2 第一次AIブーム(1960年代)
もし Aならば B
もし B ならば C
よって、
もし A ならば C
シンボルによる人工知能
(記号主義)
ニューラルネットによる人工知能
(コネクショニズム)
推論ベース ニューラルネット
誕生
33.
3 第二次AIブーム(1980年代)
IF (A)then B
IF (C) then D
IF (E) then F
IF (G) then H
IF ( I ) then J
シンボルによる人工知能
(記号主義)
ニューラルネットによる人工知能
(コネクショニズム)
ルールベース
新しい学習法=
逆伝搬法
強化学習
(例)格闘ゲームTaoFeng におけるキャラクター学習
Ralf Herbrich,Thore Graepel, Joaquin Quiñonero Candela Applied Games Group,Microsoft Research Cambridge
"Forza, Halo, Xbox Live The Magic of Research in Microsoft Products"
http://research.microsoft.com/en-us/projects/drivatar/ukstudentday.pptx
Microsoft Research Playing Machines: Machine Learning Applications in Computer Games
http://research.microsoft.com/en-us/projects/mlgames2008/
Video Games and Artificial Intelligence
http://research.microsoft.com/en-us/projects/ijcaiigames/
CORE Layer は、PhysicalLaryer 、Mission Layer のうちで、
どの認識を生成するかを決定するコマンドを投げる。
CERA-CRANIUM認識モデル
Arrabales, R. Ledezma, A. and Sanchis, A. "Towards the Generation of Visual Qualia
in Artificial Cognitive Architectures". (2010)
http://www.conscious-robots.com/raul/papers/Arrabales_BICS2010.pdf
メタAI Left 4Dead の事例
Michael Booth, "The AI Systems of Left 4 Dead," Artificial Intelligence and
Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
今回は Left 4 Dead の事例を見てみる。
メタAI(=AI Director)によるユーザーのリラックス度に応じた敵出現度
ユーザーの緊張度
実際の敵出現数
計算によって
求められた
理想的な敵出現数
Build Up…プレイヤーの緊張度が目標値を超えるまで
敵を出現させ続ける。
Sustain Peak … 緊張度のピークを3-5秒維持するために、
敵の数を維持する。
Peak Fade … 敵の数を最小限へ減少していく。
Relax … プレイヤーたちが安全な領域へ行くまで、30-45秒間、
敵の出現を最小限に維持する。
Michael Booth, "The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
より具体的なアルゴリズム
メタAIが作用を行う領域
Michael Booth, "TheAI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
メタAIが作用(敵の生成・
消滅)を行う領域を、
AAS(= Active Area Set) と
言う。
89.
メタAIが作用を行う領域
(AAS=Active Area Set)
MichaelBooth, "The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
90.
メタAIが作用を行う領域
(AAS=Active Area Set)
MichaelBooth, "The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
91.
安全な領域までの道のり(Flow Distance)
メタAIはプレイヤー群の経路を
トレースし予測する。
- どこへ来るか
-どこが背面になるか
- どこに向かうか
Michael Booth, "The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
敵出現領域
背後 前方
Michael Booth,"The AI Systems of Left 4 Dead," Artificial Intelligence and Interactive Digital Entertainment Conference at Stanford.
http://www.valvesoftware.com/publications.html
前方と背後のプレイヤー群から見えてない部屋に、
モンスターを発生させる。
The Sims シリーズのAIの作り方
人をダイナミクス(力学系、動的な数値の仕組み)として動かす。
世界を動かす PeerAI(=キャラクターAI) を構築。
Sub
Peer
Meta
Meta
Peer
Sub
[原則] 周囲の対象に対する、あらゆる可能な行動から、
ムード(幸せ) 係数を最大化する行動を選択する。
Sims (not under direct player control) choose what to do by selecting, from all of the
possible behaviors in all of the objects, the behavior that maximizes their current happiness.
Will Wright, AI: A Design Perspective (AIIDE 2005)
http://www.aaai.org/Papers/AIIDE/2005/AIIDE05-041.ppt
Kenneth Forbus, Will Wright, “Some notes on programming objects in The Sims – Example”
http://www.qrg.cs.northwestern.edu/papers/Files/Programming_Objects_in_The_Sims.pdf
132.
The Sims における「モチーフ・エンジン」
KenForbus, “Simulation and Modeling: Under the hood of The Sims” (NorthWerstern University)
http://www.cs.northwestern.edu/%7Eforbus/c95-gd/lectures/The_Sims_Under_the_Hood_files/frame.htm
Data
- Needs
- Personality
- Skills
- Relationships Sloppy - Neat
Shy - Outgoing
Serious - Playful
Lazy - Active
Mean - Nice
Physical
- Hunger
- Comfort
- Hygiene
- Bladder
Mental
- Energy
- Fun
- Social
- Room
Motive Engine
Cooking
Mechanical
Logic
Body
Etc.
AIの人格モデル
ニューラルネットワークの構造が進化させる
「NEAT」の技術
Mat Buckland, Chapter11, AI techniques for game programming, Premier Press, 2002
(実行ファイルとソースコードがCD-ROMにあります)
これまでニューラルネットは、最初に構造を定義した後は変化しなかった。
動的にニューラルネットの構造を変化させる技術
Neuron Evoluation of Augmenting Topologies (NEAT)
ニューラルネットワークの応用
Black & White(Lionhead,2000)
クリーチャーを育てていくゲーム。
クリーチャーは自律的に行動するが、
訓練によって学習させることができる。
ⓒ2015 SQUARE ENIX CO., LTD. All Rights Reserved.
http://www.youtube.com/watch?v=2t9ULyYGN-s
http://www.lionhead.com/games/black-white/
158.
Belief – Desire– Intention モデル
ⓒ2015 SQUARE ENIX CO., LTD. All Rights Reserved.
Desire
(Perceptrons)
Opinions
(Decision Trees)
Beliefs
(Attribute List)
Intention
Overall Plan
(Goal, Main Object)
Attack enemy town
Specific Plan
(Goal, Object List)
Throw stone at house
Primitive Action
List
Walk towards stone,
Pick it up,
Walk towards house,
Aim at house,
Throw stone at house
Richard Evans, “Varieties of Learning”, 11.2, AI Programming Wisdom
159.
Belief – Desire– Intention モデル
ⓒ2015 SQUARE ENIX CO., LTD. All Rights Reserved.
Desire
(Perceptrons)
Opinions
(Decision Trees)
Beliefs
(Attribute List)
Richard Evans, “Varieties of Learning”, 11.2, AI Programming Wisdom
Low Energy
Source =0.2
Weight =0.8
Value =
Source*Weight =
0.16
Tasty Food
Source =0.4
Weight =0.2
Value =
Source*Weight =
0.08
Unhappines
s
Source =0.7
Weight =0.2
Value =
Source*Weight =
0.14
∑
0.16+0.08+0.14
Threshold
(0~1の値に
変換)
hunger
Desire(お腹すいた度)欲求を決定する
対象を決定する
それぞれの対象の
固有の情報
他にも
いろいろな
欲求を計算
Hunger
Compassion
Attack(戦いたい)
Help
ニューラルネットワークの応用
Black & White (Lionhead,2000)