This document discusses a new approach to building scalable data processing systems using streaming analytics with Spark, Kafka, Cassandra, and Akka. It proposes moving away from architectures like Lambda and ETL that require duplicating data and logic. The new approach leverages Spark Streaming for a unified batch and stream processing runtime, Apache Kafka for scalable messaging, Apache Cassandra for distributed storage, and Akka for building fault tolerant distributed applications. This allows building real-time streaming applications that can join streaming and historical data with simplified architectures that remove the need for duplicating data extraction and loading.