SlideShare a Scribd company logo
1 of 35
Download to read offline
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Sparsity Based Super Resolution
Using Color Channel Constraints
Hojjat Mousavi, Vishal Monga
School of Electrical Engineering and Computer Science
The Pennsylvania State University
September 27, 2016
iPAL Color Super Resolution 1/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Super Resolution - Problem Definition
• Multi-frame SR: Traditional Super-resolution problem is the process of
combining multiple low resolution images to form a higher resolution one
• Resulting image should represent reality better than all the input images.
• Single-image SR: given a single low-resolution input, reconstruct a
high-resolution version of the input.
• Advantage: more widely applicable than multi-frame approaches.
• Challenge: single-image super-resolution is an extremely ill-posed
problem.
iPAL Color Super Resolution 1/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Sparsity-based Super resolution - Basic idea 1,2
• Construct two coupled dictionaries based on image patches in
luminance (Y) channel
1 Low resolution dictionary: DDDl (High frequency features)
2 High resolution dictionary: DDDh (Actual high resolution patches)
• Atoms of each dictionary correspond to each other and are LR-HR
counterparts of each other extracted from the same locations
1Wright et al. CVPR 2008
2Wright et al. TIP 2009
iPAL Color Super Resolution 2/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Sparsity-based Super resolution
• SR for an unseen low resolution image:
1 Extract overlapping patches (overlapped tiling) (yyyl)
2 For each patch find the low resolution representation using DDDl
xxx∗
= argmin
xxx
1
2
||yyyl −DDDlxxx||2
2 +λ||xxx||1
Find the sparse linear representation of low resolution patch based on LR
dictionary
3 Find the high resolution representation using DDDh and the same xxx∗.
yyyh = DDDhxxx∗
4 construct the high resolution image from high-res patches.
iPAL Color Super Resolution 3/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Color Super Resolution
• YCbCr space. Apply Bicubic interpolation on Cb and Cr channels.
• Human eye is more sensitive to luminance than chrominance
• Some images have varying amount of luminance and chrominance
geometry
• Chrominance channels also contain useful information
• Super-resolution only on luminance channel may not get the best results
• Luminance edge (in Y) → present in R, G and B channels
• Jointly account for cross channel information in an adaptive manner
iPAL Color Super Resolution 4/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Color Super Resolution
• How to capture edge similarities?
• Extract edge information in RGB channels
• Find patches that should have have high edge correlation based on amount
of color information in each patch
• Encourage edge similarity in selected patches of high resolution image
• Similarity (Correlation) between edges in different channels. (Based on HR
image): Example: SSSryyyhr
−SSSgyyyhg 2 Or correlation (SSSryyyhr
)T(SSSgyyyhg
)
where SSSr,SSSg,SSSb are highpass edge detector filters
• Color constraints: Edge differences across color channels are minimized
for selected patches3,4,5
SSSryyyhr −SSSgyyyhg 2 < εrg
SSSgyyyhg −SSSbyyyhb 2 < εgb
SSSbyyyhb
−SSSryyyhr 2 < εbr
3Srinivas et al. CIC 2010
4Farsiu et al. TIP 2006
5Menon et al. TIP 2009
iPAL Color Super Resolution 5/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Color Super Resolution
• High resolution representation of patches is incorporated in the cost
function by the following assumption of conventional SR methods.
yyyhr = DDDhrxxxr, yyyhg = DDDhgxxxg, yyyhb
= DDDhb
xxxb
• Incorporating RGB channel information and exploiting our multi-task
framework result in the following optimization problem:
argminxxxc
c={r,g,b}
1
2
yyylc
−DDDlc
xxxc
2
2 +λ xxxc 1
+τ SSSrDDDhr
xxxr −SSSgDDDhg
xxxg
2
2 + SSSgDDDhg
xxxg −SSSbDDDhb
xxxb
2
2 + SSSbDDDhb
xxxb −SSSrDDDhr
xxxr
2
2 .
• Note: Without color channel constraints → Three independent
optimization problems
• With additional color constraints → One optimization problem with
quadratic constraints on pairs of channels
• τ is very crucial and we pick it in an adaptive manner
iPAL Color Super Resolution 6/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Color Super Resolution
• Introducing DDD,DDDl,xxx,yyy, we can simply the cost function to
xxx = argminxxx xxxTDDDxxx−yyyTDDDlxxx+λ xxx 1. → FISTA6
where
DDD =



1
2 DDDT
lr
DDDlr +2τDDDT
hr
SSST
r SSSrDDDhr −2τDDDT
hr
SSST
r SSSgDDDhg 000
000 1
2 DDDT
lg
DDDlg +2τDDDT
hg
SSST
g SSSgDDDhg −2τDDDT
hg
SSST
g SSSbDDDhb
−2τDDDT
hb
SSST
b
SSSrDDDhr 000 1
2 DDDT
lb
DDDlb
+2τDDDT
hb
SSST
b
SSSbDDDhb



xxx =


xxxr
xxxg
xxxb

, yyy =


yyylr
yyylg
yyylb

, DDDl =


DDDlr 000 000
000 DDDlg 000
000 000 DDDlb


• Note that matrix DDD can capture cross channel constraints by adding a
term to the appropriate locations
• SSSr,SSSg,SSSb are gradient operators in RGB channels.
6Beck et al. SIAM Journal of Imaging Sciences, 2009
iPAL Color Super Resolution 7/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Joint Dictionary Learning for Color Channels
• Correlation between color channels can be even better captured if the
individual color channel dictionaries are also designed to facilitate the
same.
• Given a set of N sampled training image patch pairs {YYYh,YYYl}.
YYYh = {yyy1
h,yyy2
h,...,yyyN
h }: set of HR patches sampled from training
YYYl = {yyy1
l ,yyy2
l ,...,yyyN
l }: set of corresponding LR patches.
• A new joint learning for multi channel dictionary learning is proposed:
arg min
DDDh,DDDl,xxxi
1
N
N
i=1
γ
2
yyyi
l −DDDlxxxi 2
2 +
1−γ
2
yyyi
h −DDDhxxxi 2
2
+τ SSSrDDDhrxxxi
r −SSSgDDDhgxxxi
g
2
2
+ SSSgDDDhgxxxi
g −SSSbDDDhb
xxxi
b
2
2
+ SSSbDDDhb
xxxi
b −SSSrDDDhrxxxi
r
2
2 +λ xxxi
1
st. DDDh(:,k) 2
2 ≤ 1, DDDl(:,k) 2
2 ≤ 1, k = 1,2,...,K
iPAL Color Super Resolution 8/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Joint Dictionary Learning for Color Channels
L2 =
1
N
N
i=1
γ
2
yyyi
l −DDDlxxxi 2
2 +
1−γ
2
yyyi
h −DDDhxxxi 2
2 +λ xxxi
1
+2τxxxiT
DDDT
hSSST
(III −PPPT
s )SSSDDDhxxxiT
=
γ
2N
YYYl −DDDlXXX 2
F +
1−γ
2N
YYYh −DDDhXXX 2
F +
λ
N
XXX 1
+
2τ
N
Tr XXXT
DDDT
hSSST
(III −PPPT
s )SSSDDDhXXXT
.
where XXX = [xxx1 xxx2 ... xxxN].
Alternatively solve for XXX, DDDl and DDDh
xxx =


xxxr
xxxg
xxxb

, yyy =


yyylr
yyylg
yyylb

, DDDl =


DDDlr 000 000
000 DDDlg 000
000 000 DDDlb

, DDDh =


DDDhr 000 000
000 DDDhg 000
000 000 DDDhb


SSS =


SSSr 000 000
000 SSSg 000
000 000 SSSb

, PPPs =


000 000 IIIp2×p2
IIIp2×p2 000 000
000 IIIp2×p2 000


iPAL Color Super Resolution 9/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Solution for XXX
• DDDl and DDDh fixed.
• Optimize over XXX whose columns can be obtained independently.
• For each column of XXX (i = 1...N) we can rewrite the cost function as:
xxxi
= argmin
xxx
γ
2
yyyi
l −DDDlxxx 2
F +
1−γ
2
yyyi
h −DDDhxxx 2
F +λ xxx 1
+2τxxxT
DDDT
hSSST
(III −PPPT
s )SSSDDDhxxxT
= argmin
xxx
xxxT
[
γ
2
DDDT
l DDDl +
1−γ
2
DDDT
hDDDh
+2τDDDT
hSSST
(III −PPPT
s )SSSDDDh]xxx
− γyyyiT
l DDDl +(1−γ)yyyiT
h DDDh xxx+λ xxx 1
= argmin
xxx
xxxT
AAAxxx−bbbT
xxx +λ xxx 1
AAA = γ
2DDDT
l DDDl + 1−γ
2 DDDT
hDDDh +2τDDDT
hSSST(III −PPPT
s )SSSDDDh
bbbiT
= γyyyiT
l DDDl +(1−γ)yyyiT
h DDDh.
• Can be solved using FISTA7
7Beck et al. SIAM Journal of Imaging Sciences, 2009
iPAL Color Super Resolution 10/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Solution for DDDl
• Fix XXX and DDDh, the cost function reduces to:
DDDl = argmin
DDDl
YYYl −DDDlXXX 2
F
s.t. DDDl(:,k) 2
2 ≤ 1, k = 1,2,...,K
DDDl is block diagonal .
• Split into three separate dictionary learning procedures as follows where
c ∈ {r,g,b}.
DDDlc = argmin
DDDlc
YYYlc −DDDlcXXXc
2
F
s.t. DDDlc (:,k) 2
2 ≤ 1, k = 1,2,...,K
where XXXc = [xxx1
c xxx2
c ... xxxN
c ], YYYlc = [yyy1
c yyy2
c ... yyyN
c ] and c takes the subscripts from
{r,g,b} indicating a specific color channel.
• Each of the above dictionaries are learnt by the ODL method8.
8Mairal et al. ICML, 2009.
iPAL Color Super Resolution 11/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Solution for DDDh
• Finally when XXX and DDDl are fixed, L2 reduces to:
DDDh = argmin
DDDh
1
N
N
i=1
1−γ
2
yyyi
h −DDDhxxxi 2
2
+2τxxxiT
DDDT
hSSST
(III −PPPT
s )SSSDDDhxxxiT
s.t DDDh(:,k) 2
2 ≤ 1, k = 1,2,...,K.
• Not very straight forward to solve → ADMM9.
• Define the function g(DDDh,ZZZ) as follows:
g(DDDh,ZZZ) =
1
N
N
i=1
1−γ
2
yyyi
h −DDDhxxxi 2
2 +2τxxxiT
DDDT
hSSST
(III −PPPT
s )SSSZZZxxxiT
• Solve the equivalent bi-convex problem:
DDDh = argmin
DDDh,ZZZ
g(DDDh,ZZZ)
s.t DDDh −ZZZ = 000,
DDDh(:,k) 2
2 ≤ 1, k = 1,2,...,K.
9Boyd et al. Foundations and Trends in Machine Learning, 2011
iPAL Color Super Resolution 12/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Solution for DDDh
Iterative steps of ADMM until a convergence is achieved are as follows:
1 Find DDDt+1
h :
DDDt+1
h = argmin
DDDh
1
N
N
i=1
1−γ
2
yyyi
h −DDDhxxxi 2
2
+2τxxxiT
DDDT
hSSST
(III −PPPT
s )SSSZZZt
xxxiT
+
ρ
2
DDDh −ZZZt
+UUUt 2
F
s.t. DDDh(:,k) 2
2 ≤ 1, k = 1,...,K.
2 Find ZZZt+1:
ZZZt+1
= argmin
ZZZ
2τ
N
N
i=1
xxxiT
DDDt+1T
h SSST
(III −PPPT
s )SSSZZZt
xxxiT
+
ρ
2
DDDt+1
h −ZZZ +UUUt 2
F
3 Find UUUt+1: UUUt+1
= UUUt
+DDDt+1
h −ZZZt+1
Solutions to steps 1 and 2 of the ADMM procedure are not straightforward
and details are in the paper.
iPAL Color Super Resolution 13/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
• More analytical Results on how to solve optimization problems at each
stage
• Extensive experimental validations in addition to high quality images
• Implementation and MATLAB toolbox
All Available online at:
http://signal.ee.psu.edu/MCcSR.html
iPAL Color Super Resolution 14/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
State of the art methods to compare with
Single image super resolution methods that incorporate sparsity methods:
1 Sparsity Constrained super resolution (ScSR)10
2 Single Image Scale-up using Sparse Representation 11
3 Adjusted Anchored Neighborhood Regression for Fast Example-Based
Super-Resolution (ANR+)12
4 Global Regression for Fast Super-Resolution (GR)13
5 Neighbor Embedding with Locally Linear Embedding (NE+LLE) 14
6 Neighbor Embedding with NonNegative Least Squares (NE+NNLS) 15
7 Single Image SR using sparse regression and natural image prior16:
Using sparse kernel ridge regression and natural image priors.
8 Image and Video Upscaling from Local Self-Examples17
10Yang, IEEE TIP, 2012
11Zeyde et al, Springer, Curves and Surfaces, 2012
12Timofte et al. ACCV 2014
13Timofte et al. ICCV 2013
14Chang et al. CVPR 2004
15Bevilazqua et al. BMVC 2012
16Kim et al. IEEE Tran on PAMI, 2010
17Freeman et al, ACM Transactions on Graphics, 2011
iPAL Color Super Resolution 15/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Experimental Set Up
• Dictionary size: 512 atoms - 100,000 image patches are sampled
• Scaling factor: 2x, 3x, 4x
• Patch size: 5×5, 7×7, 9×9 pixels.
• Quantitative measures: PSNR, SSIM, S-CIELAB18
18Zhang et al., in Proc. IEEE COMPCON Symp. Dig., 1997.
iPAL Color Super Resolution 16/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
(a) PSNR and SSIM - scale 2:
Top: Original, Bicubic (30.46, 0.840), Zeyde et al. (31.97, 0.887),
Middle: GR (31.70, 0.879), ANR (32.09, 0.889), NENNLS (31.87, 0.884)
Bottom: NELLE (32.03, 0.889), MCcSR (32.23, 0.899), ScSR (32.14,
0.893) .
(b) SCIELAB error map - scale 2:
Top: Original, Bicubic (1.898e4), Zeyde et al. (1.127e4),
Middle: GR (1.198e4), ANR (1.077e4), NENNLS (1.159e4)
Bottom: NELLE (1.099e4), MCcSR (9.770e3) , ScSR (1.014e4).
iPAL Color Super Resolution 17/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
(c) PSNR and SSIM - scale 3:
Top: Original, Bicubic (27.51, 0.685), Zeyde et al. (28.28, 0.737),
Middle: GR (28.15, 0.729), ANR (28.36, 0.742), NENNLS (28.17, 0.730)
Bottom: NELLE (28.30, 0.738), MCcSR (28.51, 0.758), ScSR (28.25,
0.740) .
(d) SCIELAB error map - scale 3:
Top: Original, Bicubic (3.423e4), Zeyde et al. (2.896e4),
Middle: GR (3.008e4), ANR (2.865e4), NENNLS (2.961e4)
Bottom: NELLE (2.905e4), MCcSR (2.709e4) , ScSR (3.002e4).
iPAL Color Super Resolution 18/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
(e) PSNR and SSIM - scale 4:
Top: Original, Bicubic (26.05, 0.566), Zeyde et al. (26.61, 0.615),
Middle: GR (26.51, 0.607), ANR (26.63, 0.618), NENNLS (26.50, 0.606)
Bottom: NELLE (26.57, 0.614), MCcSR (26.74, 0.632), ScSR (26.35,
0.608) .
(f) SCIELAB error map - scale 4:
Top: Original, Bicubic (4.369e4), Zeyde et al. (3.923e4),
Middle: GR (4.045e4), ANR (3.928e4), NENNLS (3.984e4)
Bottom: NELLE (3.967e4), MCcSR (3.818e4) , ScSR (4.002e4).
iPAL Color Super Resolution 19/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Results - Scale 3
Table: PSNR results of different methods for various images with scaling factor of 3.
Images
PSNR (dB)
Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR
baby 38.42 39.51 39.38 39.56 39.22 39.49 39.51 39.40
butterfly 28.73 30.60 29.73 30.57 30.29 30.42 30.59 30.64
bird 36.37 37.90 37.44 37.92 37.68 37.90 38.02 37.59
face 35.96 36.44 36.40 36.50 36.39 36.47 36.48 36.37
foreman 35.76 37.67 36.84 37.71 37.37 37.69 37.74 37.64
coastguard 31.31 31.91 31.78 31.84 31.77 31.83 31.95 31.83
flowers 30.92 31.84 31.62 31.88 31.68 31.80 32.07 31.87
head 36.02 36.47 36.42 36.52 36.40 36.50 36.51 36.42
lenna 35.26 36.23 35.99 36.29 36.11 36.24 36.33 36.14
man 31.78 32.68 32.44 32.71 32.50 32.65 32.75 32.68
pepper 35.25 36.27 35.77 36.13 35.99 36.12 36.30 36.20
average 33.08 34.06 33.76 34.07 33.88 34.03 34.14 34.00
iPAL Color Super Resolution 20/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Results - Scale 3
Table: SSIM results of different methods for various images with scaling factor of 3.
Images
SSIM
Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR
baby 0.88 0.90 0.90 0.90 0.89 0.90 0.90 0.89
butterfly 0.79 0.85 0.80 0.84 0.84 0.84 0.85 0.85
bird 0.90 0.92 0.91 0.92 0.92 0.92 0.93 0.91
face 0.72 0.74 0.74 0.74 0.74 0.74 0.75 0.74
foreman 0.89 0.91 0.90 0.91 0.90 0.91 0.91 0.90
coastguard 0.57 0.62 0.63 0.62 0.61 0.62 0.63 0.62
flowers 0.77 0.80 0.79 0.80 0.79 0.80 0.81 0.80
head 0.72 0.74 0.74 0.75 0.74 0.74 0.75 0.74
lenna 0.78 0.80 0.80 0.80 0.80 0.80 0.81 0.80
man 0.72 0.76 0.76 0.77 0.76 0.76 0.76 0.76
pepper 0.78 0.80 0.79 0.80 0.79 0.79 0.80 0.79
average 0.745 0.776 0.769 0.778 0.771 0.775 0.785 0.774
iPAL Color Super Resolution 21/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Results - Scale 3
Table: S-CIELAB error results of different methods for various images with scaling
factor of 3.
Images
S-CIELAB
Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR
baby 2.07E+04 1.36E+04 1.40E+04 1.32E+04 1.47E+04 1.34E+04 1.34E+04 1.50E+04
butterfly 2.28E+04 1.55E+04 1.84E+04 1.55E+04 1.60E+04 1.60E+04 1.54E+04 1.49E+04
bird 1.07E+04 7.36E+03 8.02E+03 7.21E+03 7.73E+03 7.30E+03 6.50E+03 7.81E+03
face 3.79E+03 2.71E+03 2.73E+03 2.57E+03 2.73E+03 2.61E+03 2.47E+03 2.70E+03
foreman 8.46E+03 3.90E+03 4.79E+03 3.48E+03 4.01E+03 3.62E+03 3.72E+03 3.89E+03
coastguard 1.96E+04 1.71E+04 1.70E+04 1.70E+04 1.76E+04 1.71E+04 1.69E+04 1.70E+04
flowers 4.47E+04 3.75E+04 3.89E+04 3.69E+04 3.84E+04 3.74E+04 3.29E+04 3.70E+04
head 3.79E+03 2.69E+03 2.74E+03 2.54E+03 2.79E+03 2.61E+03 2.42E+03 2.65E+03
lenna 2.44E+04 1.74E+04 1.85E+04 1.67E+04 1.79E+04 1.69E+04 1.58E+04 1.72E+04
man 3.80E+04 2.91E+04 3.03E+04 2.84E+04 3.02E+04 2.89E+04 2.88E+04 2.95E+04
pepper 2.48E+04 1.91E+04 2.15E+04 1.96E+04 2.02E+04 1.95E+04 1.73E+04 1.91E+04
average 2.79E+04 2.27E+04 2.36E+04 2.24E+04 2.33E+04 2.26E+04 2.14E+04 2.28E+04
iPAL Color Super Resolution 22/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Effect of RGB constraints
Figure: Visual Images as well as S-CIELAB error maps are shown for a scaling factor
of 3. From left to right for each row images correspond to: Original image, applying
SR separately on RGB channels (36.26, 0.83, 1.57e4), ScSR (36.13, 0.83, 1.67e4)
and MCcSR (36.67, 0.85, 1.43e4). Numbers in parenthesis are PSNR, SSIM and
SCIELAB error measures.
iPAL Color Super Resolution 23/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Effect of RGB constraints
Figure: Visual Images as well
as S-CIELAB error maps are
shown for a scaling factor of 3.
From left to right for each row
Images correspond to: Original
Image, applying SR separately
on RGB channels, ScSR,
MCcSR
Table: Quantitative measures to show effectiveness of color constraints in SR for a scaling factor of 3.
Images
PSNR SSIM S-CIELAB
Separate RGB ScSR MCcSR Separate RGB ScSR MCcSR Separate RGB ScSR MCcSR
comic 28.37 28.25 28.51 0.74 0.74 0.75 2.80e4 3.00e4 2.70e4
baboon 26.95 26.95 27.11 0.53 0.52 0.54 9.93e4 1.01e5 9.57e4
pepper 36.14 35.85 36.30 0.79 0.77 0.81 1.93e4 2.27e5 1.73e4
bird 37.71 37.59 38.02 0.92 0.912 0.93 7.28e3 8.54e3 6.50e3
iPAL Color Super Resolution 24/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Performance Under Noise
Figure: Super Resolution performance under difference noise
standard deviations: 4,6,8,12 (from top to bottom ) with different methods:
Original, bicubic, MCcSR, ScSR (from left to right)
Table: Average performance under different
noise levels.
Measure Method σ = 0 σ = 4 σ = 6 σ = 8 σ = 12
PSNR
Bicubic 33.08 32.99 32.75 32.50 31.88
ScSR 34.00 33.95 33.92 33.90 33.86
MCcSR 34.14 34.11 34.09 34.09 34.07
SSIM
Bicubic 0.745 0.731 0.698 0.672 0.619
ScSR 0.774 0.772 0.766 0.761 0.752
MCcSR 0.785 0.783 0.780 0.775 0.768
SCIELAB
Bicubic 2.79E4 2.92E4 4.40E4 5.25E4 6.31E4
ScSR 2.28E4 2.31E4 2.36E4 2.39E4 2.43E4
MCcSR 2.14E4 2.16E4 2.20E4 2.21E4 2.23E4
iPAL Color Super Resolution 25/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Dictionary size
• Dictionaries of size 16,32,64,128,256 and 512 are trained.
Figure: Effect of dictionary size on PSNR, SSIM and S-CIELAB error
iPAL Color Super Resolution 26/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Conclusion and Future Work
• Sparsity → powerful prior for the ill-posed problem of single image super
resolution
• Cross channel information and color constraints → Regularizing the
optimization problem for boosting SR performance
• Under different scaling factors, different noise levels, different dictionary
sizes the proposed MCcSR method outperforms the state of the art.
• Expedite the sparse coding problem using neural networks
• Introduce other objective measurements rather than MSE for quality
assessment or in the objective function
• Apply other cross channel constraints or color constraint that can
improve super resolution performance
iPAL Color Super Resolution 27/28
Background Color SR Color Dictionary Learning Experimental Results Conclusion
Thank you!
iPAL Color Super Resolution 28/28
Backup Slides
iPAL Color Super Resolution 1/6
Dictionary Atoms
• Low resolution dictionary atoms - Red channel only- 9 by 9 pixels
patches - Extracted from features
Figure: Low resolution dictionary atoms -
Red channel only- 9 by 9 pixels patches -
Extracted from features
Figure: High resolution dictionary atoms -
RGB - 9 by 9 pixels patches
iPAL Color Super Resolution 2/6
Color Adaptive Patch Processing
• Not all image patches have the same color information (chrominance)
• Parameter τ can be used to control high frequency correlation among
color channels.
• Calculate the variations in color information → Adaptively control τ.
β =
1
2s
HHH1yyyCb + HHH1yyyCr
HHH1yyyY
+
HHH2yyyCb + HHH2yyyCr
HHH2yyyY
where s is normalization parameter, HHH1 and HHH2 are high-pass Scharr
operators.
iPAL Color Super Resolution 3/6
(a) PSNR and SSIM - scale 2:
Top: Original, Bicubic (28.19, 0.635), Zeyde et al. (28.62, 0.683),
Middle: GR (28.63, 0.690), ANR (28.67, 0.689), NENNLS (28.58, 0.680)
Bottom: NELLE (28.66, 0.688), MCcSR (28.78, 0.705, ScSR (28.69, 0.692)
.
(b) SCIELAB error map - scale 2:
Top: Original, Bicubic (7.856e4), Zeyde et al. (6.570e4),
Middle: GR (6.388e4), ANR (3.287e4), NENNLS (6.585e4)
Bottom: NELLE (6.421e4), MCcSR (5.799e4) , ScSR (6.296e4).
iPAL Color Super Resolution 4/6
(c) PSNR and SSIM - scale 3:
Top: Original, Bicubic (26.71, 0.480), Zeyde et al. (26.94, 0.520),
Middle: GR (26.95, 0.529), ANR (26.97, 0.527), NENNLS (26.92, 0.518)
Bottom: NELLE (26.97, 0.526), MCcSR (27.11, 0.549), ScSR (26.95,
0.524) .
(d) SCIELAB error map - scale 3:
Top: Original, Bicubic (1.078e5), Zeyde et al. (1.008e5),
Middle: GR (1.000e5), ANR (9.962e4), NENNLS (1.010e5)
Bottom: NELLE (9.998e4), MCcSR (9.574e4) , ScSR (1.018e5).
iPAL Color Super Resolution 5/6
(e) PSNR and SSIM - scale 4:
Top: Original, Bicubic (26.00, 0.390), Zeyde et al. (26.17, 0.420),
Middle: GR (26.17, 0.428), ANR (26.19, 0.426), NENNLS (26.15, 0.419)
Bottom: NELLE (26.18, 0.425), MCcSR (26.25, 0.446), ScSR (26.11,
0.415) .
(f) SCIELAB error map - scale 4:
Top: Original, Bicubic (1.237e5), Zeyde et al. (1.186e5),
Middle: GR (1.183e5), ANR (1.180e5), NENNLS (1.190e5)
Bottom: NELLE (1.183e5), MCcSR (1.136e5) , ScSR (1.185e5).
iPAL Color Super Resolution 6/6

More Related Content

What's hot

Filtering an image is to apply a convolution
Filtering an image is to apply a convolutionFiltering an image is to apply a convolution
Filtering an image is to apply a convolutionAbhishek Mukherjee
 
Digital image processing short quesstion answers
Digital image processing short quesstion answersDigital image processing short quesstion answers
Digital image processing short quesstion answersAteeq Zada
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...mmjalbiaty
 
Spatial filtering using image processing
Spatial filtering using image processingSpatial filtering using image processing
Spatial filtering using image processingAnuj Arora
 
Image processing spatialfiltering
Image processing spatialfilteringImage processing spatialfiltering
Image processing spatialfilteringJohn Williams
 
SPATIAL FILTERING IN IMAGE PROCESSING
SPATIAL FILTERING IN IMAGE PROCESSINGSPATIAL FILTERING IN IMAGE PROCESSING
SPATIAL FILTERING IN IMAGE PROCESSINGmuthu181188
 
Spatial Filters (Digital Image Processing)
Spatial Filters (Digital Image Processing)Spatial Filters (Digital Image Processing)
Spatial Filters (Digital Image Processing)Kalyan Acharjya
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Soma Boubou
 
New approach for generalised unsharp masking alogorithm
New approach for generalised unsharp masking alogorithmNew approach for generalised unsharp masking alogorithm
New approach for generalised unsharp masking alogorithmeSAT Publishing House
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentationasodariyabhavesh
 
04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detectionRumah Belajar
 
6 spatial filtering p2
6 spatial filtering p26 spatial filtering p2
6 spatial filtering p2Gichelle Amon
 
Image segmentation
Image segmentation Image segmentation
Image segmentation Amnaakhaan
 

What's hot (20)

Filtering an image is to apply a convolution
Filtering an image is to apply a convolutionFiltering an image is to apply a convolution
Filtering an image is to apply a convolution
 
Digital image processing short quesstion answers
Digital image processing short quesstion answersDigital image processing short quesstion answers
Digital image processing short quesstion answers
 
Lecture 4
Lecture 4Lecture 4
Lecture 4
 
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
Image Interpolation Techniques with Optical and Digital Zoom Concepts -semina...
 
Spatial filtering using image processing
Spatial filtering using image processingSpatial filtering using image processing
Spatial filtering using image processing
 
Image processing spatialfiltering
Image processing spatialfilteringImage processing spatialfiltering
Image processing spatialfiltering
 
SPATIAL FILTERING IN IMAGE PROCESSING
SPATIAL FILTERING IN IMAGE PROCESSINGSPATIAL FILTERING IN IMAGE PROCESSING
SPATIAL FILTERING IN IMAGE PROCESSING
 
Histogram processing
Histogram processingHistogram processing
Histogram processing
 
SPATIAL FILTER
SPATIAL FILTERSPATIAL FILTER
SPATIAL FILTER
 
Spatial Filters (Digital Image Processing)
Spatial Filters (Digital Image Processing)Spatial Filters (Digital Image Processing)
Spatial Filters (Digital Image Processing)
 
Chapter 5
Chapter 5Chapter 5
Chapter 5
 
Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015Visual Impression Localization of Autonomous Robots_#CASE2015
Visual Impression Localization of Autonomous Robots_#CASE2015
 
2.spatial filtering
2.spatial filtering2.spatial filtering
2.spatial filtering
 
Sharpening spatial filters
Sharpening spatial filtersSharpening spatial filters
Sharpening spatial filters
 
New approach for generalised unsharp masking alogorithm
New approach for generalised unsharp masking alogorithmNew approach for generalised unsharp masking alogorithm
New approach for generalised unsharp masking alogorithm
 
Chapter10 image segmentation
Chapter10 image segmentationChapter10 image segmentation
Chapter10 image segmentation
 
04 image enhancement edge detection
04 image enhancement edge detection04 image enhancement edge detection
04 image enhancement edge detection
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 
6 spatial filtering p2
6 spatial filtering p26 spatial filtering p2
6 spatial filtering p2
 
Image segmentation
Image segmentation Image segmentation
Image segmentation
 

Viewers also liked

Performance and Analysis of Video Compression Using Block Based Singular Valu...
Performance and Analysis of Video Compression Using Block Based Singular Valu...Performance and Analysis of Video Compression Using Block Based Singular Valu...
Performance and Analysis of Video Compression Using Block Based Singular Valu...IJMER
 
Deep learning for image super resolution
Deep learning for image super resolutionDeep learning for image super resolution
Deep learning for image super resolutionPrudhvi Raj
 
Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)NamHyuk Ahn
 
Slideshare signup tutorial
Slideshare signup tutorialSlideshare signup tutorial
Slideshare signup tutorialbestabrook
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks남주 김
 

Viewers also liked (7)

Performance and Analysis of Video Compression Using Block Based Singular Valu...
Performance and Analysis of Video Compression Using Block Based Singular Valu...Performance and Analysis of Video Compression Using Block Based Singular Valu...
Performance and Analysis of Video Compression Using Block Based Singular Valu...
 
Pixel Recursive Super Resolution. Google Brain
 Pixel Recursive Super Resolution.  Google Brain Pixel Recursive Super Resolution.  Google Brain
Pixel Recursive Super Resolution. Google Brain
 
Deep learning for image super resolution
Deep learning for image super resolutionDeep learning for image super resolution
Deep learning for image super resolution
 
Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)Generative Adversarial Network (+Laplacian Pyramid GAN)
Generative Adversarial Network (+Laplacian Pyramid GAN)
 
Lec17 sparse signal processing & applications
Lec17 sparse signal processing & applicationsLec17 sparse signal processing & applications
Lec17 sparse signal processing & applications
 
Slideshare signup tutorial
Slideshare signup tutorialSlideshare signup tutorial
Slideshare signup tutorial
 
Generative adversarial networks
Generative adversarial networksGenerative adversarial networks
Generative adversarial networks
 

Similar to Sparsity Based Super Resolution Using Color Channel Constraints

CS 354 Understanding Color
CS 354 Understanding ColorCS 354 Understanding Color
CS 354 Understanding ColorMark Kilgard
 
Laplacian Colormaps: a framework for structure-preserving color transformations
Laplacian Colormaps: a framework for structure-preserving color transformationsLaplacian Colormaps: a framework for structure-preserving color transformations
Laplacian Colormaps: a framework for structure-preserving color transformationsDavide Eynard
 
Blind Source Separation using Dictionary Learning
Blind Source Separation using Dictionary LearningBlind Source Separation using Dictionary Learning
Blind Source Separation using Dictionary LearningDavide Nardone
 
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...Pioneer Natural Resources
 
Generating super resolution images using transformers
Generating super resolution images using transformersGenerating super resolution images using transformers
Generating super resolution images using transformersNEERAJ BAGHEL
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Taiji Suzuki
 
05 histogram processing DIP
05 histogram processing DIP05 histogram processing DIP
05 histogram processing DIPbabak danyal
 
Md2k 0219 shang
Md2k 0219 shangMd2k 0219 shang
Md2k 0219 shangBBKuhn
 
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...ssuser2624f71
 
presentation
presentationpresentation
presentationjie ren
 
ENBIS 2018 presentation on Deep k-Means
ENBIS 2018 presentation on Deep k-MeansENBIS 2018 presentation on Deep k-Means
ENBIS 2018 presentation on Deep k-Meanstthonet
 
An FPT Algorithm for Maximum Edge Coloring
An FPT Algorithm for Maximum Edge ColoringAn FPT Algorithm for Maximum Edge Coloring
An FPT Algorithm for Maximum Edge ColoringNeeldhara Misra
 
Injecting image priors into Learnable Compressive Subsampling
Injecting image priors into Learnable Compressive SubsamplingInjecting image priors into Learnable Compressive Subsampling
Injecting image priors into Learnable Compressive SubsamplingMartino Ferrari
 
Practical spherical harmonics based PRT methods.ppsx
Practical spherical harmonics based PRT methods.ppsxPractical spherical harmonics based PRT methods.ppsx
Practical spherical harmonics based PRT methods.ppsxMannyK4
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4arogozhnikov
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practicetuxette
 
Reed solomon Encoder and Decoder
Reed solomon Encoder and DecoderReed solomon Encoder and Decoder
Reed solomon Encoder and DecoderAmeer H Ali
 

Similar to Sparsity Based Super Resolution Using Color Channel Constraints (20)

CS 354 Understanding Color
CS 354 Understanding ColorCS 354 Understanding Color
CS 354 Understanding Color
 
Laplacian Colormaps: a framework for structure-preserving color transformations
Laplacian Colormaps: a framework for structure-preserving color transformationsLaplacian Colormaps: a framework for structure-preserving color transformations
Laplacian Colormaps: a framework for structure-preserving color transformations
 
Blind Source Separation using Dictionary Learning
Blind Source Separation using Dictionary LearningBlind Source Separation using Dictionary Learning
Blind Source Separation using Dictionary Learning
 
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
OPTIMIZED RATE ALLOCATION OF HYPERSPECTRAL IMAGES IN COMPRESSED DOMAIN USING ...
 
Generating super resolution images using transformers
Generating super resolution images using transformersGenerating super resolution images using transformers
Generating super resolution images using transformers
 
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
Minimax optimal alternating minimization \\ for kernel nonparametric tensor l...
 
05 histogram processing DIP
05 histogram processing DIP05 histogram processing DIP
05 histogram processing DIP
 
Md2k 0219 shang
Md2k 0219 shangMd2k 0219 shang
Md2k 0219 shang
 
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...
Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks, arXiv e-...
 
presentation
presentationpresentation
presentation
 
ENBIS 2018 presentation on Deep k-Means
ENBIS 2018 presentation on Deep k-MeansENBIS 2018 presentation on Deep k-Means
ENBIS 2018 presentation on Deep k-Means
 
Cgm Lab Manual
Cgm Lab ManualCgm Lab Manual
Cgm Lab Manual
 
An FPT Algorithm for Maximum Edge Coloring
An FPT Algorithm for Maximum Edge ColoringAn FPT Algorithm for Maximum Edge Coloring
An FPT Algorithm for Maximum Edge Coloring
 
Injecting image priors into Learnable Compressive Subsampling
Injecting image priors into Learnable Compressive SubsamplingInjecting image priors into Learnable Compressive Subsampling
Injecting image priors into Learnable Compressive Subsampling
 
Practical spherical harmonics based PRT methods.ppsx
Practical spherical harmonics based PRT methods.ppsxPractical spherical harmonics based PRT methods.ppsx
Practical spherical harmonics based PRT methods.ppsx
 
7 227 2005
7 227 20057 227 2005
7 227 2005
 
MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4MLHEP 2015: Introductory Lecture #4
MLHEP 2015: Introductory Lecture #4
 
Graph Neural Network in practice
Graph Neural Network in practiceGraph Neural Network in practice
Graph Neural Network in practice
 
Reed solomon Encoder and Decoder
Reed solomon Encoder and DecoderReed solomon Encoder and Decoder
Reed solomon Encoder and Decoder
 
Image segmentation
Image segmentationImage segmentation
Image segmentation
 

Recently uploaded

Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations120cr0395
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 

Recently uploaded (20)

Extrusion Processes and Their Limitations
Extrusion Processes and Their LimitationsExtrusion Processes and Their Limitations
Extrusion Processes and Their Limitations
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 

Sparsity Based Super Resolution Using Color Channel Constraints

  • 1. Background Color SR Color Dictionary Learning Experimental Results Conclusion Sparsity Based Super Resolution Using Color Channel Constraints Hojjat Mousavi, Vishal Monga School of Electrical Engineering and Computer Science The Pennsylvania State University September 27, 2016 iPAL Color Super Resolution 1/28
  • 2. Background Color SR Color Dictionary Learning Experimental Results Conclusion Super Resolution - Problem Definition • Multi-frame SR: Traditional Super-resolution problem is the process of combining multiple low resolution images to form a higher resolution one • Resulting image should represent reality better than all the input images. • Single-image SR: given a single low-resolution input, reconstruct a high-resolution version of the input. • Advantage: more widely applicable than multi-frame approaches. • Challenge: single-image super-resolution is an extremely ill-posed problem. iPAL Color Super Resolution 1/28
  • 3. Background Color SR Color Dictionary Learning Experimental Results Conclusion Sparsity-based Super resolution - Basic idea 1,2 • Construct two coupled dictionaries based on image patches in luminance (Y) channel 1 Low resolution dictionary: DDDl (High frequency features) 2 High resolution dictionary: DDDh (Actual high resolution patches) • Atoms of each dictionary correspond to each other and are LR-HR counterparts of each other extracted from the same locations 1Wright et al. CVPR 2008 2Wright et al. TIP 2009 iPAL Color Super Resolution 2/28
  • 4. Background Color SR Color Dictionary Learning Experimental Results Conclusion Sparsity-based Super resolution • SR for an unseen low resolution image: 1 Extract overlapping patches (overlapped tiling) (yyyl) 2 For each patch find the low resolution representation using DDDl xxx∗ = argmin xxx 1 2 ||yyyl −DDDlxxx||2 2 +λ||xxx||1 Find the sparse linear representation of low resolution patch based on LR dictionary 3 Find the high resolution representation using DDDh and the same xxx∗. yyyh = DDDhxxx∗ 4 construct the high resolution image from high-res patches. iPAL Color Super Resolution 3/28
  • 5. Background Color SR Color Dictionary Learning Experimental Results Conclusion Color Super Resolution • YCbCr space. Apply Bicubic interpolation on Cb and Cr channels. • Human eye is more sensitive to luminance than chrominance • Some images have varying amount of luminance and chrominance geometry • Chrominance channels also contain useful information • Super-resolution only on luminance channel may not get the best results • Luminance edge (in Y) → present in R, G and B channels • Jointly account for cross channel information in an adaptive manner iPAL Color Super Resolution 4/28
  • 6. Background Color SR Color Dictionary Learning Experimental Results Conclusion Color Super Resolution • How to capture edge similarities? • Extract edge information in RGB channels • Find patches that should have have high edge correlation based on amount of color information in each patch • Encourage edge similarity in selected patches of high resolution image • Similarity (Correlation) between edges in different channels. (Based on HR image): Example: SSSryyyhr −SSSgyyyhg 2 Or correlation (SSSryyyhr )T(SSSgyyyhg ) where SSSr,SSSg,SSSb are highpass edge detector filters • Color constraints: Edge differences across color channels are minimized for selected patches3,4,5 SSSryyyhr −SSSgyyyhg 2 < εrg SSSgyyyhg −SSSbyyyhb 2 < εgb SSSbyyyhb −SSSryyyhr 2 < εbr 3Srinivas et al. CIC 2010 4Farsiu et al. TIP 2006 5Menon et al. TIP 2009 iPAL Color Super Resolution 5/28
  • 7. Background Color SR Color Dictionary Learning Experimental Results Conclusion Color Super Resolution • High resolution representation of patches is incorporated in the cost function by the following assumption of conventional SR methods. yyyhr = DDDhrxxxr, yyyhg = DDDhgxxxg, yyyhb = DDDhb xxxb • Incorporating RGB channel information and exploiting our multi-task framework result in the following optimization problem: argminxxxc c={r,g,b} 1 2 yyylc −DDDlc xxxc 2 2 +λ xxxc 1 +τ SSSrDDDhr xxxr −SSSgDDDhg xxxg 2 2 + SSSgDDDhg xxxg −SSSbDDDhb xxxb 2 2 + SSSbDDDhb xxxb −SSSrDDDhr xxxr 2 2 . • Note: Without color channel constraints → Three independent optimization problems • With additional color constraints → One optimization problem with quadratic constraints on pairs of channels • τ is very crucial and we pick it in an adaptive manner iPAL Color Super Resolution 6/28
  • 8. Background Color SR Color Dictionary Learning Experimental Results Conclusion Color Super Resolution • Introducing DDD,DDDl,xxx,yyy, we can simply the cost function to xxx = argminxxx xxxTDDDxxx−yyyTDDDlxxx+λ xxx 1. → FISTA6 where DDD =    1 2 DDDT lr DDDlr +2τDDDT hr SSST r SSSrDDDhr −2τDDDT hr SSST r SSSgDDDhg 000 000 1 2 DDDT lg DDDlg +2τDDDT hg SSST g SSSgDDDhg −2τDDDT hg SSST g SSSbDDDhb −2τDDDT hb SSST b SSSrDDDhr 000 1 2 DDDT lb DDDlb +2τDDDT hb SSST b SSSbDDDhb    xxx =   xxxr xxxg xxxb  , yyy =   yyylr yyylg yyylb  , DDDl =   DDDlr 000 000 000 DDDlg 000 000 000 DDDlb   • Note that matrix DDD can capture cross channel constraints by adding a term to the appropriate locations • SSSr,SSSg,SSSb are gradient operators in RGB channels. 6Beck et al. SIAM Journal of Imaging Sciences, 2009 iPAL Color Super Resolution 7/28
  • 9. Background Color SR Color Dictionary Learning Experimental Results Conclusion Joint Dictionary Learning for Color Channels • Correlation between color channels can be even better captured if the individual color channel dictionaries are also designed to facilitate the same. • Given a set of N sampled training image patch pairs {YYYh,YYYl}. YYYh = {yyy1 h,yyy2 h,...,yyyN h }: set of HR patches sampled from training YYYl = {yyy1 l ,yyy2 l ,...,yyyN l }: set of corresponding LR patches. • A new joint learning for multi channel dictionary learning is proposed: arg min DDDh,DDDl,xxxi 1 N N i=1 γ 2 yyyi l −DDDlxxxi 2 2 + 1−γ 2 yyyi h −DDDhxxxi 2 2 +τ SSSrDDDhrxxxi r −SSSgDDDhgxxxi g 2 2 + SSSgDDDhgxxxi g −SSSbDDDhb xxxi b 2 2 + SSSbDDDhb xxxi b −SSSrDDDhrxxxi r 2 2 +λ xxxi 1 st. DDDh(:,k) 2 2 ≤ 1, DDDl(:,k) 2 2 ≤ 1, k = 1,2,...,K iPAL Color Super Resolution 8/28
  • 10. Background Color SR Color Dictionary Learning Experimental Results Conclusion Joint Dictionary Learning for Color Channels L2 = 1 N N i=1 γ 2 yyyi l −DDDlxxxi 2 2 + 1−γ 2 yyyi h −DDDhxxxi 2 2 +λ xxxi 1 +2τxxxiT DDDT hSSST (III −PPPT s )SSSDDDhxxxiT = γ 2N YYYl −DDDlXXX 2 F + 1−γ 2N YYYh −DDDhXXX 2 F + λ N XXX 1 + 2τ N Tr XXXT DDDT hSSST (III −PPPT s )SSSDDDhXXXT . where XXX = [xxx1 xxx2 ... xxxN]. Alternatively solve for XXX, DDDl and DDDh xxx =   xxxr xxxg xxxb  , yyy =   yyylr yyylg yyylb  , DDDl =   DDDlr 000 000 000 DDDlg 000 000 000 DDDlb  , DDDh =   DDDhr 000 000 000 DDDhg 000 000 000 DDDhb   SSS =   SSSr 000 000 000 SSSg 000 000 000 SSSb  , PPPs =   000 000 IIIp2×p2 IIIp2×p2 000 000 000 IIIp2×p2 000   iPAL Color Super Resolution 9/28
  • 11. Background Color SR Color Dictionary Learning Experimental Results Conclusion Solution for XXX • DDDl and DDDh fixed. • Optimize over XXX whose columns can be obtained independently. • For each column of XXX (i = 1...N) we can rewrite the cost function as: xxxi = argmin xxx γ 2 yyyi l −DDDlxxx 2 F + 1−γ 2 yyyi h −DDDhxxx 2 F +λ xxx 1 +2τxxxT DDDT hSSST (III −PPPT s )SSSDDDhxxxT = argmin xxx xxxT [ γ 2 DDDT l DDDl + 1−γ 2 DDDT hDDDh +2τDDDT hSSST (III −PPPT s )SSSDDDh]xxx − γyyyiT l DDDl +(1−γ)yyyiT h DDDh xxx+λ xxx 1 = argmin xxx xxxT AAAxxx−bbbT xxx +λ xxx 1 AAA = γ 2DDDT l DDDl + 1−γ 2 DDDT hDDDh +2τDDDT hSSST(III −PPPT s )SSSDDDh bbbiT = γyyyiT l DDDl +(1−γ)yyyiT h DDDh. • Can be solved using FISTA7 7Beck et al. SIAM Journal of Imaging Sciences, 2009 iPAL Color Super Resolution 10/28
  • 12. Background Color SR Color Dictionary Learning Experimental Results Conclusion Solution for DDDl • Fix XXX and DDDh, the cost function reduces to: DDDl = argmin DDDl YYYl −DDDlXXX 2 F s.t. DDDl(:,k) 2 2 ≤ 1, k = 1,2,...,K DDDl is block diagonal . • Split into three separate dictionary learning procedures as follows where c ∈ {r,g,b}. DDDlc = argmin DDDlc YYYlc −DDDlcXXXc 2 F s.t. DDDlc (:,k) 2 2 ≤ 1, k = 1,2,...,K where XXXc = [xxx1 c xxx2 c ... xxxN c ], YYYlc = [yyy1 c yyy2 c ... yyyN c ] and c takes the subscripts from {r,g,b} indicating a specific color channel. • Each of the above dictionaries are learnt by the ODL method8. 8Mairal et al. ICML, 2009. iPAL Color Super Resolution 11/28
  • 13. Background Color SR Color Dictionary Learning Experimental Results Conclusion Solution for DDDh • Finally when XXX and DDDl are fixed, L2 reduces to: DDDh = argmin DDDh 1 N N i=1 1−γ 2 yyyi h −DDDhxxxi 2 2 +2τxxxiT DDDT hSSST (III −PPPT s )SSSDDDhxxxiT s.t DDDh(:,k) 2 2 ≤ 1, k = 1,2,...,K. • Not very straight forward to solve → ADMM9. • Define the function g(DDDh,ZZZ) as follows: g(DDDh,ZZZ) = 1 N N i=1 1−γ 2 yyyi h −DDDhxxxi 2 2 +2τxxxiT DDDT hSSST (III −PPPT s )SSSZZZxxxiT • Solve the equivalent bi-convex problem: DDDh = argmin DDDh,ZZZ g(DDDh,ZZZ) s.t DDDh −ZZZ = 000, DDDh(:,k) 2 2 ≤ 1, k = 1,2,...,K. 9Boyd et al. Foundations and Trends in Machine Learning, 2011 iPAL Color Super Resolution 12/28
  • 14. Background Color SR Color Dictionary Learning Experimental Results Conclusion Solution for DDDh Iterative steps of ADMM until a convergence is achieved are as follows: 1 Find DDDt+1 h : DDDt+1 h = argmin DDDh 1 N N i=1 1−γ 2 yyyi h −DDDhxxxi 2 2 +2τxxxiT DDDT hSSST (III −PPPT s )SSSZZZt xxxiT + ρ 2 DDDh −ZZZt +UUUt 2 F s.t. DDDh(:,k) 2 2 ≤ 1, k = 1,...,K. 2 Find ZZZt+1: ZZZt+1 = argmin ZZZ 2τ N N i=1 xxxiT DDDt+1T h SSST (III −PPPT s )SSSZZZt xxxiT + ρ 2 DDDt+1 h −ZZZ +UUUt 2 F 3 Find UUUt+1: UUUt+1 = UUUt +DDDt+1 h −ZZZt+1 Solutions to steps 1 and 2 of the ADMM procedure are not straightforward and details are in the paper. iPAL Color Super Resolution 13/28
  • 15. Background Color SR Color Dictionary Learning Experimental Results Conclusion • More analytical Results on how to solve optimization problems at each stage • Extensive experimental validations in addition to high quality images • Implementation and MATLAB toolbox All Available online at: http://signal.ee.psu.edu/MCcSR.html iPAL Color Super Resolution 14/28
  • 16. Background Color SR Color Dictionary Learning Experimental Results Conclusion State of the art methods to compare with Single image super resolution methods that incorporate sparsity methods: 1 Sparsity Constrained super resolution (ScSR)10 2 Single Image Scale-up using Sparse Representation 11 3 Adjusted Anchored Neighborhood Regression for Fast Example-Based Super-Resolution (ANR+)12 4 Global Regression for Fast Super-Resolution (GR)13 5 Neighbor Embedding with Locally Linear Embedding (NE+LLE) 14 6 Neighbor Embedding with NonNegative Least Squares (NE+NNLS) 15 7 Single Image SR using sparse regression and natural image prior16: Using sparse kernel ridge regression and natural image priors. 8 Image and Video Upscaling from Local Self-Examples17 10Yang, IEEE TIP, 2012 11Zeyde et al, Springer, Curves and Surfaces, 2012 12Timofte et al. ACCV 2014 13Timofte et al. ICCV 2013 14Chang et al. CVPR 2004 15Bevilazqua et al. BMVC 2012 16Kim et al. IEEE Tran on PAMI, 2010 17Freeman et al, ACM Transactions on Graphics, 2011 iPAL Color Super Resolution 15/28
  • 17. Background Color SR Color Dictionary Learning Experimental Results Conclusion Experimental Set Up • Dictionary size: 512 atoms - 100,000 image patches are sampled • Scaling factor: 2x, 3x, 4x • Patch size: 5×5, 7×7, 9×9 pixels. • Quantitative measures: PSNR, SSIM, S-CIELAB18 18Zhang et al., in Proc. IEEE COMPCON Symp. Dig., 1997. iPAL Color Super Resolution 16/28
  • 18. Background Color SR Color Dictionary Learning Experimental Results Conclusion (a) PSNR and SSIM - scale 2: Top: Original, Bicubic (30.46, 0.840), Zeyde et al. (31.97, 0.887), Middle: GR (31.70, 0.879), ANR (32.09, 0.889), NENNLS (31.87, 0.884) Bottom: NELLE (32.03, 0.889), MCcSR (32.23, 0.899), ScSR (32.14, 0.893) . (b) SCIELAB error map - scale 2: Top: Original, Bicubic (1.898e4), Zeyde et al. (1.127e4), Middle: GR (1.198e4), ANR (1.077e4), NENNLS (1.159e4) Bottom: NELLE (1.099e4), MCcSR (9.770e3) , ScSR (1.014e4). iPAL Color Super Resolution 17/28
  • 19. Background Color SR Color Dictionary Learning Experimental Results Conclusion (c) PSNR and SSIM - scale 3: Top: Original, Bicubic (27.51, 0.685), Zeyde et al. (28.28, 0.737), Middle: GR (28.15, 0.729), ANR (28.36, 0.742), NENNLS (28.17, 0.730) Bottom: NELLE (28.30, 0.738), MCcSR (28.51, 0.758), ScSR (28.25, 0.740) . (d) SCIELAB error map - scale 3: Top: Original, Bicubic (3.423e4), Zeyde et al. (2.896e4), Middle: GR (3.008e4), ANR (2.865e4), NENNLS (2.961e4) Bottom: NELLE (2.905e4), MCcSR (2.709e4) , ScSR (3.002e4). iPAL Color Super Resolution 18/28
  • 20. Background Color SR Color Dictionary Learning Experimental Results Conclusion (e) PSNR and SSIM - scale 4: Top: Original, Bicubic (26.05, 0.566), Zeyde et al. (26.61, 0.615), Middle: GR (26.51, 0.607), ANR (26.63, 0.618), NENNLS (26.50, 0.606) Bottom: NELLE (26.57, 0.614), MCcSR (26.74, 0.632), ScSR (26.35, 0.608) . (f) SCIELAB error map - scale 4: Top: Original, Bicubic (4.369e4), Zeyde et al. (3.923e4), Middle: GR (4.045e4), ANR (3.928e4), NENNLS (3.984e4) Bottom: NELLE (3.967e4), MCcSR (3.818e4) , ScSR (4.002e4). iPAL Color Super Resolution 19/28
  • 21. Background Color SR Color Dictionary Learning Experimental Results Conclusion Results - Scale 3 Table: PSNR results of different methods for various images with scaling factor of 3. Images PSNR (dB) Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR baby 38.42 39.51 39.38 39.56 39.22 39.49 39.51 39.40 butterfly 28.73 30.60 29.73 30.57 30.29 30.42 30.59 30.64 bird 36.37 37.90 37.44 37.92 37.68 37.90 38.02 37.59 face 35.96 36.44 36.40 36.50 36.39 36.47 36.48 36.37 foreman 35.76 37.67 36.84 37.71 37.37 37.69 37.74 37.64 coastguard 31.31 31.91 31.78 31.84 31.77 31.83 31.95 31.83 flowers 30.92 31.84 31.62 31.88 31.68 31.80 32.07 31.87 head 36.02 36.47 36.42 36.52 36.40 36.50 36.51 36.42 lenna 35.26 36.23 35.99 36.29 36.11 36.24 36.33 36.14 man 31.78 32.68 32.44 32.71 32.50 32.65 32.75 32.68 pepper 35.25 36.27 35.77 36.13 35.99 36.12 36.30 36.20 average 33.08 34.06 33.76 34.07 33.88 34.03 34.14 34.00 iPAL Color Super Resolution 20/28
  • 22. Background Color SR Color Dictionary Learning Experimental Results Conclusion Results - Scale 3 Table: SSIM results of different methods for various images with scaling factor of 3. Images SSIM Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR baby 0.88 0.90 0.90 0.90 0.89 0.90 0.90 0.89 butterfly 0.79 0.85 0.80 0.84 0.84 0.84 0.85 0.85 bird 0.90 0.92 0.91 0.92 0.92 0.92 0.93 0.91 face 0.72 0.74 0.74 0.74 0.74 0.74 0.75 0.74 foreman 0.89 0.91 0.90 0.91 0.90 0.91 0.91 0.90 coastguard 0.57 0.62 0.63 0.62 0.61 0.62 0.63 0.62 flowers 0.77 0.80 0.79 0.80 0.79 0.80 0.81 0.80 head 0.72 0.74 0.74 0.75 0.74 0.74 0.75 0.74 lenna 0.78 0.80 0.80 0.80 0.80 0.80 0.81 0.80 man 0.72 0.76 0.76 0.77 0.76 0.76 0.76 0.76 pepper 0.78 0.80 0.79 0.80 0.79 0.79 0.80 0.79 average 0.745 0.776 0.769 0.778 0.771 0.775 0.785 0.774 iPAL Color Super Resolution 21/28
  • 23. Background Color SR Color Dictionary Learning Experimental Results Conclusion Results - Scale 3 Table: S-CIELAB error results of different methods for various images with scaling factor of 3. Images S-CIELAB Bicub Zeyde GR ANR NENNLS NELLE MCcSR ScSR baby 2.07E+04 1.36E+04 1.40E+04 1.32E+04 1.47E+04 1.34E+04 1.34E+04 1.50E+04 butterfly 2.28E+04 1.55E+04 1.84E+04 1.55E+04 1.60E+04 1.60E+04 1.54E+04 1.49E+04 bird 1.07E+04 7.36E+03 8.02E+03 7.21E+03 7.73E+03 7.30E+03 6.50E+03 7.81E+03 face 3.79E+03 2.71E+03 2.73E+03 2.57E+03 2.73E+03 2.61E+03 2.47E+03 2.70E+03 foreman 8.46E+03 3.90E+03 4.79E+03 3.48E+03 4.01E+03 3.62E+03 3.72E+03 3.89E+03 coastguard 1.96E+04 1.71E+04 1.70E+04 1.70E+04 1.76E+04 1.71E+04 1.69E+04 1.70E+04 flowers 4.47E+04 3.75E+04 3.89E+04 3.69E+04 3.84E+04 3.74E+04 3.29E+04 3.70E+04 head 3.79E+03 2.69E+03 2.74E+03 2.54E+03 2.79E+03 2.61E+03 2.42E+03 2.65E+03 lenna 2.44E+04 1.74E+04 1.85E+04 1.67E+04 1.79E+04 1.69E+04 1.58E+04 1.72E+04 man 3.80E+04 2.91E+04 3.03E+04 2.84E+04 3.02E+04 2.89E+04 2.88E+04 2.95E+04 pepper 2.48E+04 1.91E+04 2.15E+04 1.96E+04 2.02E+04 1.95E+04 1.73E+04 1.91E+04 average 2.79E+04 2.27E+04 2.36E+04 2.24E+04 2.33E+04 2.26E+04 2.14E+04 2.28E+04 iPAL Color Super Resolution 22/28
  • 24. Background Color SR Color Dictionary Learning Experimental Results Conclusion Effect of RGB constraints Figure: Visual Images as well as S-CIELAB error maps are shown for a scaling factor of 3. From left to right for each row images correspond to: Original image, applying SR separately on RGB channels (36.26, 0.83, 1.57e4), ScSR (36.13, 0.83, 1.67e4) and MCcSR (36.67, 0.85, 1.43e4). Numbers in parenthesis are PSNR, SSIM and SCIELAB error measures. iPAL Color Super Resolution 23/28
  • 25. Background Color SR Color Dictionary Learning Experimental Results Conclusion Effect of RGB constraints Figure: Visual Images as well as S-CIELAB error maps are shown for a scaling factor of 3. From left to right for each row Images correspond to: Original Image, applying SR separately on RGB channels, ScSR, MCcSR Table: Quantitative measures to show effectiveness of color constraints in SR for a scaling factor of 3. Images PSNR SSIM S-CIELAB Separate RGB ScSR MCcSR Separate RGB ScSR MCcSR Separate RGB ScSR MCcSR comic 28.37 28.25 28.51 0.74 0.74 0.75 2.80e4 3.00e4 2.70e4 baboon 26.95 26.95 27.11 0.53 0.52 0.54 9.93e4 1.01e5 9.57e4 pepper 36.14 35.85 36.30 0.79 0.77 0.81 1.93e4 2.27e5 1.73e4 bird 37.71 37.59 38.02 0.92 0.912 0.93 7.28e3 8.54e3 6.50e3 iPAL Color Super Resolution 24/28
  • 26. Background Color SR Color Dictionary Learning Experimental Results Conclusion Performance Under Noise Figure: Super Resolution performance under difference noise standard deviations: 4,6,8,12 (from top to bottom ) with different methods: Original, bicubic, MCcSR, ScSR (from left to right) Table: Average performance under different noise levels. Measure Method σ = 0 σ = 4 σ = 6 σ = 8 σ = 12 PSNR Bicubic 33.08 32.99 32.75 32.50 31.88 ScSR 34.00 33.95 33.92 33.90 33.86 MCcSR 34.14 34.11 34.09 34.09 34.07 SSIM Bicubic 0.745 0.731 0.698 0.672 0.619 ScSR 0.774 0.772 0.766 0.761 0.752 MCcSR 0.785 0.783 0.780 0.775 0.768 SCIELAB Bicubic 2.79E4 2.92E4 4.40E4 5.25E4 6.31E4 ScSR 2.28E4 2.31E4 2.36E4 2.39E4 2.43E4 MCcSR 2.14E4 2.16E4 2.20E4 2.21E4 2.23E4 iPAL Color Super Resolution 25/28
  • 27. Background Color SR Color Dictionary Learning Experimental Results Conclusion Dictionary size • Dictionaries of size 16,32,64,128,256 and 512 are trained. Figure: Effect of dictionary size on PSNR, SSIM and S-CIELAB error iPAL Color Super Resolution 26/28
  • 28. Background Color SR Color Dictionary Learning Experimental Results Conclusion Conclusion and Future Work • Sparsity → powerful prior for the ill-posed problem of single image super resolution • Cross channel information and color constraints → Regularizing the optimization problem for boosting SR performance • Under different scaling factors, different noise levels, different dictionary sizes the proposed MCcSR method outperforms the state of the art. • Expedite the sparse coding problem using neural networks • Introduce other objective measurements rather than MSE for quality assessment or in the objective function • Apply other cross channel constraints or color constraint that can improve super resolution performance iPAL Color Super Resolution 27/28
  • 29. Background Color SR Color Dictionary Learning Experimental Results Conclusion Thank you! iPAL Color Super Resolution 28/28
  • 30. Backup Slides iPAL Color Super Resolution 1/6
  • 31. Dictionary Atoms • Low resolution dictionary atoms - Red channel only- 9 by 9 pixels patches - Extracted from features Figure: Low resolution dictionary atoms - Red channel only- 9 by 9 pixels patches - Extracted from features Figure: High resolution dictionary atoms - RGB - 9 by 9 pixels patches iPAL Color Super Resolution 2/6
  • 32. Color Adaptive Patch Processing • Not all image patches have the same color information (chrominance) • Parameter τ can be used to control high frequency correlation among color channels. • Calculate the variations in color information → Adaptively control τ. β = 1 2s HHH1yyyCb + HHH1yyyCr HHH1yyyY + HHH2yyyCb + HHH2yyyCr HHH2yyyY where s is normalization parameter, HHH1 and HHH2 are high-pass Scharr operators. iPAL Color Super Resolution 3/6
  • 33. (a) PSNR and SSIM - scale 2: Top: Original, Bicubic (28.19, 0.635), Zeyde et al. (28.62, 0.683), Middle: GR (28.63, 0.690), ANR (28.67, 0.689), NENNLS (28.58, 0.680) Bottom: NELLE (28.66, 0.688), MCcSR (28.78, 0.705, ScSR (28.69, 0.692) . (b) SCIELAB error map - scale 2: Top: Original, Bicubic (7.856e4), Zeyde et al. (6.570e4), Middle: GR (6.388e4), ANR (3.287e4), NENNLS (6.585e4) Bottom: NELLE (6.421e4), MCcSR (5.799e4) , ScSR (6.296e4). iPAL Color Super Resolution 4/6
  • 34. (c) PSNR and SSIM - scale 3: Top: Original, Bicubic (26.71, 0.480), Zeyde et al. (26.94, 0.520), Middle: GR (26.95, 0.529), ANR (26.97, 0.527), NENNLS (26.92, 0.518) Bottom: NELLE (26.97, 0.526), MCcSR (27.11, 0.549), ScSR (26.95, 0.524) . (d) SCIELAB error map - scale 3: Top: Original, Bicubic (1.078e5), Zeyde et al. (1.008e5), Middle: GR (1.000e5), ANR (9.962e4), NENNLS (1.010e5) Bottom: NELLE (9.998e4), MCcSR (9.574e4) , ScSR (1.018e5). iPAL Color Super Resolution 5/6
  • 35. (e) PSNR and SSIM - scale 4: Top: Original, Bicubic (26.00, 0.390), Zeyde et al. (26.17, 0.420), Middle: GR (26.17, 0.428), ANR (26.19, 0.426), NENNLS (26.15, 0.419) Bottom: NELLE (26.18, 0.425), MCcSR (26.25, 0.446), ScSR (26.11, 0.415) . (f) SCIELAB error map - scale 4: Top: Original, Bicubic (1.237e5), Zeyde et al. (1.186e5), Middle: GR (1.183e5), ANR (1.180e5), NENNLS (1.190e5) Bottom: NELLE (1.183e5), MCcSR (1.136e5) , ScSR (1.185e5). iPAL Color Super Resolution 6/6