SlideShare a Scribd company logo
1 of 15
Download to read offline
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
DOI: 10.5121/ijci.2015.4105 51
Some Results on Fuzzy Soft Multi Sets
Anjan Mukherjee1 and Ajoy Kanti Das2
1
Department of Mathematics,Tripura University, Agartala-799022,Tripura, INDIA.
2
Department of Mathematics, ICV-College, Belonia -799155, Tripura, INDIA.
ABSTRACT
In this paper we define some new operations in fuzzy soft multi set theory and show that the De
Morgan’s type of results hold in fuzzy soft multi set theory with respect to these newly defined
operations in our way. Also some new results along with illustrating examples have been put
forward in our work.
KEYWORDS
Fuzzy set, soft set, soft multi set, fuzzy soft multi set.
1. INTRODUCTION
Theory of fuzzy sets, soft sets and soft multi sets are powerful mathematical tools for modeling
various types of vagueness and uncertainty. In 1999, Molodtsov [9] initiated soft set theory as a
completely generic mathematical tool for modelling uncertainty and vague concepts. Later on
Maji et al. [8] presented some new definitions on soft sets and discussed in details the application
of soft set in decision making problem. Based on the analysis of several operations on soft sets
introduced in [9], Ali et al. [2] presented some new algebraic operations for soft sets and proved
that certain De Morgan’s law holds in soft set theory with respect to these new definitions.
Combining soft sets [9] with fuzzy sets [13], Maji et al. [7] defined fuzzy soft sets, which are rich
potential for solving decision making problems. Alkhazaleh and others [1, 3, 5, 6, 12] as a
generalization of Molodtsov’s soft set, presented the definition of a soft multi set and its basic
operations such as complement, union, and intersection etc. In 2012, Alkhazaleh and Salleh [4]
introduced the concept of fuzzy soft multi set theory and studied the application of these sets and
recently, Mukherjee and Das [10, 11] constructed the fundamental theory on soft multi
topological spaces and fuzzy soft multi topological spaces.
In this paper we define some new notions in fuzzy soft multi set theory and show that the De
Morgan’s type of results holds in fuzzy soft multi set theory for the newly defined operations in
our way. Also some new results along with illustrating examples have been put forward in our
work.
2. PRELIMINARY NOTES
In this section, we recall some basic notions in soft set theory, and fuzzy soft multi set theory.
Molodstov defined soft set in the following way. Let U be an initial universe and E be a set of
parameters. Let P(U) denotes the power set of U and A⊆E.
Definition 2.1[9]
A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→ P(U). In other
words, soft set over U is a parameterized family of subsets of the universe U.
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
52
Definition 2.2 [7]
Let U be an initial universe and E be a set of parameters. Let F(U) be the set of all fuzzy subsets
of U and A E⊆ . Then the pair (F, A) is called a fuzzy soft set over U, where F is a mapping
given by F: A →F(U).
Definition 2.3[4]
Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iUE i I∈ be a collection
of sets of parameters. Let ( )i I iU FS U∈= ∏ where ( )iFS U denotes the set of all fuzzy subsets of
iU , ii I UE E∈= ∏ and A E⊆ . A pair (F, A) is called a fuzzy soft multi set over U, where
:F A U→ is a mapping given by ,e A∀ ∈
( )
( ) : :
( )
i
F e
u
F e u U i I
uµ
   
= ∈ ∈      
Definition 2.4[12]
The complement of a fuzzy soft multi set (F, A) over U is denoted by ( , )c
F A and is defined by
( , ) ( , )c c
F A F A= , where e A∀ ∈
( )
( ) : :
1 ( )
c
i
F e
u
F e u U i I
uµ
   
= ∈ ∈   −   
.
3. A STUDY ON SOME OPERATIONS IN FUZZY SOFT MULTI
SETS
Definition 3.1
A fuzzy soft multi set (F, A) over U is called fuzzy soft multi subset of a fuzzy soft multi set (G,
B) if
( )a A B⊆ and
( ) ,b e A∀ ∈ ( ) ( ) ( ) ( )( ) ( ),F e G eF e G e u uµ µ⊆ ⇔ ≤ , .iu U i I∀ ∈ ∈
This relationship is denoted by (F, A) (G, B).⊆%
Definition 3.2
Two fuzzy soft multiset (F, A) and (G, B) over U is called equal if (F, A) is fuzzy soft multi
subset of (G, B) and (G, B) is fuzzy soft multi subset of (F, A).
Definition 3.3
A fuzzy soft multiset (F, A) over U is called a null fuzzy soft multiset, denoted by ( , )F A ϕ , if all
the fuzzy soft multiset parts of (F,A) equals φ.
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
53
Definition 3.4
A fuzzy soft multiset (F, A) over U is called an absolute fuzzy soft multiset, denoted by ( , )UF A ,
if ( ),, , ,i U ji
U j e ie F U i= ∀ .
Definition 3.5
Union of two fuzzy soft multisets (F, A) and (G, B) over U is a fuzzy soft multiset (H, D) where
D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
Where ( ) ( ), ,
( ), ( ) ,U j U ji i
e eF e G e s F G=U {1,2,3,..,n}i∀ ∈ and {1,2,3,..,n}j ∈ with s as an s-
norm and is written as ( , ) ( , ) ( , )F A G B H D∪ =%
Proposition 3.6
If (F, A), (G, B) and (H, D) are three fuzzy soft multisets over U, then
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) , , , , , , ,a F A G B H D F A G B H D∪ ∪ = ∪ ∪% % % %
( ) ( ) ( )( ) , , , ,b F A F A F A∪ =%
( ) ( ) ( )( ) , , , ,c F A G A F Aϕ
∪ =%
( ) ( ) ( )( ) , , , ,U U
d F A G A G A∪ =%
Definition 3.7
Intersection of two fuzzy soft multisets (F, A) and (G, B) over U is a fuzzy soft multiset (H, D)
where D A B= ∩ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
where ( ) ( ), ,
( ), ( ) ,U j U ji i
e eF e G e t F G=I {1,2,3,..,n}i∀ ∈ and {1,2,3,..,n}j ∈ with t as an t-
norm and is written as ( , ) ( , ) ( , )F A G B H C∪ =%
Proposition 3.8
If (F, A), (G, B) and (H, D) are three fuzzy soft multisets over U, then
( ) ( ) ( )( ) ( ) ( )( ) ( )( ) , , , , , , ,a F A G B H D F A G B H D∩ ∩ = ∩ ∩% % % %
( ) ( ) ( )( ) , , , ,b F A F A F A∩ =%
( ) ( ) ( )( ) , , , ,c F A G A G Aϕ ϕ
∩ =%
( ) ( ) ( )( ) , , , ,U
d F A G A F A∩ =%
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
54
( ) ( ) ( )( ) , , , ,U
e F A G A F A∩ =%
Definition3.9
The complement of fuzzy soft multiset (F, A) over U is denoted by ( , )c
F A and is defined by
( , ) ( , )c c
F A F A= , where :c
F A U→ is a mapping given by ( )( ) ( ) ,c
F c F Aα α α= ∀ ∈ , where
c is fuzzy complement.
Proposition 3.10
For a fuzzy soft multiset (F, A) over U,
( )( ) ( )( ) , , ,
cc
a F A F A=
( ) ( )( ) , , ,
i i
c
U
b F A F Aϕ≈ ≈
=
( ) ( )( ) , , ,
c
U
c F A F Aϕ
=
( ) ( )( ) , , ,
i i
c
U
d F A F A ϕ≈ ≈
=
( ) ( )( ) , , ,
c
U
e F A F A ϕ
=
Now we introduce some new types of operations
Definition 3.11
The restricted union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set
(H, C) where C A B= ∩ and ,e C∀ ∈ ( )( ) ( ), ( )H e F e G e= U ,
{ }( ) ( )
: :
max ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as ( , ) ( , ) ( , ).RF A G B H C=∪%
Definition 3.12
The extended union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set
(H, D), where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
where ( )( ), ( )F e G eU
{ }( ) ( )
: :
max ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as
( , ) ( , ) ( , ).EF A G B H D=∪%
Definition 3.13
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
55
The restricted intersection of two intuitionistic fuzzy soft multi sets (F, A) and (G, B) over U is a
fuzzy soft multi set (H, D) where D A B= ∩ and ,e D∀ ∈ ( )( ) ( ), ( )H e F e G e= I
{ }( ) ( )
: :
min ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as ( , ) ( , ) ( , ).RF A G B H D=∩%
Definition 3.14
The extended intersection of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft
multi set (H, D), where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
where ( )( ), ( )F e G eI
{ }( ) ( )
: :
min ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
and is written as
( , ) ( , ) ( , ).EF A G B H D=∩%
Example 3.15
Let us consider there are two universes { }1 1 2 3, ,U h h h= , { }2 1 2,U c c= and let { }1 2
,U UE E be a
collection of sets of decision parameters related to the above universes, where
{ }1 1 1 1,1 ,2 ,3exp , ,U U U UE e ensive e cheap e wooden= = = =
{ }1 2 2 2,1 ,2 ,3exp , , ,U U U UE e ensive e cheap e sporty= = = =
Let ( )2
1i iU FS U== ∏ , 2
1 ii UE E== ∏ and
{ }1 2 1 2 1 21 ,1 ,1 2 ,1 ,2 3 ,2 ,1( , ), ( , ), ( , ) ,U U U U U UA e e e e e e e e e= = = =
{ }1 2 1 2 1 21 ,1 ,1 2 ,1 ,2 4 ,3 ,2( , ), ( , ), ( , ) .U U U U U UB e e e e e e e e e= = = =
Suppose that
( ) 3 31 2 1 2 1 2 1 2
1 2
31 2 1 2
3
, , , , , , , , , , , , ,
0.2 0.4 0.8 0.8 0.5 0.7 0.7 1 0.8 0.6
, , , , , ,
0.9 0.7 1 0.3 0.5
h hh h c c h h c c
F A e e
hh h c c
e
             
=               
            
      
      
     
( ) 3 31 2 1 2 1 2 1 2
1 2
31 2 1 2
4
, , , , , , , , , , , , ,
0.3 0.3 0.7 0.7 0.6 0.5 0.8 1 0.4 0.6
, , , , , ,
0.8 0.9 1 0.5 0.2
h hh h c c h h c c
G B e e
hh h c c
e
             
=               
            
      
      
     
then we have,
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
56
3 31 2 1 2 1 2 1 2
1 2( ). ( , ) ( , ) , , , , , , , , , , ,
0.3 0.4 0.8 0.8 0.6 0.7 0.8 1 0.8 0.6R
h hh h c c h h c c
i F A G B e e
              
=                
              
∪%
3 31 2 1 2 1 2 1 2
1 2
31 2
3
( ). ( , ) ( , ) , , , , , , , , , , , ,
0.3 0.4 0.8 0.8 0.6 0.7 0.8 1 0.8 0.6
, , ,
0.9 0.7 1
E
h hh h c c h h c c
ii F A G B e e
hh h
e
             
=               
            

∪%
31 2 1 2 1 2
4, , , , , , , , ,
0.3 0.5 0.8 0.9 1 0.5 0.2
hc c h h c c
e
            
              
             
3 31 2 1 2 1 2 1 2
1 2( ). ( , ) ( , ) , , , , , , , , , , ,
0.2 0.3 0.7 0.7 0.5 0.5 0.7 1 0.4 0.6R
h hh h c c h h c c
iii F A G B e e
              
=                
              
∩%
3 31 2 1 2 1 2 1 2
1 2
31 2
3
( ). ( , ) ( , ) , , , , , , , , , , ,
0.2 0.3 0.7 0.7 0.5 0.5 0.7 1 0.4 0.6
, , ,
0.9 0.7 1
E
h hh h c c h h c c
iv F A G B e e
hh h
e
             
=               
            


∩%
31 2 1 2 1 2
4, , , , , , , , ,
0.3 0.5 0.8 0.9 1 0.5 0.2
hc c h h c c
e
            
             
             
Proposition 3.16
For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have
1. ( )( , ) ( , ) ( , ) ( , )
c c c
E EF A G B F A G B⊆∪ ∪%% %
2. ( )( , ) ( , ) ( , ) ( , )
cc c
E EF A G B F A G B⊆∩ ∩%% %
Proof.
1. Let ( , ) ( , ) ( , ),EF A G B H C=∪% where C A B= ∪ and ,e C∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
( )( ), ( )where F e G eU
{ }( ) ( )
: :
max ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
EF A G B H C H C= =∪% where C A B= ∪ and ,e C∀ ∈
( )( )
( ),
( ) ( ),
( ), ( ) , ,
c
c c
c
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩ U
( )( )
{ }
{ }
( ) ( )
( ) ( )
( ), ( ) : :
1 max ( ), ( )
: :
min 1 ( ),1 ( )
c
i
F e G e
i
F e G e
u
where F e G e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = ∈ ∈ 
 −   
    = ∈ ∈ 
 − −   
U
Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c
E EF A G B F A G B K D= =∪ ∪% % . Where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
c
c
c c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
57
( )
{ }( ) ( )
( ), ( ) : : .
max 1 ( ),1 ( )
c c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 − −   
U
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e⊆ .
Thus ( )( , ) ( , ) ( , ) ( , )
c c c
E EF A G B F A G B⊆∪ ∪%% % .
2. Let ( , ) ( , ) ( , ),EF A G B H C=∩% where C A B= ∪ and ,e C∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
( )( ), ( )where F e G eI
{ }( ) ( )
: :
min ( ), ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
    
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
EF A G B H C H C= =∩% where C A B= ∪ and ,e C∀ ∈
( )( )
( ),
( ) ( ),
( ), ( ) , ,
c
c c
c
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩ I
( )( )
{ }
{ }
( ) ( )
( ) ( )
( ), ( ) : :
1 min ( ), ( )
: :
max 1 ( ),1 ( )
c
i
F e G e
i
F e G e
u
where F e G e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = ∈ ∈ 
 −   
    = ∈ ∈ 
 − −   
I
Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c
E EF A G B F A G B K D= =∩ ∩% % . Where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
c
c
c c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
( )
{ }( ) ( )
( ), ( ) : : .
min 1 ( ),1 ( )
c c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 − −   
I
We see that C=D and ,e C∀ ∈ ( ) ( )c
K e H e⊆ .
Thus ( )( , ) ( , ) ( , ) ( , )
cc c
E EF A G B F A G B⊆∩ ∩%% % .
Proposition 3.17
For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have
1. ( )( , ) ( , ) ( , ) ( , )
c c c
R RF A G B F A G B⊆∪ ∪%% %
2. ( )( , ) ( , ) ( , ) ( , )
cc c
R RF A G B F A G B⊆∩ ∩%% %
Proof.
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
58
1. Let ( , ) ( , ) ( , ),RF A G B H C=∪% where C A B= ∩ and ,e C∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : :
max ( ), ( )
i
F e G e
u
H e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
    
U .
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
RF A G B H C H C= =∪% where C A B= ∩ and ,e C∀ ∈
( )( )
{ }
{ }
( ) ( )
( ) ( )
( ) ( ), ( ) : :
1 max ( ), ( )
: :
min 1 ( ),1 ( )
cc
i
F e G e
i
F e G e
u
H e F e G e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = = ∈ ∈ 
 −   
    = ∈ ∈ 
 − −   
U
.
Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c
R RF A G B F A G B K D= =∪ ∪% % . Where D A B= ∩ and ,e D∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : : .
max 1 ( ),1 ( )
c c
i
F e G e
u
K e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
U
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e⊆ .
Thus( )( , ) ( , ) ( , ) ( , )
c c c
R RF A G B F A G B⊆∪ ∪%% % .
2. Let ( , ) ( , ) ( , ),RF A G B H C=∩% where C A B= ∩ and ,e C∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : :
min ( ), ( )
i
F e G e
u
H e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
    
I .
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈
( )( )
{ }
{ }
( ) ( )
( ) ( )
( ) ( ), ( ) : :
1 min ( ), ( )
: :
max 1 ( ),1 ( )
cc
i
F e G e
i
F e G e
u
H e F e G e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = = ∈ ∈ 
 −   
    = ∈ ∈ 
 − −   
I
.
Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c
R RF A G B F A G B K D= =∩ ∩% % . Where D A B= ∩ and ,e D∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : : .
min 1 ( ),1 ( )
c c
i
F e G e
u
K e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
I
We see that C=D and ,e C∀ ∈ ( ) ( )c
K e H e⊆ .
Thus ( )( , ) ( , ) ( , ) ( , )
cc c
R RF A G B F A G B⊆∩ ∩%% % .
Proposition 3.18
For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have
1. ( )( , ) ( , ) ( , ) ( , )
c c c
R EF A G B F A G B⊆∩ ∪% %
2. ( )( , ) ( , ) ( , ) ( , )
cc c
R EF A G B F A G B⊆∩ ∪% %
Proof.
1. Let ( , ) ( , ) ( , ),RF A G B H C=∩% where C A B= ∩ and ,e C∀ ∈
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
59
( )
{ }( ) ( )
( ) ( ), ( ) : :
min ( ), ( )
i
F e G e
u
H e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
    
I
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈
{ }
{ }
( ) ( )
( ) ( )
( ) : :
1 min ( ), ( )
: :
max 1 ( ),1 ( )
c
i
F e G e
i
F e G e
u
H e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = ∈ ∈ 
 −   
    = ∈ ∈ 
 − −   
Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c
E EF A G B F A G B K D= =∪ ∪% % . Where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
c
c
c c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
( )
{ }( ) ( )
, ( ), ( ) : :
max 1 ( ),1 ( )
c c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 − −   
U
We see that C D⊆ and ,e C∀ ∈ ( ) ( )c
H e K e= .
Thus ( )( , ) ( , ) ( , ) ( , )
c c c
R EF A G B F A G B⊆∩ ∪% % .
2. Let ( , ) ( , ) ( , ) ( , ) ( , ),c c c c
R RF A G B F A G B H C= =∩ ∩% % where C A B= ∩ and ,e C∀ ∈
( )
{ }
{ }
( ) ( )
( ) ( )
( ) ( ), ( ) : :
min 1 ( ),1 ( )
: :
1 max ( ), ( )
c c
i
F e G e
i
F e G e
u
H e F e G e u U i I
u u
u
u U i I
u u
µ µ
µ µ
    = = ∈ ∈ 
 − −   
    = ∈ ∈ 
 −   
I
Again, let ( )( , ) ( , ) ,EF A G B K D=∪% . Where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
( )
{ }( ) ( )
, ( ), ( ) : :
max ( ), ( )
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
    
U
Thus ( ) ( )( , ) ( , ) , ( , ),
c c c
EF A G B K D K D= =∪% where D A B= ∪ and ,e D∀ ∈
( )( )
( ),
( ) ( ),
( ), ( ) , ,
c
c c
c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩ U
( )( )
{ }( ) ( )
, ( ), ( ) : :
1 max ( ), ( )
c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 −   
U
We see that C D⊆ and ,e C∀ ∈ ( ) ( )c
H e K e= .
Thus ( )( , ) ( , ) ( , ) ( , )
cc c
R EF A G B F A G B⊆∩ ∪% % .
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
60
Proposition 3.19(De Morgan Laws)
For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have
[1]. ( )( , ) ( , ) ( , ) ( , )
c c c
R RF A G B F A G B=∪ ∩% %
[2]. ( )( , ) ( , ) ( , ) ( , )
c c c
R RF A G B F A G B=∩ ∪% %
Proof.
[1]. Let ( , ) ( , ) ( , ),RF A G B H C=∪% where C A B= ∩ and ,e C∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : :
max ( ), ( )
i
F e G e
u
H e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
    
U .
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
RF A G B H C H C= =∪% where C A B= ∩ and ,e C∀ ∈
{ }( ) ( )
( ) : :
1 max ( ), ( )
c
i
F e G e
u
H e u U i I
u uµ µ
    = ∈ ∈ 
 −   
{ }( ) ( )
: :
min 1 ( ),1 ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c
R RF A G B F A G B K D= =∩ ∩% % where D A B= ∩ and ,e D∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : : .
min 1 ( ),1 ( )
c c
i
F e G e
u
K e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
I
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e= . Hence proved.
[2]. Let ( , ) ( , ) ( , ),RF A G B H C∩ =% where C A B= ∩ and ,e C∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : :
min ( ), ( )
i
F e G e
u
H e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
    
I .
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈
{ }( ) ( )
( ) : :
1 min ( ), ( )
c
i
F e G e
u
H e u U i I
u uµ µ
    = ∈ ∈ 
 −   
{ }( ) ( )
: :
max 1 ( ),1 ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c
R RF A G B F A G B K D= =∪ ∪% % where D A B= ∩ and ,e D∀ ∈
( )
{ }( ) ( )
( ) ( ), ( ) : : .
max 1 ( ),1 ( )
c c
i
F e G e
u
K e F e G e u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
U
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e= . Hence proved.
Proposition 3.20(De Morgan Laws)
For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have
1. ( )( , ) ( , ) ( , ) ( , )
c c c
E EF A G B F A G B=∪ ∩% %
2. ( )( , ) ( , ) ( , ) ( , )
c c c
E EF A G B F A G B=∩ ∪% %
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
61
Proof.
1. Let ( , ) ( , ) ( , ),EF A G B H C=∪% where C A B= ∪ and ,e C∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
( )
{ }( ) ( )
( ), ( ) : :
max ( ), ( )
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
    
U
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
EF A G B H C H C= =∪% where C A B= ∪ and ,e C∀ ∈
( )( )
( ),
( ) ( ),
( ), ( ) , ,
c
c c
c
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩ U
( )( )
{ }( ) ( )
( ), ( ) : :
1 max ( ), ( )
c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 −   
U
{ }( ) ( )
: :
min 1 ( ),1 ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c
E EF A G B F A G B K D= =∩ ∩% % where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
c
c
c c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
( )
{ }( ) ( )
( ), ( ) : :
min 1 ( ),1 ( )
c c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 − −   
I
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e= . Thus the result.
2. Let ( , ) ( , ) ( , ),EF A G B H C=∩% where C A B= ∪ and ,e C∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩I
( )
{ }( ) ( )
( ), ( ) : :
min ( ), ( )
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
    
I
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
EF A G B H C H C= =∩% where C A B= ∪ and ,e C∀ ∈
( )( )
( ),
( ) ( ),
( ), ( ) , ,
c
c c
c
F e if e A B
H e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩ I
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
62
( )( )
{ }( ) ( )
( ), ( ) : :
1 min ( ), ( )
c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 −   
I
{ }( ) ( )
: :
max 1 ( ),1 ( )
i
F e G e
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c
E EF A G B F A G B K D= =∪ ∪% % where D A B= ∪ and ,e D∀ ∈
( )
( ),
( ) ( ),
( ), ( ) , ,
c
c
c c
F e if e A B
K e G e if e B A
F e G e if e A B
 ∈ −

= ∈ −

∈ ∩U
( )
{ }( ) ( )
( ), ( ) : :
max 1 ( ),1 ( )
c c
i
F e G e
u
where F e G e u U i I
u uµ µ
    = ∈ ∈ 
 − −   
U
We see that C=D and ,e C∀ ∈ ( ) ( )c
H e K e= . Hence proved.
Definition 3.21
If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , AND , "F A G B is a fuzzy soft
multi set denoted by ( ) ( ), ,F A G B∧ and is defined by ( ) ( ) ( ), , , ,F A G B H A B∧ = × where H is
mapping given by H: A×B→U and
( )
{ }( ) ( )
, , ( , ) : : .
min ( ), ( )
i
F a G b
u
a b A B H a b u U i I
u uµ µ
    ∀ ∈ × = ∈ ∈ 
    
Example 3.22
If we consider two fuzzy soft multi sets (F, A) and (G, B) as in example 3.15, then we have
( ) ( ) ( ) ( )3 31 2 1 2 1 2 1 2
1 1 1 2, , , , , , , , , , , , , , , ,
0.2 0.3 0.7 0.7 0.5 0.2 0.4 0.8 0.4 0.5
h hh h c c h h c c
F A G B e e e e
             
∧ =               
            
( ) ( )3 31 2 1 2 1 2 1 2
1 4 2 1, , , , , , , , , , , , , ,
0.2 0.4 0.8 0.5 0.2 0.3 0.3 0.7 0.7 0.6
h hh h c c h h c c
e e e e
            
             
            
( ) ( )3 31 2 1 2 1 2 1 2
2 2 2 4, , , , , , , , , , , , , ,
0.5 0.7 1 0.4 0.6 0.7 0.7 1 0.5 0.2
h hh h c c h h c c
e e e e
            
             
            
( ) ( )
( )
3 31 2 1 2 1 2 1 2
3 1 3 2
31 2 1 2
3 4
, , , , , , , , , , , , , ,
0.3 0.3 0.7 0.3 0.5 0.5 0.7 1 0.3 0.5
, , , , , ,
0.8 0.7 1 0.3 0.2
h hh h c c h h c c
e e e e
hh h c c
e e
            
             
            
      
      
     
Definition 3.23
If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , OR , "F A G B is a fuzzy soft
multi set denoted by ( ) ( ), ,F A G B∨ and is defined by ( ) ( ) ( ), , , ,F A G B K A B∨ = × where K is mapping
given by K: A×B→U and
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
63
( )
{ }( ) ( )
, , ( , ) : :
max ( ), ( )
i
F a G b
u
a b A B K a b u U i I
u uµ µ
    ∀ ∈ × = ∈ ∈ 
    
Example 3.24
If we consider two fuzzy soft multi sets (F, A) and (G, B) as in example 3.15, then we have
( ) ( ) ( ) ( )
( )
3 31 2 1 2 1 2 1 2
1 1 1 2
31 2 1 2
1 4
, , , , , , , , , , , , , , , ,
0.3 0.4 0.8 0.8 0.6 0.5 0.8 1 0.8 0.6
, , , , , ,
0.8 0.9 1 0.8 0.5
h hh h c c h h c c
F A G B e e e e
hh h c c
e e
             
∨ =               
            
 
 
 
( )
( ) ( )
31 2 1 2
2 1
3 31 2 1 2 1 2 1
2 2 2 4
, , , , , , , ,
0.7 0.7 1 0.8 0.6
, , , , , , , , , , , , ,
0.7 0.8 1 0.8 0.6 0.8 0.9 1 0.8
hh h c c
e e
h hh h c c h h c c
e e e e
          
           
          
      
       
      
2
,
0.6
   
   
   
( ) ( )3 31 2 1 2 1 2 1 2
3 1 3 2, , , , , , , , , , , , , ,
0.9 0.7 1 0.7 0.6 0.9 0.8 1 0.4 0.6
h hh h c c h h c c
e e e e
            
             
            
( ) 31 2 1 2
3 4, , , , , ,
0.9 0.9 1 0.5 0.5
hh h c c
e e
      
      
     
Proposition 3.25
For two fuzzy soft multi sets (F, A) and (G, B) over U, we have the following
1. ( )( , ) ( , ) ( , ) ( , )
c c c
F A G B F A G B∧ = ∨
2. ( )( , ) ( , ) ( , ) ( , )
c c c
F A G B F A G B∨ = ∧
Proof.
1. Let ( , ) ( , ) ( , ),F A G B H A B∧ = × where ,a A and b B∀ ∈ ∀ ∈
( )
{ }( ) ( )
( , ) ( ), ( ) : :
min ( ), ( )
i
F a G b
u
H a b F a G b u U i I
u uµ µ
    = = ∈ ∈ 
    
I
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
F A G B H A B H A B∧ = × = × where ( ), ,a b A B∀ ∈ ×
{ }( ) ( )
( , ) : :
1 min ( ), ( )
c
i
F a G b
u
H a b u U i I
u uµ µ
    = ∈ ∈ 
 −   
{ }( ) ( )
: :
max 1 ( ),1 ( )
i
F a G b
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, let ( )( , ) ( , ) ( , ) ( , ) ,c c c c
F A G B F A G B K A B∨ = ∨ = × , where ( ), ,a b A B∀ ∈ ×
( )
{ }( ) ( )
( , ) ( ), ( ) : :
max 1 ( ),1 ( )
c c
i
F a G b
u
K a b F a G b u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
U .
Thus it follows that ( )( , ) ( , ) ( , ) ( , )
c c c
F A G B F A G B∧ = ∨ .
2. Let ( , ) ( , ) ( , ),F A G B H A B∨ = × where ,a A and b B∀ ∈ ∀ ∈
( )
{ }( ) ( )
( , ) ( ), ( ) : :
max ( ), ( )
i
F a G b
u
H a b F a G b u U i I
u uµ µ
    = = ∈ ∈ 
    
U
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
64
Thus ( )( , ) ( , ) ( , ) ( , ),
c c c
F A G B H A B H A B∨ = × = × where ( ), ,a b A B∀ ∈ ×
{ }( ) ( )
( , ) : :
1 max ( ), ( )
c
i
F a G b
u
H a b u U i I
u uµ µ
    = ∈ ∈ 
 −   
{ }( ) ( )
: :
min 1 ( ),1 ( )
i
F a G b
u
u U i I
u uµ µ
    = ∈ ∈ 
 − −   
Again, let ( )( , ) ( , ) ( , ) ( , ) ,c c c c
F A G B F A G B K A B∧ = ∧ = × , where ( ), ,a b A B∀ ∈ ×
( )
{ }( ) ( )
( , ) ( ), ( ) : :
min 1 ( ),1 ( )
c c
i
F a G b
u
K a b F a G b u U i I
u uµ µ
    = = ∈ ∈ 
 − −   
I .
Thus it follows that ( )( , ) ( , ) ( , ) ( , )
c c c
F A G B F A G B∨ = ∧ .
4. CONCLUSION
In this paper, we have made an investigation on existing basic notions and results on fuzzy soft
multi sets. Some new results have been stated in our work. Here we shall define some new
operations in fuzzy soft multi set theory and show that the De Morgan’s type of results holds in
fuzzy soft multi set theory with respect to these newly defined operations in our way. These
properties may be used in real life problems, like decision making problem, inventory control
problem, etc.
REFERENCES
[1] K. ALHAZAYMEH & N. HASSAN, (2014) “VAGUE SOFT MULTISET THEORY”, INT. J. PURE AND APPLIED
MATH., VOL. 93, PP511-523.
[2] M.I. ALI, F. FENG, X. LIU, W.K. MINC & M. SHABIR, (2009) “ON SOME NEW OPERATIONS IN SOFT SET
THEORY”, COMP. MATH. APPL., VOL. 57, PP1547-1553.
[3] S. ALKHAZALEH, A.R. SALLEH & N. HASSAN, (2011) SOFT MULTI SETS THEORY, APPL. MATH. SCI.,
VOL. 5, PP3561– 3573.
[4] S. ALKHAZALEH & A.R. SALLEH, (2012) “FUZZY SOFT MULTI SETS THEORY”, HINDAWI PUBLISHING
CORPORATION, ABSTRACT AND APPLIED ANALYSIS, ARTICLE ID 350603, 20 PAGES, DOI:
10.1155/2012/350603.
[5] K.V BABITHA & S.J. JOHN, (2013) “ON SOFT MULTI SETS”, ANN. FUZZY MATH. INFORM., VOL. 5 PP35-
44.
[6] H.M. BALAMI & A. M. IBRAHIM, (2013) “SOFT MULTISET AND ITS APPLICATION IN INFORMATION
SYSTEM”, INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND MANAGEMENT, VOL. 1, PP471-482.
[7] P.K. MAJI, A.R. ROY & R. BISWAS, (2001) “FUZZY SOFT SETS”, J. FUZZY MATH., VOL. 9, PP589-602.
[8] P.K. MAJI, R. BISWAS & A.R. ROY, (2003) “SOFT SET THEORY”, COMP. MATH. APPL., VOL. 45 PP555-
562.
[9] D. MOLODTSOV, (1999) “SOFT SET THEORY-FIRST RESULTS”, COMP. MATH. APPL., VOL. 37, PP19-31.
[10] A. MUKHERJEE & A.K. DAS, (2014) “PARAMETERIZED TOPOLOGICAL SPACE INDUCED BY AN
INTUITIONISTIC FUZZY SOFT MULTI TOPOLOGICAL SPACE”, ANN. PURE AND APPLIED MATH., VOL. 7,
PP7-12.
[11] A. MUKHERJEE & A.K. DAS, (2013) “TOPOLOGICAL STRUCTURE FORMED BY FUZZY SOFT MULTISETS”,
REV. BULL. CAL.MATH.SOC., VOL. 21, NO.2, PP193-212.
[12] D. TOKAT & I. OSMANOGLU, (2011) “SOFT MULTI SET AND SOFT MULTI TOPOLOGY”, NEVSEHIR
UNIVERSITESI FEN BILIMLERI ENSTITUSU DERGISI CILT., VOL. 2, PP109-118.
International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015
65
[13] L.A. ZADEH, (1965) “FUZZY SETS”, INFORM. CONTROL., VOL. 8, PP338-353.
Authors
Prof. Anjan Mukherjee, Pro Vice Chancellor of Tripura University was born on Jan.
01, 1955 in Kolkata, INDIA. He completed his B.Sc. and M.Sc. in Mathematics from
University of Calcutta and obtained his PhD from Tripura University. Prof. Mukherjee
has 26 years of research and teaching experience. He published more than 150 research
papers in different National and International journals and conference proceedings and
has delivered several invited talks. He is also associated with Fuzzy and Rough Sets
Association. He had visited University of Texas (U.S.A.), City College of New York
(U.S.A.), Malayasia (AMC 5th Asian Mathematical Conference) and Bangladesh.
Mr. Ajoy Kanti Das was born on Nov.06, 1987 in Tripura, INDIA. He received the
B.Sc (Hons) degree and M.Sc degree in Pure Mathematics from Tripura University,
Tripura, INDIA in 2008 and 2010 respectively. He works as a faculty member in the
department of Mathematics, ICV-College, Tripura, INDI. His current interest is
Topology, Fuzzy Set Theory and Fuzzy Topology, Rough Sets, Soft Set, applications
in Fuzzy soft computing, Soft Multi Sets. His work has produced 10 peer-reviewed
scientific International and National Journal papers. He has published 05 papers in
NationalandInternationalConferences.

More Related Content

What's hot

Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsIJSRED
 
Results from set-operations on Fuzzy soft sets
Results from set-operations on Fuzzy soft setsResults from set-operations on Fuzzy soft sets
Results from set-operations on Fuzzy soft setsIJMER
 
Free video lectures for mca
Free video lectures for mcaFree video lectures for mca
Free video lectures for mcaEdhole.com
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationCemal Ardil
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...Alexander Decker
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesAlexander Decker
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...ijcsitcejournal
 
Connected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HConnected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HIOSRJM
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsAlexander Decker
 

What's hot (16)

Neutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New OperationsNeutrosophic Soft Topological Spaces on New Operations
Neutrosophic Soft Topological Spaces on New Operations
 
Sub1567
Sub1567Sub1567
Sub1567
 
Results from set-operations on Fuzzy soft sets
Results from set-operations on Fuzzy soft setsResults from set-operations on Fuzzy soft sets
Results from set-operations on Fuzzy soft sets
 
Free video lectures for mca
Free video lectures for mcaFree video lectures for mca
Free video lectures for mca
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
Polyadic systems and multiplace representations
Polyadic systems and multiplace representationsPolyadic systems and multiplace representations
Polyadic systems and multiplace representations
 
relations-function
relations-functionrelations-function
relations-function
 
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equationOn the-approximate-solution-of-a-nonlinear-singular-integral-equation
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
 
A common random fixed point theorem for rational ineqality in hilbert space ...
 A common random fixed point theorem for rational ineqality in hilbert space ... A common random fixed point theorem for rational ineqality in hilbert space ...
A common random fixed point theorem for rational ineqality in hilbert space ...
 
Fixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spacesFixed point and common fixed point theorems in complete metric spaces
Fixed point and common fixed point theorems in complete metric spaces
 
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
On optimization ofON OPTIMIZATION OF DOPING OF A HETEROSTRUCTURE DURING MANUF...
 
Application of Derivative 5
Application of Derivative 5Application of Derivative 5
Application of Derivative 5
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Connected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 HConnected and Distance in G ⊗2 H
Connected and Distance in G ⊗2 H
 
Gj3611551159
Gj3611551159Gj3611551159
Gj3611551159
 
Some fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappingsSome fixed point theorems in fuzzy mappings
Some fixed point theorems in fuzzy mappings
 

Viewers also liked

Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction modelIJCI JOURNAL
 
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...IJCI JOURNAL
 
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGIC
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGICOVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGIC
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGICIJCI JOURNAL
 
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...IJCI JOURNAL
 
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...IJCI JOURNAL
 
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCER
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCERARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCER
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCERIJCI JOURNAL
 
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEM
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEMCASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEM
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEMIJCI JOURNAL
 
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIO
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIOMANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIO
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIOIJCI JOURNAL
 
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...IJCI JOURNAL
 
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...IJCI JOURNAL
 
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVEA VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVEIJCI JOURNAL
 
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPE
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPENFC: ADVANTAGES, LIMITS AND FUTURE SCOPE
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPEIJCI JOURNAL
 
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSURE
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSUREFUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSURE
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSUREIJCI JOURNAL
 
A S URVEY ON D OCUMENT I MAGE A NALYSIS AND R ETRIEVAL S YSTEMS
A S URVEY ON  D OCUMENT  I MAGE  A NALYSIS AND  R ETRIEVAL  S YSTEMSA S URVEY ON  D OCUMENT  I MAGE  A NALYSIS AND  R ETRIEVAL  S YSTEMS
A S URVEY ON D OCUMENT I MAGE A NALYSIS AND R ETRIEVAL S YSTEMSIJCI JOURNAL
 
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
C LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHmC LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHm
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHmIJCI JOURNAL
 
A C OMPARATIVE A NALYSIS A ND A PPLICATIONS O F M ULTI W AVELET T RANS...
A C OMPARATIVE  A NALYSIS  A ND  A PPLICATIONS  O F  M ULTI  W AVELET  T RANS...A C OMPARATIVE  A NALYSIS  A ND  A PPLICATIONS  O F  M ULTI  W AVELET  T RANS...
A C OMPARATIVE A NALYSIS A ND A PPLICATIONS O F M ULTI W AVELET T RANS...IJCI JOURNAL
 
U NIVERSAL ICT D EVICE C ONTROLLER FOR THE V ISUALLY C HALLENGED
U NIVERSAL  ICT D EVICE  C ONTROLLER FOR THE  V ISUALLY  C HALLENGEDU NIVERSAL  ICT D EVICE  C ONTROLLER FOR THE  V ISUALLY  C HALLENGED
U NIVERSAL ICT D EVICE C ONTROLLER FOR THE V ISUALLY C HALLENGEDIJCI JOURNAL
 
LUIS: A L IGHT W EIGHT U SER I DENTIFICATION S CHEME FOR S MARTPHONES
LUIS: A L IGHT  W EIGHT  U SER  I DENTIFICATION  S CHEME FOR  S MARTPHONES LUIS: A L IGHT  W EIGHT  U SER  I DENTIFICATION  S CHEME FOR  S MARTPHONES
LUIS: A L IGHT W EIGHT U SER I DENTIFICATION S CHEME FOR S MARTPHONES IJCI JOURNAL
 

Viewers also liked (19)

Maneuvering target track prediction model
Maneuvering target track prediction modelManeuvering target track prediction model
Maneuvering target track prediction model
 
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...
G-DEEC: GATEWAY BASED MULTI-HOP DISTRIBUTED ENERGY EFFICIENT CLUSTERING PROTO...
 
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGIC
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGICOVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGIC
OVERALL PERFORMANCE EVALUATION OF ENGINEERING STUDENTS USING FUZZY LOGIC
 
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
REDUCING SOURCE CURRENT HARMONICS DUE TO BALANCED AND UN-BALANCED VOLTAGE VAR...
 
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...
A NOVEL APPROACH TO ERROR DETECTION AND CORRECTION OF C PROGRAMS USING MACHIN...
 
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCER
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCERARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCER
ARTIFICIAL NEURAL NETWORK FOR DIAGNOSIS OF PANCREATIC CANCER
 
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEM
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEMCASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEM
CASSANDRA A DISTRIBUTED NOSQL DATABASE FOR HOTEL MANAGEMENT SYSTEM
 
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIO
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIOMANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIO
MANET ROUTING PROTOCOLS ON NETWORK LAYER IN REALTIME SCENARIO
 
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
Controlling of Depth of Dopant Diffusion Layer in a Material by Time Modulati...
 
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...
USABILITY OF WEB SITES ADDRESSING TECHNOLOGY BASED CASER (CLASSROOM ASSESSMEN...
 
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVEA VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE
A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE
 
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPE
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPENFC: ADVANTAGES, LIMITS AND FUTURE SCOPE
NFC: ADVANTAGES, LIMITS AND FUTURE SCOPE
 
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSURE
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSUREFUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSURE
FUZZY FINGERPRINT METHOD FOR DETECTION OF SENSITIVE DATA EXPOSURE
 
A S URVEY ON D OCUMENT I MAGE A NALYSIS AND R ETRIEVAL S YSTEMS
A S URVEY ON  D OCUMENT  I MAGE  A NALYSIS AND  R ETRIEVAL  S YSTEMSA S URVEY ON  D OCUMENT  I MAGE  A NALYSIS AND  R ETRIEVAL  S YSTEMS
A S URVEY ON D OCUMENT I MAGE A NALYSIS AND R ETRIEVAL S YSTEMS
 
4215ijci01
4215ijci014215ijci01
4215ijci01
 
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
C LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHmC LUSTERING  B ASED  A TTRIBUTE  S UBSET  S ELECTION  U SING  F AST  A LGORITHm
C LUSTERING B ASED A TTRIBUTE S UBSET S ELECTION U SING F AST A LGORITHm
 
A C OMPARATIVE A NALYSIS A ND A PPLICATIONS O F M ULTI W AVELET T RANS...
A C OMPARATIVE  A NALYSIS  A ND  A PPLICATIONS  O F  M ULTI  W AVELET  T RANS...A C OMPARATIVE  A NALYSIS  A ND  A PPLICATIONS  O F  M ULTI  W AVELET  T RANS...
A C OMPARATIVE A NALYSIS A ND A PPLICATIONS O F M ULTI W AVELET T RANS...
 
U NIVERSAL ICT D EVICE C ONTROLLER FOR THE V ISUALLY C HALLENGED
U NIVERSAL  ICT D EVICE  C ONTROLLER FOR THE  V ISUALLY  C HALLENGEDU NIVERSAL  ICT D EVICE  C ONTROLLER FOR THE  V ISUALLY  C HALLENGED
U NIVERSAL ICT D EVICE C ONTROLLER FOR THE V ISUALLY C HALLENGED
 
LUIS: A L IGHT W EIGHT U SER I DENTIFICATION S CHEME FOR S MARTPHONES
LUIS: A L IGHT  W EIGHT  U SER  I DENTIFICATION  S CHEME FOR  S MARTPHONES LUIS: A L IGHT  W EIGHT  U SER  I DENTIFICATION  S CHEME FOR  S MARTPHONES
LUIS: A L IGHT W EIGHT U SER I DENTIFICATION S CHEME FOR S MARTPHONES
 

Similar to Some results on fuzzy soft multi sets

On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems ijcax
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelseSAT Publishing House
 
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...ijscmcj
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelseSAT Journals
 
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...Editor IJCATR
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea propertyAlexander Decker
 
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological Spaces
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological SpacesOn Some New Continuous Mappings in Intuitionistic Fuzzy Topological Spaces
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological SpacesEditor IJCATR
 
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...IOSR Journals
 
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONINDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONijcseit
 
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONINDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONijcseit
 
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSCOMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSWireilla
 
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSCOMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSijfls
 
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...AIRCC Publishing Corporation
 
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...AIRCC Publishing Corporation
 
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...Editor IJCATR
 

Similar to Some results on fuzzy soft multi sets (20)

On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems On Fuzzy Soft Multi Set and Its Application in Information Systems
On Fuzzy Soft Multi Set and Its Application in Information Systems
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
 
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
A NEW APPROACH TO M(G)-GROUP SOFT UNION ACTION AND ITS APPLICATIONS TO M(G)-G...
 
A fusion of soft expert set and matrix models
A fusion of soft expert set and matrix modelsA fusion of soft expert set and matrix models
A fusion of soft expert set and matrix models
 
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPSINTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
INTUITIONISTIC S-FUZZY SOFT NORMAL SUBGROUPS
 
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...
Generalized Semipre Regular Closed Sets in Intuitionistic Fuzzy Topological S...
 
Fixed point result in menger space with ea property
Fixed point result in menger space with ea propertyFixed point result in menger space with ea property
Fixed point result in menger space with ea property
 
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological Spaces
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological SpacesOn Some New Continuous Mappings in Intuitionistic Fuzzy Topological Spaces
On Some New Continuous Mappings in Intuitionistic Fuzzy Topological Spaces
 
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...
On Some Types of Fuzzy Separation Axioms in Fuzzy Topological Space on Fuzzy ...
 
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONINDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
 
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATIONINDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
INDUCTIVE LEARNING OF COMPLEX FUZZY RELATION
 
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSCOMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
 
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERSCOMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
COMPARISON OF DIFFERENT APPROXIMATIONS OF FUZZY NUMBERS
 
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
RESIDUAL QUOTIENT AND ANNIHILATOR OF INTUITIONISTIC FUZZY SETS OF RING AND MO...
 
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
Residual Quotient and Annihilator of Intuitionistic Fuzzy Sets of Ring and Mo...
 
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...
On Some New Contra Continuous and Contra Open Mappings in Intuitionistic Fuzz...
 

Recently uploaded

Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Wonjun Hwang
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDGMarianaLemus7
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 

Recently uploaded (20)

Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
Bun (KitWorks Team Study 노별마루 발표 2024.4.22)
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
APIForce Zurich 5 April Automation LPDG
APIForce Zurich 5 April  Automation LPDGAPIForce Zurich 5 April  Automation LPDG
APIForce Zurich 5 April Automation LPDG
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort ServiceHot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
Hot Sexy call girls in Panjabi Bagh 🔝 9953056974 🔝 Delhi escort Service
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 

Some results on fuzzy soft multi sets

  • 1. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 DOI: 10.5121/ijci.2015.4105 51 Some Results on Fuzzy Soft Multi Sets Anjan Mukherjee1 and Ajoy Kanti Das2 1 Department of Mathematics,Tripura University, Agartala-799022,Tripura, INDIA. 2 Department of Mathematics, ICV-College, Belonia -799155, Tripura, INDIA. ABSTRACT In this paper we define some new operations in fuzzy soft multi set theory and show that the De Morgan’s type of results hold in fuzzy soft multi set theory with respect to these newly defined operations in our way. Also some new results along with illustrating examples have been put forward in our work. KEYWORDS Fuzzy set, soft set, soft multi set, fuzzy soft multi set. 1. INTRODUCTION Theory of fuzzy sets, soft sets and soft multi sets are powerful mathematical tools for modeling various types of vagueness and uncertainty. In 1999, Molodtsov [9] initiated soft set theory as a completely generic mathematical tool for modelling uncertainty and vague concepts. Later on Maji et al. [8] presented some new definitions on soft sets and discussed in details the application of soft set in decision making problem. Based on the analysis of several operations on soft sets introduced in [9], Ali et al. [2] presented some new algebraic operations for soft sets and proved that certain De Morgan’s law holds in soft set theory with respect to these new definitions. Combining soft sets [9] with fuzzy sets [13], Maji et al. [7] defined fuzzy soft sets, which are rich potential for solving decision making problems. Alkhazaleh and others [1, 3, 5, 6, 12] as a generalization of Molodtsov’s soft set, presented the definition of a soft multi set and its basic operations such as complement, union, and intersection etc. In 2012, Alkhazaleh and Salleh [4] introduced the concept of fuzzy soft multi set theory and studied the application of these sets and recently, Mukherjee and Das [10, 11] constructed the fundamental theory on soft multi topological spaces and fuzzy soft multi topological spaces. In this paper we define some new notions in fuzzy soft multi set theory and show that the De Morgan’s type of results holds in fuzzy soft multi set theory for the newly defined operations in our way. Also some new results along with illustrating examples have been put forward in our work. 2. PRELIMINARY NOTES In this section, we recall some basic notions in soft set theory, and fuzzy soft multi set theory. Molodstov defined soft set in the following way. Let U be an initial universe and E be a set of parameters. Let P(U) denotes the power set of U and A⊆E. Definition 2.1[9] A pair (F, A) is called a soft set over U, where F is a mapping given by F: A→ P(U). In other words, soft set over U is a parameterized family of subsets of the universe U.
  • 2. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 52 Definition 2.2 [7] Let U be an initial universe and E be a set of parameters. Let F(U) be the set of all fuzzy subsets of U and A E⊆ . Then the pair (F, A) is called a fuzzy soft set over U, where F is a mapping given by F: A →F(U). Definition 2.3[4] Let { }:iU i I∈ be a collection of universes such that i I iU φ∈ =I and let { }:iUE i I∈ be a collection of sets of parameters. Let ( )i I iU FS U∈= ∏ where ( )iFS U denotes the set of all fuzzy subsets of iU , ii I UE E∈= ∏ and A E⊆ . A pair (F, A) is called a fuzzy soft multi set over U, where :F A U→ is a mapping given by ,e A∀ ∈ ( ) ( ) : : ( ) i F e u F e u U i I uµ     = ∈ ∈       Definition 2.4[12] The complement of a fuzzy soft multi set (F, A) over U is denoted by ( , )c F A and is defined by ( , ) ( , )c c F A F A= , where e A∀ ∈ ( ) ( ) : : 1 ( ) c i F e u F e u U i I uµ     = ∈ ∈   −    . 3. A STUDY ON SOME OPERATIONS IN FUZZY SOFT MULTI SETS Definition 3.1 A fuzzy soft multi set (F, A) over U is called fuzzy soft multi subset of a fuzzy soft multi set (G, B) if ( )a A B⊆ and ( ) ,b e A∀ ∈ ( ) ( ) ( ) ( )( ) ( ),F e G eF e G e u uµ µ⊆ ⇔ ≤ , .iu U i I∀ ∈ ∈ This relationship is denoted by (F, A) (G, B).⊆% Definition 3.2 Two fuzzy soft multiset (F, A) and (G, B) over U is called equal if (F, A) is fuzzy soft multi subset of (G, B) and (G, B) is fuzzy soft multi subset of (F, A). Definition 3.3 A fuzzy soft multiset (F, A) over U is called a null fuzzy soft multiset, denoted by ( , )F A ϕ , if all the fuzzy soft multiset parts of (F,A) equals φ.
  • 3. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 53 Definition 3.4 A fuzzy soft multiset (F, A) over U is called an absolute fuzzy soft multiset, denoted by ( , )UF A , if ( ),, , ,i U ji U j e ie F U i= ∀ . Definition 3.5 Union of two fuzzy soft multisets (F, A) and (G, B) over U is a fuzzy soft multiset (H, D) where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U Where ( ) ( ), , ( ), ( ) ,U j U ji i e eF e G e s F G=U {1,2,3,..,n}i∀ ∈ and {1,2,3,..,n}j ∈ with s as an s- norm and is written as ( , ) ( , ) ( , )F A G B H D∪ =% Proposition 3.6 If (F, A), (G, B) and (H, D) are three fuzzy soft multisets over U, then ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) , , , , , , ,a F A G B H D F A G B H D∪ ∪ = ∪ ∪% % % % ( ) ( ) ( )( ) , , , ,b F A F A F A∪ =% ( ) ( ) ( )( ) , , , ,c F A G A F Aϕ ∪ =% ( ) ( ) ( )( ) , , , ,U U d F A G A G A∪ =% Definition 3.7 Intersection of two fuzzy soft multisets (F, A) and (G, B) over U is a fuzzy soft multiset (H, D) where D A B= ∩ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I where ( ) ( ), , ( ), ( ) ,U j U ji i e eF e G e t F G=I {1,2,3,..,n}i∀ ∈ and {1,2,3,..,n}j ∈ with t as an t- norm and is written as ( , ) ( , ) ( , )F A G B H C∪ =% Proposition 3.8 If (F, A), (G, B) and (H, D) are three fuzzy soft multisets over U, then ( ) ( ) ( )( ) ( ) ( )( ) ( )( ) , , , , , , ,a F A G B H D F A G B H D∩ ∩ = ∩ ∩% % % % ( ) ( ) ( )( ) , , , ,b F A F A F A∩ =% ( ) ( ) ( )( ) , , , ,c F A G A G Aϕ ϕ ∩ =% ( ) ( ) ( )( ) , , , ,U d F A G A F A∩ =%
  • 4. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 54 ( ) ( ) ( )( ) , , , ,U e F A G A F A∩ =% Definition3.9 The complement of fuzzy soft multiset (F, A) over U is denoted by ( , )c F A and is defined by ( , ) ( , )c c F A F A= , where :c F A U→ is a mapping given by ( )( ) ( ) ,c F c F Aα α α= ∀ ∈ , where c is fuzzy complement. Proposition 3.10 For a fuzzy soft multiset (F, A) over U, ( )( ) ( )( ) , , , cc a F A F A= ( ) ( )( ) , , , i i c U b F A F Aϕ≈ ≈ = ( ) ( )( ) , , , c U c F A F Aϕ = ( ) ( )( ) , , , i i c U d F A F A ϕ≈ ≈ = ( ) ( )( ) , , , c U e F A F A ϕ = Now we introduce some new types of operations Definition 3.11 The restricted union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, C) where C A B= ∩ and ,e C∀ ∈ ( )( ) ( ), ( )H e F e G e= U , { }( ) ( ) : : max ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).RF A G B H C=∪% Definition 3.12 The extended union of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D), where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U where ( )( ), ( )F e G eU { }( ) ( ) : : max ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).EF A G B H D=∪% Definition 3.13
  • 5. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 55 The restricted intersection of two intuitionistic fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D) where D A B= ∩ and ,e D∀ ∈ ( )( ) ( ), ( )H e F e G e= I { }( ) ( ) : : min ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).RF A G B H D=∩% Definition 3.14 The extended intersection of two fuzzy soft multi sets (F, A) and (G, B) over U is a fuzzy soft multi set (H, D), where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I where ( )( ), ( )F e G eI { }( ) ( ) : : min ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       and is written as ( , ) ( , ) ( , ).EF A G B H D=∩% Example 3.15 Let us consider there are two universes { }1 1 2 3, ,U h h h= , { }2 1 2,U c c= and let { }1 2 ,U UE E be a collection of sets of decision parameters related to the above universes, where { }1 1 1 1,1 ,2 ,3exp , ,U U U UE e ensive e cheap e wooden= = = = { }1 2 2 2,1 ,2 ,3exp , , ,U U U UE e ensive e cheap e sporty= = = = Let ( )2 1i iU FS U== ∏ , 2 1 ii UE E== ∏ and { }1 2 1 2 1 21 ,1 ,1 2 ,1 ,2 3 ,2 ,1( , ), ( , ), ( , ) ,U U U U U UA e e e e e e e e e= = = = { }1 2 1 2 1 21 ,1 ,1 2 ,1 ,2 4 ,3 ,2( , ), ( , ), ( , ) .U U U U U UB e e e e e e e e e= = = = Suppose that ( ) 3 31 2 1 2 1 2 1 2 1 2 31 2 1 2 3 , , , , , , , , , , , , , 0.2 0.4 0.8 0.8 0.5 0.7 0.7 1 0.8 0.6 , , , , , , 0.9 0.7 1 0.3 0.5 h hh h c c h h c c F A e e hh h c c e               =                                                 ( ) 3 31 2 1 2 1 2 1 2 1 2 31 2 1 2 4 , , , , , , , , , , , , , 0.3 0.3 0.7 0.7 0.6 0.5 0.8 1 0.4 0.6 , , , , , , 0.8 0.9 1 0.5 0.2 h hh h c c h h c c G B e e hh h c c e               =                                                 then we have,
  • 6. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 56 3 31 2 1 2 1 2 1 2 1 2( ). ( , ) ( , ) , , , , , , , , , , , 0.3 0.4 0.8 0.8 0.6 0.7 0.8 1 0.8 0.6R h hh h c c h h c c i F A G B e e                =                                ∪% 3 31 2 1 2 1 2 1 2 1 2 31 2 3 ( ). ( , ) ( , ) , , , , , , , , , , , , 0.3 0.4 0.8 0.8 0.6 0.7 0.8 1 0.8 0.6 , , , 0.9 0.7 1 E h hh h c c h h c c ii F A G B e e hh h e               =                              ∪% 31 2 1 2 1 2 4, , , , , , , , , 0.3 0.5 0.8 0.9 1 0.5 0.2 hc c h h c c e                                           3 31 2 1 2 1 2 1 2 1 2( ). ( , ) ( , ) , , , , , , , , , , , 0.2 0.3 0.7 0.7 0.5 0.5 0.7 1 0.4 0.6R h hh h c c h h c c iii F A G B e e                =                                ∩% 3 31 2 1 2 1 2 1 2 1 2 31 2 3 ( ). ( , ) ( , ) , , , , , , , , , , , 0.2 0.3 0.7 0.7 0.5 0.5 0.7 1 0.4 0.6 , , , 0.9 0.7 1 E h hh h c c h h c c iv F A G B e e hh h e               =                               ∩% 31 2 1 2 1 2 4, , , , , , , , , 0.3 0.5 0.8 0.9 1 0.5 0.2 hc c h h c c e                                          Proposition 3.16 For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have 1. ( )( , ) ( , ) ( , ) ( , ) c c c E EF A G B F A G B⊆∪ ∪%% % 2. ( )( , ) ( , ) ( , ) ( , ) cc c E EF A G B F A G B⊆∩ ∩%% % Proof. 1. Let ( , ) ( , ) ( , ),EF A G B H C=∪% where C A B= ∪ and ,e C∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U ( )( ), ( )where F e G eU { }( ) ( ) : : max ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       Thus ( )( , ) ( , ) ( , ) ( , ), c c c EF A G B H C H C= =∪% where C A B= ∪ and ,e C∀ ∈ ( )( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩ U ( )( ) { } { } ( ) ( ) ( ) ( ) ( ), ( ) : : 1 max ( ), ( ) : : min 1 ( ),1 ( ) c i F e G e i F e G e u where F e G e u U i I u u u u U i I u u µ µ µ µ     = ∈ ∈   −        = ∈ ∈   − −    U Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c E EF A G B F A G B K D= =∪ ∪% % . Where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U
  • 7. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 57 ( ) { }( ) ( ) ( ), ( ) : : . max 1 ( ),1 ( ) c c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   − −    U We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e⊆ . Thus ( )( , ) ( , ) ( , ) ( , ) c c c E EF A G B F A G B⊆∪ ∪%% % . 2. Let ( , ) ( , ) ( , ),EF A G B H C=∩% where C A B= ∪ and ,e C∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I ( )( ), ( )where F e G eI { }( ) ( ) : : min ( ), ( ) i F e G e u u U i I u uµ µ     = ∈ ∈       Thus ( )( , ) ( , ) ( , ) ( , ), c c c EF A G B H C H C= =∩% where C A B= ∪ and ,e C∀ ∈ ( )( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩ I ( )( ) { } { } ( ) ( ) ( ) ( ) ( ), ( ) : : 1 min ( ), ( ) : : max 1 ( ),1 ( ) c i F e G e i F e G e u where F e G e u U i I u u u u U i I u u µ µ µ µ     = ∈ ∈   −        = ∈ ∈   − −    I Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c E EF A G B F A G B K D= =∩ ∩% % . Where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I ( ) { }( ) ( ) ( ), ( ) : : . min 1 ( ),1 ( ) c c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   − −    I We see that C=D and ,e C∀ ∈ ( ) ( )c K e H e⊆ . Thus ( )( , ) ( , ) ( , ) ( , ) cc c E EF A G B F A G B⊆∩ ∩%% % . Proposition 3.17 For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have 1. ( )( , ) ( , ) ( , ) ( , ) c c c R RF A G B F A G B⊆∪ ∪%% % 2. ( )( , ) ( , ) ( , ) ( , ) cc c R RF A G B F A G B⊆∩ ∩%% % Proof.
  • 8. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 58 1. Let ( , ) ( , ) ( , ),RF A G B H C=∪% where C A B= ∩ and ,e C∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : max ( ), ( ) i F e G e u H e F e G e u U i I u uµ µ     = = ∈ ∈       U . Thus ( )( , ) ( , ) ( , ) ( , ), c c c RF A G B H C H C= =∪% where C A B= ∩ and ,e C∀ ∈ ( )( ) { } { } ( ) ( ) ( ) ( ) ( ) ( ), ( ) : : 1 max ( ), ( ) : : min 1 ( ),1 ( ) cc i F e G e i F e G e u H e F e G e u U i I u u u u U i I u u µ µ µ µ     = = ∈ ∈   −        = ∈ ∈   − −    U . Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c R RF A G B F A G B K D= =∪ ∪% % . Where D A B= ∩ and ,e D∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : . max 1 ( ),1 ( ) c c i F e G e u K e F e G e u U i I u uµ µ     = = ∈ ∈   − −    U We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e⊆ . Thus( )( , ) ( , ) ( , ) ( , ) c c c R RF A G B F A G B⊆∪ ∪%% % . 2. Let ( , ) ( , ) ( , ),RF A G B H C=∩% where C A B= ∩ and ,e C∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : min ( ), ( ) i F e G e u H e F e G e u U i I u uµ µ     = = ∈ ∈       I . Thus ( )( , ) ( , ) ( , ) ( , ), c c c RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈ ( )( ) { } { } ( ) ( ) ( ) ( ) ( ) ( ), ( ) : : 1 min ( ), ( ) : : max 1 ( ),1 ( ) cc i F e G e i F e G e u H e F e G e u U i I u u u u U i I u u µ µ µ µ     = = ∈ ∈   −        = ∈ ∈   − −    I . Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c R RF A G B F A G B K D= =∩ ∩% % . Where D A B= ∩ and ,e D∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : . min 1 ( ),1 ( ) c c i F e G e u K e F e G e u U i I u uµ µ     = = ∈ ∈   − −    I We see that C=D and ,e C∀ ∈ ( ) ( )c K e H e⊆ . Thus ( )( , ) ( , ) ( , ) ( , ) cc c R RF A G B F A G B⊆∩ ∩%% % . Proposition 3.18 For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have 1. ( )( , ) ( , ) ( , ) ( , ) c c c R EF A G B F A G B⊆∩ ∪% % 2. ( )( , ) ( , ) ( , ) ( , ) cc c R EF A G B F A G B⊆∩ ∪% % Proof. 1. Let ( , ) ( , ) ( , ),RF A G B H C=∩% where C A B= ∩ and ,e C∀ ∈
  • 9. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 59 ( ) { }( ) ( ) ( ) ( ), ( ) : : min ( ), ( ) i F e G e u H e F e G e u U i I u uµ µ     = = ∈ ∈       I Thus ( )( , ) ( , ) ( , ) ( , ), c c c RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈ { } { } ( ) ( ) ( ) ( ) ( ) : : 1 min ( ), ( ) : : max 1 ( ),1 ( ) c i F e G e i F e G e u H e u U i I u u u u U i I u u µ µ µ µ     = ∈ ∈   −        = ∈ ∈   − −    Again, ( )( , ) ( , ) ( , ) ( , ) ,c c c c E EF A G B F A G B K D= =∪ ∪% % . Where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U ( ) { }( ) ( ) , ( ), ( ) : : max 1 ( ),1 ( ) c c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   − −    U We see that C D⊆ and ,e C∀ ∈ ( ) ( )c H e K e= . Thus ( )( , ) ( , ) ( , ) ( , ) c c c R EF A G B F A G B⊆∩ ∪% % . 2. Let ( , ) ( , ) ( , ) ( , ) ( , ),c c c c R RF A G B F A G B H C= =∩ ∩% % where C A B= ∩ and ,e C∀ ∈ ( ) { } { } ( ) ( ) ( ) ( ) ( ) ( ), ( ) : : min 1 ( ),1 ( ) : : 1 max ( ), ( ) c c i F e G e i F e G e u H e F e G e u U i I u u u u U i I u u µ µ µ µ     = = ∈ ∈   − −        = ∈ ∈   −    I Again, let ( )( , ) ( , ) ,EF A G B K D=∪% . Where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U ( ) { }( ) ( ) , ( ), ( ) : : max ( ), ( ) i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈       U Thus ( ) ( )( , ) ( , ) , ( , ), c c c EF A G B K D K D= =∪% where D A B= ∪ and ,e D∀ ∈ ( )( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩ U ( )( ) { }( ) ( ) , ( ), ( ) : : 1 max ( ), ( ) c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   −    U We see that C D⊆ and ,e C∀ ∈ ( ) ( )c H e K e= . Thus ( )( , ) ( , ) ( , ) ( , ) cc c R EF A G B F A G B⊆∩ ∪% % .
  • 10. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 60 Proposition 3.19(De Morgan Laws) For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have [1]. ( )( , ) ( , ) ( , ) ( , ) c c c R RF A G B F A G B=∪ ∩% % [2]. ( )( , ) ( , ) ( , ) ( , ) c c c R RF A G B F A G B=∩ ∪% % Proof. [1]. Let ( , ) ( , ) ( , ),RF A G B H C=∪% where C A B= ∩ and ,e C∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : max ( ), ( ) i F e G e u H e F e G e u U i I u uµ µ     = = ∈ ∈       U . Thus ( )( , ) ( , ) ( , ) ( , ), c c c RF A G B H C H C= =∪% where C A B= ∩ and ,e C∀ ∈ { }( ) ( ) ( ) : : 1 max ( ), ( ) c i F e G e u H e u U i I u uµ µ     = ∈ ∈   −    { }( ) ( ) : : min 1 ( ),1 ( ) i F e G e u u U i I u uµ µ     = ∈ ∈   − −    Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c R RF A G B F A G B K D= =∩ ∩% % where D A B= ∩ and ,e D∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : . min 1 ( ),1 ( ) c c i F e G e u K e F e G e u U i I u uµ µ     = = ∈ ∈   − −    I We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e= . Hence proved. [2]. Let ( , ) ( , ) ( , ),RF A G B H C∩ =% where C A B= ∩ and ,e C∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : min ( ), ( ) i F e G e u H e F e G e u U i I u uµ µ     = = ∈ ∈       I . Thus ( )( , ) ( , ) ( , ) ( , ), c c c RF A G B H C H C= =∩% where C A B= ∩ and ,e C∀ ∈ { }( ) ( ) ( ) : : 1 min ( ), ( ) c i F e G e u H e u U i I u uµ µ     = ∈ ∈   −    { }( ) ( ) : : max 1 ( ),1 ( ) i F e G e u u U i I u uµ µ     = ∈ ∈   − −    Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c R RF A G B F A G B K D= =∪ ∪% % where D A B= ∩ and ,e D∀ ∈ ( ) { }( ) ( ) ( ) ( ), ( ) : : . max 1 ( ),1 ( ) c c i F e G e u K e F e G e u U i I u uµ µ     = = ∈ ∈   − −    U We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e= . Hence proved. Proposition 3.20(De Morgan Laws) For two fuzzy soft multi sets (F, A) and (G, B) over U, then we have 1. ( )( , ) ( , ) ( , ) ( , ) c c c E EF A G B F A G B=∪ ∩% % 2. ( )( , ) ( , ) ( , ) ( , ) c c c E EF A G B F A G B=∩ ∪% %
  • 11. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 61 Proof. 1. Let ( , ) ( , ) ( , ),EF A G B H C=∪% where C A B= ∪ and ,e C∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U ( ) { }( ) ( ) ( ), ( ) : : max ( ), ( ) i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈       U Thus ( )( , ) ( , ) ( , ) ( , ), c c c EF A G B H C H C= =∪% where C A B= ∪ and ,e C∀ ∈ ( )( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩ U ( )( ) { }( ) ( ) ( ), ( ) : : 1 max ( ), ( ) c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   −    U { }( ) ( ) : : min 1 ( ),1 ( ) i F e G e u u U i I u uµ µ     = ∈ ∈   − −    Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c E EF A G B F A G B K D= =∩ ∩% % where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I ( ) { }( ) ( ) ( ), ( ) : : min 1 ( ),1 ( ) c c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   − −    I We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e= . Thus the result. 2. Let ( , ) ( , ) ( , ),EF A G B H C=∩% where C A B= ∪ and ,e C∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩I ( ) { }( ) ( ) ( ), ( ) : : min ( ), ( ) i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈       I Thus ( )( , ) ( , ) ( , ) ( , ), c c c EF A G B H C H C= =∩% where C A B= ∪ and ,e C∀ ∈ ( )( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B H e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩ I
  • 12. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 62 ( )( ) { }( ) ( ) ( ), ( ) : : 1 min ( ), ( ) c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   −    I { }( ) ( ) : : max 1 ( ),1 ( ) i F e G e u u U i I u uµ µ     = ∈ ∈   − −    Again, ( )( , ) ( , ) ( , ) ( , ) , ,c c c c E EF A G B F A G B K D= =∪ ∪% % where D A B= ∪ and ,e D∀ ∈ ( ) ( ), ( ) ( ), ( ), ( ) , , c c c c F e if e A B K e G e if e B A F e G e if e A B  ∈ −  = ∈ −  ∈ ∩U ( ) { }( ) ( ) ( ), ( ) : : max 1 ( ),1 ( ) c c i F e G e u where F e G e u U i I u uµ µ     = ∈ ∈   − −    U We see that C=D and ,e C∀ ∈ ( ) ( )c H e K e= . Hence proved. Definition 3.21 If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , AND , "F A G B is a fuzzy soft multi set denoted by ( ) ( ), ,F A G B∧ and is defined by ( ) ( ) ( ), , , ,F A G B H A B∧ = × where H is mapping given by H: A×B→U and ( ) { }( ) ( ) , , ( , ) : : . min ( ), ( ) i F a G b u a b A B H a b u U i I u uµ µ     ∀ ∈ × = ∈ ∈       Example 3.22 If we consider two fuzzy soft multi sets (F, A) and (G, B) as in example 3.15, then we have ( ) ( ) ( ) ( )3 31 2 1 2 1 2 1 2 1 1 1 2, , , , , , , , , , , , , , , , 0.2 0.3 0.7 0.7 0.5 0.2 0.4 0.8 0.4 0.5 h hh h c c h h c c F A G B e e e e               ∧ =                             ( ) ( )3 31 2 1 2 1 2 1 2 1 4 2 1, , , , , , , , , , , , , , 0.2 0.4 0.8 0.5 0.2 0.3 0.3 0.7 0.7 0.6 h hh h c c h h c c e e e e                                         ( ) ( )3 31 2 1 2 1 2 1 2 2 2 2 4, , , , , , , , , , , , , , 0.5 0.7 1 0.4 0.6 0.7 0.7 1 0.5 0.2 h hh h c c h h c c e e e e                                         ( ) ( ) ( ) 3 31 2 1 2 1 2 1 2 3 1 3 2 31 2 1 2 3 4 , , , , , , , , , , , , , , 0.3 0.3 0.7 0.3 0.5 0.5 0.7 1 0.3 0.5 , , , , , , 0.8 0.7 1 0.3 0.2 h hh h c c h h c c e e e e hh h c c e e                                                             Definition 3.23 If (F, A) and (G, B) be two fuzzy soft multi sets over U, then ( ) ( )" , OR , "F A G B is a fuzzy soft multi set denoted by ( ) ( ), ,F A G B∨ and is defined by ( ) ( ) ( ), , , ,F A G B K A B∨ = × where K is mapping given by K: A×B→U and
  • 13. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 63 ( ) { }( ) ( ) , , ( , ) : : max ( ), ( ) i F a G b u a b A B K a b u U i I u uµ µ     ∀ ∈ × = ∈ ∈       Example 3.24 If we consider two fuzzy soft multi sets (F, A) and (G, B) as in example 3.15, then we have ( ) ( ) ( ) ( ) ( ) 3 31 2 1 2 1 2 1 2 1 1 1 2 31 2 1 2 1 4 , , , , , , , , , , , , , , , , 0.3 0.4 0.8 0.8 0.6 0.5 0.8 1 0.8 0.6 , , , , , , 0.8 0.9 1 0.8 0.5 h hh h c c h h c c F A G B e e e e hh h c c e e               ∨ =                                   ( ) ( ) ( ) 31 2 1 2 2 1 3 31 2 1 2 1 2 1 2 2 2 4 , , , , , , , , 0.7 0.7 1 0.8 0.6 , , , , , , , , , , , , , 0.7 0.8 1 0.8 0.6 0.8 0.9 1 0.8 hh h c c e e h hh h c c h h c c e e e e                                                         2 , 0.6             ( ) ( )3 31 2 1 2 1 2 1 2 3 1 3 2, , , , , , , , , , , , , , 0.9 0.7 1 0.7 0.6 0.9 0.8 1 0.4 0.6 h hh h c c h h c c e e e e                                         ( ) 31 2 1 2 3 4, , , , , , 0.9 0.9 1 0.5 0.5 hh h c c e e                     Proposition 3.25 For two fuzzy soft multi sets (F, A) and (G, B) over U, we have the following 1. ( )( , ) ( , ) ( , ) ( , ) c c c F A G B F A G B∧ = ∨ 2. ( )( , ) ( , ) ( , ) ( , ) c c c F A G B F A G B∨ = ∧ Proof. 1. Let ( , ) ( , ) ( , ),F A G B H A B∧ = × where ,a A and b B∀ ∈ ∀ ∈ ( ) { }( ) ( ) ( , ) ( ), ( ) : : min ( ), ( ) i F a G b u H a b F a G b u U i I u uµ µ     = = ∈ ∈       I Thus ( )( , ) ( , ) ( , ) ( , ), c c c F A G B H A B H A B∧ = × = × where ( ), ,a b A B∀ ∈ × { }( ) ( ) ( , ) : : 1 min ( ), ( ) c i F a G b u H a b u U i I u uµ µ     = ∈ ∈   −    { }( ) ( ) : : max 1 ( ),1 ( ) i F a G b u u U i I u uµ µ     = ∈ ∈   − −    Again, let ( )( , ) ( , ) ( , ) ( , ) ,c c c c F A G B F A G B K A B∨ = ∨ = × , where ( ), ,a b A B∀ ∈ × ( ) { }( ) ( ) ( , ) ( ), ( ) : : max 1 ( ),1 ( ) c c i F a G b u K a b F a G b u U i I u uµ µ     = = ∈ ∈   − −    U . Thus it follows that ( )( , ) ( , ) ( , ) ( , ) c c c F A G B F A G B∧ = ∨ . 2. Let ( , ) ( , ) ( , ),F A G B H A B∨ = × where ,a A and b B∀ ∈ ∀ ∈ ( ) { }( ) ( ) ( , ) ( ), ( ) : : max ( ), ( ) i F a G b u H a b F a G b u U i I u uµ µ     = = ∈ ∈       U
  • 14. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 64 Thus ( )( , ) ( , ) ( , ) ( , ), c c c F A G B H A B H A B∨ = × = × where ( ), ,a b A B∀ ∈ × { }( ) ( ) ( , ) : : 1 max ( ), ( ) c i F a G b u H a b u U i I u uµ µ     = ∈ ∈   −    { }( ) ( ) : : min 1 ( ),1 ( ) i F a G b u u U i I u uµ µ     = ∈ ∈   − −    Again, let ( )( , ) ( , ) ( , ) ( , ) ,c c c c F A G B F A G B K A B∧ = ∧ = × , where ( ), ,a b A B∀ ∈ × ( ) { }( ) ( ) ( , ) ( ), ( ) : : min 1 ( ),1 ( ) c c i F a G b u K a b F a G b u U i I u uµ µ     = = ∈ ∈   − −    I . Thus it follows that ( )( , ) ( , ) ( , ) ( , ) c c c F A G B F A G B∨ = ∧ . 4. CONCLUSION In this paper, we have made an investigation on existing basic notions and results on fuzzy soft multi sets. Some new results have been stated in our work. Here we shall define some new operations in fuzzy soft multi set theory and show that the De Morgan’s type of results holds in fuzzy soft multi set theory with respect to these newly defined operations in our way. These properties may be used in real life problems, like decision making problem, inventory control problem, etc. REFERENCES [1] K. ALHAZAYMEH & N. HASSAN, (2014) “VAGUE SOFT MULTISET THEORY”, INT. J. PURE AND APPLIED MATH., VOL. 93, PP511-523. [2] M.I. ALI, F. FENG, X. LIU, W.K. MINC & M. SHABIR, (2009) “ON SOME NEW OPERATIONS IN SOFT SET THEORY”, COMP. MATH. APPL., VOL. 57, PP1547-1553. [3] S. ALKHAZALEH, A.R. SALLEH & N. HASSAN, (2011) SOFT MULTI SETS THEORY, APPL. MATH. SCI., VOL. 5, PP3561– 3573. [4] S. ALKHAZALEH & A.R. SALLEH, (2012) “FUZZY SOFT MULTI SETS THEORY”, HINDAWI PUBLISHING CORPORATION, ABSTRACT AND APPLIED ANALYSIS, ARTICLE ID 350603, 20 PAGES, DOI: 10.1155/2012/350603. [5] K.V BABITHA & S.J. JOHN, (2013) “ON SOFT MULTI SETS”, ANN. FUZZY MATH. INFORM., VOL. 5 PP35- 44. [6] H.M. BALAMI & A. M. IBRAHIM, (2013) “SOFT MULTISET AND ITS APPLICATION IN INFORMATION SYSTEM”, INTERNATIONAL JOURNAL OF SCIENTIFIC RESEARCH AND MANAGEMENT, VOL. 1, PP471-482. [7] P.K. MAJI, A.R. ROY & R. BISWAS, (2001) “FUZZY SOFT SETS”, J. FUZZY MATH., VOL. 9, PP589-602. [8] P.K. MAJI, R. BISWAS & A.R. ROY, (2003) “SOFT SET THEORY”, COMP. MATH. APPL., VOL. 45 PP555- 562. [9] D. MOLODTSOV, (1999) “SOFT SET THEORY-FIRST RESULTS”, COMP. MATH. APPL., VOL. 37, PP19-31. [10] A. MUKHERJEE & A.K. DAS, (2014) “PARAMETERIZED TOPOLOGICAL SPACE INDUCED BY AN INTUITIONISTIC FUZZY SOFT MULTI TOPOLOGICAL SPACE”, ANN. PURE AND APPLIED MATH., VOL. 7, PP7-12. [11] A. MUKHERJEE & A.K. DAS, (2013) “TOPOLOGICAL STRUCTURE FORMED BY FUZZY SOFT MULTISETS”, REV. BULL. CAL.MATH.SOC., VOL. 21, NO.2, PP193-212. [12] D. TOKAT & I. OSMANOGLU, (2011) “SOFT MULTI SET AND SOFT MULTI TOPOLOGY”, NEVSEHIR UNIVERSITESI FEN BILIMLERI ENSTITUSU DERGISI CILT., VOL. 2, PP109-118.
  • 15. International Journal on Cybernetics & Informatics (IJCI) Vol. 4, No. 1, February 2015 65 [13] L.A. ZADEH, (1965) “FUZZY SETS”, INFORM. CONTROL., VOL. 8, PP338-353. Authors Prof. Anjan Mukherjee, Pro Vice Chancellor of Tripura University was born on Jan. 01, 1955 in Kolkata, INDIA. He completed his B.Sc. and M.Sc. in Mathematics from University of Calcutta and obtained his PhD from Tripura University. Prof. Mukherjee has 26 years of research and teaching experience. He published more than 150 research papers in different National and International journals and conference proceedings and has delivered several invited talks. He is also associated with Fuzzy and Rough Sets Association. He had visited University of Texas (U.S.A.), City College of New York (U.S.A.), Malayasia (AMC 5th Asian Mathematical Conference) and Bangladesh. Mr. Ajoy Kanti Das was born on Nov.06, 1987 in Tripura, INDIA. He received the B.Sc (Hons) degree and M.Sc degree in Pure Mathematics from Tripura University, Tripura, INDIA in 2008 and 2010 respectively. He works as a faculty member in the department of Mathematics, ICV-College, Tripura, INDI. His current interest is Topology, Fuzzy Set Theory and Fuzzy Topology, Rough Sets, Soft Set, applications in Fuzzy soft computing, Soft Multi Sets. His work has produced 10 peer-reviewed scientific International and National Journal papers. He has published 05 papers in NationalandInternationalConferences.