web We Want
 
10 Jahre Web Science
10 Jahre Web Science10 Jahre Web Science
10 Jahre Web Science
 
(Semi-)Automatic analysis of online contents
(Semi-)Automatic analysis of online contents(Semi-)Automatic analysis of online contents
(Semi-)Automatic analysis of online contents
 
Programming with Semantic Broad Data
Programming with Semantic Broad DataProgramming with Semantic Broad Data
Programming with Semantic Broad Data
 
Text Mining using LDA with Context
Text Mining using LDA with ContextText Mining using LDA with Context
Text Mining using LDA with Context
 
Wwsss intro2016-final
Wwsss intro2016-finalWwsss intro2016-final
Wwsss intro2016-final
 
10 Years Web Science
10 Years Web Science10 Years Web Science
10 Years Web Science
 
Semantic Web Technologies: Principles and Practices
Semantic Web Technologies: Principles and PracticesSemantic Web Technologies: Principles and Practices
Semantic Web Technologies: Principles and Practices
 
Closing Session ISWC 2015
Closing Session ISWC 2015Closing Session ISWC 2015
Closing Session ISWC 2015
 
ISWC2015 Opening Session
ISWC2015 Opening SessionISWC2015 Opening Session
ISWC2015 Opening Session
 

Recently uploaded

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
muralinath2
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
AlaminAfendy1
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SELF-EXPLANATORY
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Sérgio Sacani
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Ana Luísa Pinho
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
yusufzako14
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
Nistarini College, Purulia (W.B) India
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
Areesha Ahmad
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 

Recently uploaded (20)

Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
Circulatory system_ Laplace law. Ohms law.reynaults law,baro-chemo-receptors-...
 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
 
In silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptxIn silico drugs analogue design: novobiocin analogues.pptx
In silico drugs analogue design: novobiocin analogues.pptx
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdfSCHIZOPHRENIA Disorder/ Brain Disorder.pdf
SCHIZOPHRENIA Disorder/ Brain Disorder.pdf
 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
 
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
Observation of Io’s Resurfacing via Plume Deposition Using Ground-based Adapt...
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
Deep Behavioral Phenotyping in Systems Neuroscience for Functional Atlasing a...
 
in vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptxin vitro propagation of plants lecture note.pptx
in vitro propagation of plants lecture note.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.Nucleic Acid-its structural and functional complexity.
Nucleic Acid-its structural and functional complexity.
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
GBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram StainingGBSN- Microbiology (Lab 3) Gram Staining
GBSN- Microbiology (Lab 3) Gram Staining
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 

Symbolic Background Knowledge for Machine Learning

  • 1. IPVS – Institute for Parallel and Distributed Systems Analytic Computing Symbolic Background Knowledge for Machine Learning Steffen Staab https://www.ipvs.uni-stuttgart.de/departments/ac/ With slides contributed by Alexandra Baier, Luis Chamon, Tim Schneider, Bo Xiong, Thomas Monninger
  • 2. • What is machine learning? • Why (symbolic) background knowledge in machine learning? • Which background knowledge? • In which applications? • How to apply in machine learning? •A broad range of methods for applying background knowledge in ML So, background knowledge helps, but....
  • 3. Classification: predict discrete label for given examples • Given a news article, assign a topic Regression: predict continuous value for given examples • Given meteorological conditions today, predict temperature tomorrow Sequence Prediction: predict sequence for given sequence • Given text, identify all noun phrases in the text Supervised Learning Machine Learning Model lore ipsum dolores lore ipsum lore ipsum dolores lore ipsum dolores lore ipsum Politics Culture Lifestyle Sports 0 From KnowGraphs Winter School 2021
  • 4. Unsupervised Learning Clustering: summarize similar examples in clusters • Given articles, form k clusters of most similar articles Visualization and Dimensionality reduction: map high- dimensional data into lower-dimensional space • Map documents in d-dimensional space such that similar documents are close Rule Mining: learn general rules from data • Given gene network, find rules about frequent relationships Machine Learning Model lore ipsum dolores lore ipsum lore ipsum dolores lore ipsum dolores lore ipsum From KnowGraphs Winter School 2021
  • 5. Supervised vs. Unsupervised Many supervised methods now include some form of unsupervised learning: • Word embedding layers: can encode interesting linguistic patterns • Convolutional layers: can encode interesting visual or sequential patterns From KnowGraphs Winter School 2021 One but last layer encodes learned features: • embeddings • implicit, re-usable, non-symbolic background knowledge
  • 6. Parameters 𝜽 Loss-based Machine Learning • Define loss function that evaluates errors of a model wrt training data: • Training data: 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1 𝑁 , 𝑥𝑛 ∈ ℝ𝑑, 𝑦𝑛 ∈ ℝ • Adjust model parameters 𝜃 to minimize empirical risk min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 Machine Learning Model 𝑓𝜽 Data {(𝑥𝑛, 𝑦𝑛)} Output 𝑓𝜽 𝒙𝒏 From KnowGraphs Winter School 2021
  • 7. Training 𝑓𝜽: Gradient-Based Adaptation of 𝜽 Minimize 𝒏=𝟏 𝑵 𝐋𝐨𝐬𝐬 𝒇𝜽 𝒙𝒏 , 𝒚𝒏 locally: 1. initialize parameters 𝜃 randomly, 2. change parameters 𝜃 in the direction of the negative gradient, 3. repeat until a local minimum is reached
  • 8. • Training data: 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1 𝑁 , 𝑥𝑛 ∈ ℝ, 𝑦𝑛 ∈ ℝ • Linear function: 𝑓𝜃(x) = 𝜃1𝑥 + 𝜃0 • Loss function 𝐿𝑜𝑠𝑠 𝑦, 𝑦 = 𝑦 − 𝑦 2 • Minimization of empirical risk: min 𝜽 1 𝑁 𝑛=1 𝑁 𝑓𝜽 𝒙𝑛 − 𝑦𝑛 2 12.03.2023 8 Example: Linear Regression
  • 10. Classify unseen data Zero shot learning No training data about unicorns Background knowledge Unicorn is a horse with a horn Classify unseen data Few shot learning one/few training examples Sparse data
  • 11. General differential equation for water flux 𝜕𝑢 𝜕𝑡 = 𝐷(𝑢) 𝜕2𝑢 𝜕𝑥2 − 𝑣(𝑢) 𝜕𝑢 𝜕𝑥 + 𝑞(𝑢) Approximate for all finite volumes 𝑖. Flux kernel ℱ𝑖 ℱ𝑖 = 𝑗=1 𝑁𝑠𝑖 𝑓𝑗 ≈ ∮ 𝜔⊆Ω 𝐷(𝑢) 𝜕2 𝑢 𝜕𝑥2 − 𝑣(𝑢) 𝜕𝑢 𝜕𝑥 ⋅ 𝑛𝑑Γ Simulation: numerically solve for all ℱ𝑖 exchange with neighbors given boundary conditions ML alternative (Karlbauer et al 2022): 1. learn behavior of finite volumes 2. interleave with numerical solving Learning physics Picture (cc) by Shu, L., Ullrich, P. A., Duffy, C. J. (2020) in Geosci. Model Dev.: https://gmd.copernicus.org/articles/13/2743/2020/
  • 12. ML alternative (Karlbauer et al 2022): 1. learn behavior of finite volumes 2. interleave with numerical solving Background knowledge: • water does not appear or disappear • sum of amount of water is constant • energy must be constant • water cannot rise arbitrarily • bedrock does not allow entry of water • ... Learning physics Picture (cc) by Shu, L., Ullrich, P. A., Duffy, C. J. (2020) in Geosci. Model Dev.: https://gmd.copernicus.org/articles/13/2743/2020/#&gid=1&pid=1
  • 13. Given • Perception • Tracked dynamic agents • Background knowledge High definition map • Lane topology • Infrastructure • Semantic information • Predict: Intention of others, sensing mistakes Traffic Scene Understanding 13
  • 14. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 14 Knowledge Representations in Informed ML (von Rueden et al 2021) We will look at several of them and some others Pre-trained non- symbolic models are missing here
  • 15. 12.03.2023 15 Influencing ML by Empirical Risk Minimization min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 Given training data 𝒟 = 𝑥𝑛, 𝑦𝑛 𝑛=1 𝑁 , 𝑥𝑛 ∈ ℝ𝑑 , 𝑦𝑛 ∈ ℝ min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 Specific algorithms often modify several elements at once
  • 16. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 16 A pipeline view of the same consideration (von Rueden et al 2021)
  • 17. Knowledge-informed Data Modification 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 17 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 18. Slide 18 Text Clustering Clustering Similarity Measure Document Representation Background Knowledge Explanation (Hotho, Staab, Stumme 2003a;2003b)
  • 19. Slid e Ontology-based representation 2 1 1 1 2 1 1 1 .. . Oman granted term crude oil lipid compound customer retroactive discount ... 2 1 1 1 2 2 2 1 1 1 .. . Cosinus as similarity metrics Oman has granted term crude oil customers retroactive discounts ... 2 1 1 1 1 2 1 1 1 .. . Oman granted term crude oil customer retroactive discount ... 1 2 3 (Hotho, Staab, Stumme 2003a;2003b)
  • 20. Slide 20 WordNet as ontology 144684 lexical entries Root entity something physical object artifact substance chemical compound organic compound lipid oil EN:oil covering coating paint oil paint cover cover with oil bless oil, anoint EN:anoint EN:inunct 109377 Concepts (synsets) oil color crude oil (Hotho, Staab, Stumme 2003a;2003b)
  • 21. • Kernel methods as data augmentation • 𝑥 ↦ 𝑥2, 𝑥, 1 = 𝑥′ • Linear regression: 𝑓𝜃 𝑥 = 𝜃1𝑥1 + 𝜃0 = 𝜃𝑥 • Quadratic regression: 𝑓𝜃′ 𝑥′ = 𝜃1 ′ 𝑥2 + 𝜃1 ′ 𝑥 + 𝜃0 ′ = 𝜃0 ′ 𝑥′ • Kernel trick in many methods (e.g. SVMs) • explicit data augmentation not required, but built into loss function • kernel defines similarity between data points 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 21 Kernel Methods (Bloehdorn & Hotho 2004; 2009)
  • 22. Knowledge-informed Loss Definition 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 22 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 23. TBox statements can be normalized into: 1. concept subsumption: 𝐶 ⊑ 𝐷, 2. concept intersection: 𝐶1 ⊓ 𝐶2 ⊑ 𝐷, 3. right existential: ∃𝑟. 𝐶1 ⊑ 𝐷, 4. left existential: 𝐶1 ⊑ ∃𝑟. 𝐶2, EL++ Knowledge Bases 23 Baader, F., Brandt, S., & Lutz, C. Pushing the EL envelope. In IJCAI 2005. ABox contains: 1. concept assertion: C(a) 2. role assertion: r(a,b) • EL++ is a lightweight description logic that • balances expressive power and reasoning complexity (polynomial) • is applied for large-scale ontologies, e.g. Gene Ontology
  • 24. Box EL++ Embedding 2 4 • designing one loss term for each logical statement • such that the KB is satisfiable when the loss is 0 (a.k.a. soundness) • satisfiability implies that there is a geometric interpretation satisfying all logical statements Idea: mapping logical constraints to geometric (soft) constraints Solution: finding a geometric interpretation for each statement
  • 25. Geometric Interpretations of ABox 2 5 Concept assertion 𝐶(𝑎) 𝑎 𝐶 r(𝑎, 𝑏) 𝑇𝑟 𝑏 𝑎 Role assertion Geometric membership Affine transformation between two points
  • 26. Geometric Interpretations of TBox 2 6 Box affine transformation Box entailment Box intersection Box disjointedness
  • 28. • Super important and successful class of ML methods for supporting scientific problem solving • 3 pages, short easy read: • Chris Edwards. 2022. Neural networks learn to speed up simulations. Commun. ACM 65, 5 (May 2022), 27–29. https://doi.org/10.1145/3524015 • A bit longer: • Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and Yang, L., ”Physics-informed machine learning,” in: Nature Reviews Physics, 3(6), 2021, pp.422-440. • I skip it now for lack of time 28 Physics-informed Neural Networks
  • 29. Knowledge-informed Inductive Biases 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 29 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 Geometric Biases
  • 30. Structured Multilabel Prediction 3 0 • Structured multilabel prediction • assigns every instance multiple labels • Labels are constrained by some background knowledge • Question: can we produce predictions that are logically consistent with structured background knowledge?
  • 31. Structured background knowledge 3 1 • Labels are organized in taxonomies/hierarchies/ontologies • 2 kinds of logical constraints • implication: rdfs:subclassOf • exclusion: owl:disjointFrom WordNet Biomedical ontologies
  • 32. Plant Person Mother Father Issues • Mother classifier misclassifies people (solvable with kernel trick) • Boundaries are unrelated 32 Try support vector machines Women Girl Person Parent Mother Implication Exclusion Plant Tree Father
  • 33. Inductive bias in Poincaré hyperbolic space 3 3 • Each label is associated with a region contained by Poincaré hyperplane • Instances are points inside the region • Logical constraints of labels are transformed into geometric soft constraints of the corresponding label regions Women Girl Person Parent Mother Implication Exclusion Plant Tree Father
  • 34. Geometric Interpretation 3 4 Implication / rdfs:subclassOf is geometrically interpreted as the subject region being inside the object region
  • 35. Classification 3 6 • Classification is interpreted as membership & non-membership • Final classifier
  • 36. Learning with geometric soft constraints 3 7 • Problem formulation: constraint optimization • Learning under geometric soft constraints
  • 37. Knowledge-informed Inductive Biases 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 38 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛 Mapping full to limited learning capacity
  • 38. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 39 Use case: Multi-step prediction of trajectory prediction Critical issues Does the neural network make catastrophic predictions on unseen data?
  • 39. • 𝑓𝜽 = 𝑔𝜃1 ∘ σ ∘ MLP𝜃2 • MLP𝜃2 : ℝ𝑑1 → ℝ𝑑2 • arbitrary mapping from input to output • full learning capacity • σ • component-wise sigmoid • bounds output of MLP𝜃2 • 𝑔𝜃1 • predicting with background restrictions Pattern: From full capacity to constrained learning min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 40. Linear system 𝒙𝑡 = 𝑨𝒙𝑡−1 + 𝑩𝒖𝑡 Next system state 𝒙𝑡 (e.g. velocity of ship) depends linearly on previous state 𝒙𝑡−1 and control 𝒖𝑡 (e.g. force) Switched linear system 𝒙𝑡 = 𝑨𝜎(𝑡)𝒙𝑡−1 + 𝑩𝜎(𝑡)𝒖𝑡 𝜎(𝑡) chooses between different matrices 𝑨𝜎(𝑡), 𝑩𝜎(𝑡) 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 41 System identification
  • 41. ReLiNet: Stable and Explainable Multistep Prediction LSTM ut + xt ut Bt At xt+1 W(A) W(B) ht ut ht xt W(.) Legend: control input hidden state output hidden state to predicted matrix 1. LSTM predicts a linear model at each time step 2. Prediction only depends on linear models → Inherently explainable 3. ReLiNet is a Switched Linear System → Stability guarantees with simple constraints (Baier et al 2023)
  • 42. Explaining Predictions Contribution of past inputs to prediction Explanation allows faithful reconstruction of prediction Ft,d = Feature weight at time t for output d ut = Input at time t
  • 43. • 𝑓𝜽 = 𝑔𝜃1 ∘ σ ∘ MLP𝜃2 • MLP𝜃2 : ℝ𝑑1 → ℝ𝑑2 • arbitrary mapping from input to output • full learning capacity, maps entities and concepts • σ • component-wise sigmoid • bounds output of MLP𝜃2 • 𝑔𝜃1 • encodes background restrictions 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 44 Falcon applying the pattern (Tang et al 2023) min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 44. Input ALC A-Box and T-Box 1. ℝ𝑑 is the domain of interpretations 2. 𝑓𝑒 is learned to interpret concept, relation and object names as elements of ℝ𝑑 3. E.g. Check whether an object belongs to a class by 𝑚: 𝑚 𝑥, 𝐶ℐ = 𝜎(𝑀𝐿𝑃 𝑓𝑒 𝐶 , 𝑓𝑒 𝑥 ) 4. Exemplary part of the loss function: 𝐸 is sampled from ℝ𝑑 ℒ𝒯 = 1 |𝐸| 1 |𝒯| 𝐶⊑𝐷∈𝒯 𝑒∈𝐸 𝑚 𝑒, (𝐶 ⊓ ¬𝐷)ℐ 12.03.2023 45 Falcon: Faithful Neural Semantic Entailment over 𝓐𝓛𝓒 Ontologies
  • 45. Knowledge-informed Optimization 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 46 min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 46. 12.03.2023 Slide by Luis Chamon 47 From loss regularization to hard constraints
  • 47. 12.03.2023 Slide by Luis Chamon 48 Penalty-based vs. Dual Learning
  • 48. 12.03.2023 Slide by Luis Chamon 49 Learning under hard constraints in practice
  • 49. Knowledge-informed Machine Learning to Extend Scientific Knowledge Source: generated by Tim Schneider using Stable Diffusion AI
  • 50. Use Case: Environmental Science sorption sorptive concentration c (mg/L) background knowledge sorbate concentration s (mg/Kg)
  • 51. Output Input Knowledge-informed Machine Learning to Extend Scientific Knowledge Algebraic Equations / Analytical Forms Bayesian Machine Scientist Training Data Domain Knowledge - class of expressions - symmetries - … 1 2 Research Questions: „How to represent (RQ1) and automatically exploit (RQ2) scientific knowledge for inference?“ RQ1 RQ2 e.g. symbolic structure and continous parameters
  • 52. How to represent and exploit the knowledge? Representation (RQ1) 1 How likely does explored solution conform to the knowledge? Scientific Domain Knowledge Probabilistic Regular Tree Expression (pRTE) 2 Factor Graph 3 Build a probabilistic finite state machine Exploitation (RQ2) 4 (Prior) Probabilies to perform Bayesian Inference (MCMC)
  • 54. Relational Graph Neural Networks 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 55
  • 55. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 56 Ontology of graph neural network for traffic scene understanding (Schmidt et al 2023)
  • 56. Message passing in graph neural networks • Every instantiated node is randomly initialized with a vector • Every instantiated node sends his vector to his neighbors • Every instantiated node learns how to aggregate neighbor information • Parameter sharing over same node types and edge types 57 Car 1 Car 2 Car 3 Lane B Lane A Stop 7
  • 57. Limitations and Outlook 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 58
  • 58. • Approaches often modify several aspects • The focus of my presentation was on work that was done at Analytic Computing@University of Stuttgart • For practical reasons: • not doing comprehensive literature study • but our papers point to other papers • Existing research on knowledge-informed ML goes much beyond this 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 59 Limitations min 𝜽 1 𝑁 𝑛=1 𝑁 Loss 𝑓𝜽 𝒙𝑛 , 𝑦𝑛
  • 59. • From knowledge-informed to knowledge discovery • From interpolation to extrapolation • including few and zero-shot learning • From implicit knowledge to explicit knowledge • including self-learning • including prototypical knowledge • From classification to non-standard queries • similarity • analogy 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 60 Outlook on Knowledge-informed ML
  • 60. Thank you! E-Mail Telefon +49 (0) 711 685- www. Universität Stuttgart IPVS Universitätsstraße 32, 50569 Stuttgart Steffen Staab To be defined ipvs.uni-stuttgart.de/departments/ac/ Analytic Computing, IPVS Steffen.staab@ipvs.uni-stuttgart.de My thanks and acknowledgements to all my collaborators within and beyond Analytic Computing, within and beyond EXC Simtech in particular: Alexandra Baier, Daniel Frank, Cosimo Gregucci, Daniel Hernandez, Wolfgang Nowak, Nico Potyka, Tim Schneider, Amin Totounferoush, Bo Xiong, Thomas Monninger, Julian Schmidt, and many more
  • 61. References Surveys • Hu, Y., Chapman, A., Wen, G. and Hall, D.W., ”What Can Knowledge Bring to Machine Learning? A Survey of Lowshot Learning for Structured Data,” in ACM Transactions on Intelligent Systems and Technology (TIST), 13(3), 2021, pp.1-45. • von Rueden, Laura, et al. ”Informed Machine Learning-A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems.” IEEE Transactions on Knowledge and Data Engineering (2021). Factual knowledge • J. Schmidt, T. Monninger, J. Rupprecht, D. Raba, J. Jordan, D. Frank, S. Staab, K. Dietmayer. SCENE: Reasoning about Traffic Scenes using Heterogeneous Graph Neural Networks. In: IEEE Robotics and Automation Letters, 8(3), 2023.
  • 62. References: Physics-informed Neural Networks • Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S. and Yang, L., ”Physics-informed machine learning,” in: Nature Reviews Physics, 3(6), 2021, pp.422-440. • Chris Edwards. 2022. Neural networks learn to speed up simulations. Commun. ACM 65, 5 (May 2022), 27–29. https://doi.org/10.1145/3524015 • Matthias Karlbauer, Timothy Praditia, Sebastian Otte, Sergey Oladyshkin, Wolfgang Nowak, Martin V. Butz: Composing Partial Differential Equations with Physics-Aware Neural Networks. ICML 2022: 10773-10801 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 63
  • 63. References: Inductive Biases • A. Baier, D. Aspandi-Latif, S. Staab. ReLiNet: Stable and Explainable Multistep Prediction with Recurrent Linear Parameter Varying Networks. Unpublished/submitted 2023. • Zhenwei Tang, Tilman Hinnerichs, Xi Peng, Xiangliang Zhang, Robert Hoehndorf. FALCON: Faithful Neural Semantic Entailment over ALC Ontologies. https://arxiv.org/abs/2208.07628 Geometric inductive biases • B. Xiong, S. Zhu, M. Nayyeri, C. Xu, S. Pan, C. Zhou, S. Staab. Ultrahyperbolic Knowledge Graph Embeddings. In: Proc. Of KDD ’22 – The 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. East Lansing, MI, USA, August 14-18, 2022. • B. Xiong, N. Potyka, T.-K. Tran, M. Nayyeri, S. Staab. Faithful Embeddings for EL++ Knowledge Bases. In: 21st International Semantic Web Conference (ISWC2022), (virtual event) Nov, 2022, Springer 2022. • B. Xiong, S. Zhu, N. Potyka, S. Pan, C. Zhou, S. Staab. Pseudo-Riemannian Graph Convolutional Networks. In: Proc of 36th Conference on Neural Information Processing Systems (NeuRIPS2022), Nov 28-Dec 9, 2022. • B. Xiong, M. Cochez, M. Nayyeri, S. Staab. Hyperbolic Embedding Inference for Structured Multi-Label Prediction. In: Proc of 36th Conference on Neural Information Processing Systems (NeuRIPS2022), Nov 28-Dec 9, 2022. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 64
  • 64. References Data augmentation • A. Hotho, S. Staab, G. Stumme. Ontologies Improve Text Document Clustering. Proceedings of the International Conference on Data Mining – ICDM-2003. IEEE Press, 2003a. • A. Hotho, S. Staab, G. Stumme. Explaining Text Clustering Results using Semantic Structures. In Principles of Data Mining and Knowledge Discovery, 7th European Conference, PKDD 2003, Dubrovnik, Croatia, September 22-26, 2003b. • Stephan Bloehdorn, Andreas Hotho: Text Classification by Boosting Weak Learners based on Terms and Concepts. ICDM 2004: 331-334 • Stephan Bloehdorn, Andreas Hotho: Ontologies for Machine Learning. Handbook on Ontologies 2009: 637-661 Optimization • T. Schneider, A. Totounferoush, W. Nowak, S. Staab. Probabilistic Regular Tree Priors for Scientific Symbolic Reasoning. Unpublished/submitted 2023. (grammar-induced optimization) • L. F. O. Chamon, S. Paternain, M. Calvo-Fullana and A. Ribeiro, "Constrained Learning With Non- Convex Losses," in IEEE Transactions on Information Theory, vol. 69, no. 3, pp. 1739-1760, March 2023, doi: 10.1109/TIT.2022.3187948. 12.03.2023 Steffen Staab, Universität Stuttgart, @ststaab, https://www.ipvs.uni-stuttgart.de/departments/ac/ 65