SlideShare a Scribd company logo
International Journal of Engineering Inventions
e-ISSN: 2278-7461, p-ISSN: 2319-6491
Volume 3, Issue 2 (September 2013) PP: 38-46
www.ijeijournal.com Page | 38
Zeros of a Polynomial in a given Circle
M. H. Gulzar
Department of Mathematics, University of Kashmir, Srinagar 190006
Abstract: In this paper we discuss the problem of finding the number of zeros of a polynomial in a given circle
when the coefficients of the polynomial or their real or imaginary parts are restricted to certain conditions. Our
results in this direction generalize some well- known results in the theory of the distribution of zeros of
polynomials.
Mathematics Subject Classification: 30C10, 30C15
Keywords and phrases: Coefficient, Polynomial, Zero.
I. Introduction and Statement of Results
In the literature many results have been proved on the number of zeros of a polynomial in a given circle.
In this direction Q. G. Mohammad [5] has proved the following result:
Theorem A: Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that
0...... 011   aaaa nn ,
Then the number of zeros of P(z) in
2
1
z does not exceed
0
log
2log
1
1
a
an
 .
K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the following
results:
Theorem B: Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and
0...... 011    nn ,
Then the number of zeros of P(z) in
2
1
z does not exceed
0
0
log
2log
1
1
a
n
j
jn 



.
Theorem C: Let 



0
)(
j
j
j zazP be a polynomial o f degree n with complex coefficients such that for some
real , ,
nja j ,......,2,1,0,
2
arg 


and
011 ...... aaaa nn   .
Then the number f zeros of P(z) in
2
1
z does not exceed
0
1
0
sin2)1sin(cos
log
2log
1
a
aa
n
j
jn 


 
.
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 39
The above results were further generalized by researchers in various ways. M. H. Gulzar[4] proved the
following results:
Theorem D: Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and
01111 ............    knknknnn ,
for some real numbers .0,1,10,0,  knnk 
If knkn   1 , then the number f zeros of P(z) in 10,  z , does not exceed
0
0
000 22)(1)1(2
log
1
log
1
a
n
j
jknknnn 
  

and if 1  knkn  , then the number f zeros of P(z) in 10,  z , does not exceed
0
0
000 22)(1)1(2
log
1
log
1
a
n
j
jknknnn 
  

Theorem E: Let 



0
)(
j
j
j zazP be a polynomial o f degree n with complex coefficients such that for some
real , ,
nja j ,......,2,1,0,
2
arg 


and
01111 ............ aaaaaaa knknknnn    ,
for some 10,0,1,0,0    knnk .
If 1..1   eiaa knkn , then the number of zeros of P(z) in 10,  z , does not exceed
0
1
log
1
log
1
a
M

,
where
)1sincossin(cos)1sin)(cos(1    knn aaM




1
,1
00 sin22)1sin(cos
n
knjj
jaaa  ,
and
if 1..1   eiaa knkn , then the number of zeros of P(z) in 10,  z , does not exceed
0
2
log
1
log
1
a
M

,
where
)1sincossin(cos)1sin)(cos(2    knn aaM




1
,1
00 sin22)1sin(cos
n
knjj
jaaa  .
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 40
In the present paper , we find bounds for the number of zeros of P(z) of the
above results in a circle of any positive radius. More precisely, we prove the following resuls:
Theorem 1: Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and
01111 ............    knknknnn ,
for some real numbers .0,1,10,0,  knnk  .
If knkn   1 , then the number f zeros of P(z) in )1,0(  cR
c
R
z , does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
If 1  knkn  , then the number f zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
Remark 1: Taking R=1and 10,
1
 

c , Theorem 1 reduces to Theorem D.
If the coefficients ja are real i.e. jj  ,0 , then we get the following result from Theorem 1:
Corollary 1: Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and
01111 ............ aaaaaaa knknknnn    ,
for some real numbers .0,1,10,0,  knank .
If knkn aa  1 , then the number f zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
000
1
2)(1)1(2[
log
log
1
a
aaaaaaaR
c
knknnn
n
 


for 1R
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 41
and
0
0000 )(1)1(2[
log
log
1
a
aaaaaaaRa
c
knknnn   
for 1R .
If 1  knkn aa , then the number f zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
000
1
2)(1)1(2[
log
log
1
a
aaaaaaaR
c
knknnn
n
 


for 1R
and
0
0000 )(1)1(2[
log
log
1
a
aaaaaaaRa
c
knknnn   
for 1R .
Applying Theorem 1 to the polynomial –iP(z) , we get the following result:
Theorem 2: : Let 



0
)(
j
j
j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and
01111 ............    knknknnn ,
for some real numbers .0,1,10,0,  knnk  .
If knkn    1 , then the number f zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
If 1  knkn  , then the number f zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 42
Theorem 3: Let 



0
)(
j
j
j zazP be a polynomial o f degree n with complex coefficients such that for some
real , ,
nja j ,......,2,1,0,
2
arg 


and
01111 ............ aaaaaaa knknknnn    ,
for some 10,0,1,0,0    knnk .
If 1..1   eiaa knkn , then the number of zeros of P(z) in )1,0(  cR
c
R
z , does not exceed
0
3
log
log
1
a
M
c
,
where
)1sincossin(cos)1sin)(cos[(1
3  

 knn
n
aaRM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  , for 1R
and
)1sincossin(cos)1sin)(cos[(03    knn aaRaM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  , for 1R .
If 1..1   eiaa knkn , then the number of zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
4
log
log
1
a
M
c
,
Where
)1sincossin(cos)1sin)(cos[(1
4  

 knn
n
aaRM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  for 1R
and
)1sincossin(cos)1sin)(cos[(04    knn aaRaM
]sin2)1sin(cos
1
,1
00 



n
knjj
jaaa  for 1R .
Remark 2: Taking R=1and 10,
1
 

c , Theorem 1 reduces to Theorem E.
For different values of the parameters R, c, k, , , we get many other interesting results.
2. Lemmas
For the proofs of the above results we need the following results:
Lemma 1: If f(z) is analytic in Rz  ,but not identically zero, f(0)  0 and
nkaf k ,......,2,1,0)(  , then
 

n
j j
i
a
R
fdf
1
2
0
log)0(log(Relog
2
1  


.
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 43
Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]).
Lemma 2: If f(z) is analytic and )()( rMzf  in rz  , then the number of zeros of F(z) in 1,  c
c
r
z
does not exceed
)0(
)(
log
log
1
f
rM
c
.
Lemma 2 is a simple deduction from Lemma 1.
Lemma 3: Let 



0
)(
j
j
j zazP be a polynomial o f degree n with complex coefficients such that for some
real , , ,0,
2
arg nja j 

 and
,0,1 njaa jj   then any t>0,
 sin)(cos)( 111   jjjjjj aataatata .s
Lemma 3 is due to Govil and Rahman [3].
3.Proofs of Theorems
Proof of Theorem 1: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  

1
11
1
)(......)()( 


 kn
knkn
n
nn
n
nn zzzi 
0
1
100
01
1
211
)()1(
)(......)()(


iziz
zzz
n
j
j
jj
kn
knkn
kn
knkn








If ,1 knkn    then
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
.)()1()(
......)()1()(
0
1
10001
1
211


izizz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn










For Rz  , we have by using the hypothesis
 

......)( 1
11 n
nn
nn
n
n
n RRRRzF  1
1

  kn
knkn R
+
kn
kn
kn
knkn RR 


   11
RRR kn
knkn 001
1
21 )1(......   

j
j
n
j
j R)( 1
0
00 

  
]22)(1)1(2[
0
000
1




n
j
jknknnn
n
R 
for 1R
and
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 44

 
n
j
jknknnnRa
1
00000 2)(1)1(2[ 
for 1R .
Hence by Lemma 2, the number of zeros of F(z) in )1,0(  cR
c
R
z , does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
If ,1  knkn  then
1
11
1
)(......)()()( 


 kn
knkn
n
nn
nn
nn zzzzizF 
.)()(
......)()1()(
0
1
1001
1
21
1
1


iziz
zzz
n
j
j
jj
kn
knkn
kn
kn
kn
knkn










For Rz  , we have by using the hypothesis
 

......)( 1
11 n
nn
nn
n
n
n RRRRzF  1
1

  kn
knkn R
+



  kn
kn
kn
knkn RR  11
RRR kn
knkn 001
1
21 )1(......   

j
j
n
j
j R)( 1
0
00 

  
]22)(1)1(2[
0
000
1




n
j
jknknnn
n
R 
for 1R
and

 
n
j
jknknnnRa
1
00000 2)(1)1(2[ 
for 1R .
Hence by Lemma 2, the number of zeros of F(z) in )1,0(  cR
c
R
z does not exceed
0
0
000
1
]22)(1)1(2[
log
log
1
a
R
c
n
j
jknknnn
n



 
for 1R
and
0
0
00000 ]2)(1)1(2[
log
log
1
a
Ra
c
n
j
jknknnn 
  
for 1R .
That proves Theorem 1 completely.
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 45
Proof of Theorem 4: Consider the polynomial
)()1()( zPzzF 
kn
knkn
kn
knkn
n
nn
n
n
n
n
n
n
zaazaazaaza
azazazaz









)()(......)(
)......)(1(
1
1
11
1
01
1
1
001
1
21 )(......)( azaazaa kn
knkn  

If knkn aa  1 , i.e. 1 , then
1
11
1
)(......)()( 


 kn
knkn
n
nn
nn
n zaazaazzazF 
......)()1()( 1
211  





kn
knkn
kn
kn
kn
knkn zaazazaa 
0001 )1()( azazaa  
so that for Rz  , we have by using Lemma 3,
kn
knkn
kn
knkn
n
nn
nn
n RaaRaaRaaRRazF 




 1
1
11
1
......)( 
0001
1
21 )1(......1 aRaRaaRaaRa kn
knkn
kn
kn  


 
......sin)(cos)([ 11
1
 

 nnnnn
n
aaaaaR
])1(sin)(cos)(
......sin)(cos)(
sin)(cos)(
)1(sin)(cos)(
000101
2121
11
11
aaaaaa
aaaa
aaaa
aaaaa
knknknkn
knknknkn
knknknknkn











 cossin(cos)1sin)(cos[(1
 

knn
n
aaR




1
,1
00 sin22)1sin(cos)1sin
n
knjj
jaaa  ]
for 1R
and
 cossin(cos)1sin)(cos[(0  knn aaRa




1
,1
00 sin2)1sin(cos)1sin
n
knjj
jaaa  ]
for 1R
Hence , by Lemma 2, the number of zeros of F(z) and hence P(z) in )1,0(  cR
c
R
z does not exceed
0
3
log
log
1
a
M
c
,
where
)1sincossin(cos)1sin)(cos[(1
3  

 knn
n
aaRM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  , for 1R
and
)1sincossin(cos)1sin)(cos[(03    knn aaRaM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  , for 1R .
If 1  knkn aa , i.e. 1 , then
Zeros of a Polynomial in a given Circle
www.ijeijournal.com Page | 46
1
11
1
)(......)()( 


 kn
knkn
n
nn
nn
n zaazaazzazF 
......)()1()( 1
21
1
1  





kn
knkn
kn
kn
kn
knkn zaazazaa 
001 )( azaa 
so that for Rz  , we have by hypothesis and Lemma 3,
kn
knkn
kn
knkn
n
nn
nn
n RaaRaaRaaRRazF 




 1
1
11
1
......)( 
......1 1
21
1
 



kn
knkn
kn
kn RaaRa
0001 )1( aRaRaa  
......sin)(cos)([ 11
1
 

 nnnnn
n
aaaaaR
])1(sin)(cos)(
......sin)(cos)(
sin)(cos)(
1sin)(cos)(
000101
2121
11
11
aaaaaa
aaaa
aaaa
aaaaa
knknknkn
knknknkn
knknknknkn











 cossin(cos)1sin)(cos[(1
 

knn
n
aaR
)1sin   ]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa 
for 1R
and
 cossin(cos)1sin)(cos[(0  knn aaRa
)1sin   ]sin2)1sin(cos
1
,1
00 



n
knjj
jaaa 
for 1R .
Hence the number of zeros of P(z) in )1,0(  cR
c
R
z does not exceed
0
4
log
log
1
a
M
c
,
Where
)1sincossin(cos)1sin)(cos[(1
4  

 knn
n
aaRM
]sin22)1sin(cos
1
,1
00 



n
knjj
jaaa  for 1R
and
)1sincossin(cos)1sin)(cos[(04    knn aaRaM
]sin2)1sin(cos
1
,1
00 



n
knjj
jaaa  for 1R .
That completes the proof of Theorem 3.
References
[1] L.V.Ahlfors, Complex Analysis, 3rd
edition, Mc-Grawhill
[2] K. K. Dewan, Extremal Properties and Coefficient estimates for Polynomials with restricted Zeros and on location of Zeros of
Polynomials, Ph.D. Thesis, IIT Delhi, 1980.
[3] N. K. Govil and Q. I. Rahman, On the Enestrom- Kakeya Theorem, Tohoku Math. J. 20(1968),126-136.
[4] M. H. Gulzar, On the Zeros of a Polynomial inside the Unit Disk, IOSR Journal of Engineering, Vol.3, Issue 1(Jan.2013) IIV3II,
50-59.
[5] Q. G. Mohammad, On the Zeros of Polynomials,Amer. Math. Monthly 72(1965), 631-633.

More Related Content

What's hot

mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
Prathab Harinathan
 
6 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-746 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-74
Alexander Decker
 
Semi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped MatricesSemi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped Matrices
Lossian Barbosa Bacelar Miranda
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
Edhole.com
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
iosrjce
 
D0741420
D0741420D0741420
D0741420
IOSR Journals
 
E041046051
E041046051E041046051
E041046051
inventy
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
SOURAV DAS
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
shahrukh0222
 
Computer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and EllipseComputer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and Ellipse
2013901097
 
Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii
Mohammad Imran
 
Gamma function
Gamma functionGamma function
Gamma function
Solo Hermelin
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
theijes
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
eSAT Publishing House
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
Prathab Harinathan
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
KarunaGupta1982
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Sebastian De Haro
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
Adhana Hary Wibowo
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
paperpublications3
 

What's hot (20)

mathematics formulas
mathematics formulasmathematics formulas
mathematics formulas
 
6 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-746 adesh kumar tripathi -71-74
6 adesh kumar tripathi -71-74
 
Semi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped MatricesSemi-Magic Squares From Snake-Shaped Matrices
Semi-Magic Squares From Snake-Shaped Matrices
 
Admissions in India 2015
Admissions in India 2015Admissions in India 2015
Admissions in India 2015
 
Construction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic ResiduesConstruction of BIBD’s Using Quadratic Residues
Construction of BIBD’s Using Quadratic Residues
 
D0741420
D0741420D0741420
D0741420
 
E041046051
E041046051E041046051
E041046051
 
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's ClassesIIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
IIT JAM Mathematical Statistics - MS 2022 | Sourav Sir's Classes
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
 
Computer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and EllipseComputer Graphic - Lines, Circles and Ellipse
Computer Graphic - Lines, Circles and Ellipse
 
Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii Question bank Engineering Mathematics- ii
Question bank Engineering Mathematics- ii
 
Gamma function
Gamma functionGamma function
Gamma function
 
The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)The International Journal of Engineering and Science (The IJES)
The International Journal of Engineering and Science (The IJES)
 
On approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials withinOn approximate bounds of zeros of polynomials within
On approximate bounds of zeros of polynomials within
 
Chapter 4 (maths 3)
Chapter 4 (maths 3)Chapter 4 (maths 3)
Chapter 4 (maths 3)
 
Chapter 5 assignment
Chapter 5 assignmentChapter 5 assignment
Chapter 5 assignment
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton TensorDual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
Dual Gravitons in AdS4/CFT3 and the Holographic Cotton Tensor
 
Funcion gamma
Funcion gammaFuncion gamma
Funcion gamma
 
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
Some Continued Mock Theta Functions from Ramanujan’s Lost Notebook (IV)
 

Similar to Zeros of a Polynomial in a given Circle

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
inventy
 
J1066069
J1066069J1066069
J1066069
IJERD Editor
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
IJERD Editor
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
ijceronline
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
On the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit DiscOn the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit Disc
IJERDJOURNAL
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
International Journal of Engineering Inventions www.ijeijournal.com
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
IJERD Editor
 
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
IJERDJOURNAL
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
B02806010
B02806010B02806010
B02806010
researchinventy
 
B02606010
B02606010B02606010
B02606010
researchinventy
 
C023014030
C023014030C023014030
C023014030
inventionjournals
 
C023014030
C023014030C023014030
C023014030
inventionjournals
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
IJERA Editor
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Editor IJCATR
 
A02402001011
A02402001011A02402001011
A02402001011
inventionjournals
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
International Journal of Innovation Engineering and Science Research
 
C024015024
C024015024C024015024
C024015024
inventionjournals
 

Similar to Zeros of a Polynomial in a given Circle (20)

International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
Research Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and ScienceResearch Inventy : International Journal of Engineering and Science
Research Inventy : International Journal of Engineering and Science
 
J1066069
J1066069J1066069
J1066069
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)International Journal of Computational Engineering Research(IJCER)
International Journal of Computational Engineering Research(IJCER)
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
On the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit DiscOn the Zeros of A Polynomial Inside the Unit Disc
On the Zeros of A Polynomial Inside the Unit Disc
 
Further Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya TheoremFurther Generalizations of Enestrom-Kakeya Theorem
Further Generalizations of Enestrom-Kakeya Theorem
 
International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)International Journal of Engineering Research and Development (IJERD)
International Journal of Engineering Research and Development (IJERD)
 
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
A Ring-Shaped Region Containing All or A Specific Number of The Zeros of A Po...
 
On the Zeros of Complex Polynomials
On the Zeros of Complex PolynomialsOn the Zeros of Complex Polynomials
On the Zeros of Complex Polynomials
 
B02806010
B02806010B02806010
B02806010
 
B02606010
B02606010B02606010
B02606010
 
C023014030
C023014030C023014030
C023014030
 
C023014030
C023014030C023014030
C023014030
 
On Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their ApplicationsOn Some Double Integrals of H -Function of Two Variables and Their Applications
On Some Double Integrals of H -Function of Two Variables and Their Applications
 
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable CoefficientsDecay Property for Solutions to Plate Type Equations with Variable Coefficients
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
 
A02402001011
A02402001011A02402001011
A02402001011
 
The scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equationsThe scaling invariant spaces for fractional Navier- Stokes equations
The scaling invariant spaces for fractional Navier- Stokes equations
 
C024015024
C024015024C024015024
C024015024
 

More from International Journal of Engineering Inventions www.ijeijournal.com

H04124548
H04124548H04124548
G04123844
G04123844G04123844
F04123137
F04123137F04123137
E04122330
E04122330E04122330
C04121115
C04121115C04121115
B04120610
B04120610B04120610
A04120105
A04120105A04120105
F04113640
F04113640F04113640
E04112135
E04112135E04112135
D04111520
D04111520D04111520
C04111114
C04111114C04111114
B04110710
B04110710B04110710
A04110106
A04110106A04110106
I04105358
I04105358I04105358
H04104952
H04104952H04104952
G04103948
G04103948G04103948
F04103138
F04103138F04103138
E04102330
E04102330E04102330
D04101822
D04101822D04101822
C04101217
C04101217C04101217

More from International Journal of Engineering Inventions www.ijeijournal.com (20)

H04124548
H04124548H04124548
H04124548
 
G04123844
G04123844G04123844
G04123844
 
F04123137
F04123137F04123137
F04123137
 
E04122330
E04122330E04122330
E04122330
 
C04121115
C04121115C04121115
C04121115
 
B04120610
B04120610B04120610
B04120610
 
A04120105
A04120105A04120105
A04120105
 
F04113640
F04113640F04113640
F04113640
 
E04112135
E04112135E04112135
E04112135
 
D04111520
D04111520D04111520
D04111520
 
C04111114
C04111114C04111114
C04111114
 
B04110710
B04110710B04110710
B04110710
 
A04110106
A04110106A04110106
A04110106
 
I04105358
I04105358I04105358
I04105358
 
H04104952
H04104952H04104952
H04104952
 
G04103948
G04103948G04103948
G04103948
 
F04103138
F04103138F04103138
F04103138
 
E04102330
E04102330E04102330
E04102330
 
D04101822
D04101822D04101822
D04101822
 
C04101217
C04101217C04101217
C04101217
 

Recently uploaded

June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
Ivanti
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
panagenda
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
Pablo Gómez Abajo
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
DianaGray10
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Pitangent Analytics & Technology Solutions Pvt. Ltd
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
DanBrown980551
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
saastr
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
Neo4j
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Neo4j
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
Jason Packer
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
AstuteBusiness
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
Zilliz
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
Safe Software
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
Zilliz
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
Edge AI and Vision Alliance
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
Neo4j
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
Brandon Minnick, MBA
 

Recently uploaded (20)

June Patch Tuesday
June Patch TuesdayJune Patch Tuesday
June Patch Tuesday
 
Artificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic WarfareArtificial Intelligence and Electronic Warfare
Artificial Intelligence and Electronic Warfare
 
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAUHCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
HCL Notes und Domino Lizenzkostenreduzierung in der Welt von DLAU
 
Mutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented ChatbotsMutation Testing for Task-Oriented Chatbots
Mutation Testing for Task-Oriented Chatbots
 
What is an RPA CoE? Session 1 – CoE Vision
What is an RPA CoE?  Session 1 – CoE VisionWhat is an RPA CoE?  Session 1 – CoE Vision
What is an RPA CoE? Session 1 – CoE Vision
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides5th LF Energy Power Grid Model Meet-up Slides
5th LF Energy Power Grid Model Meet-up Slides
 
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
Deep Dive: AI-Powered Marketing to Get More Leads and Customers with HyperGro...
 
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge GraphGraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
GraphRAG for LifeSciences Hands-On with the Clinical Knowledge Graph
 
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and BioinformaticiansBiomedical Knowledge Graphs for Data Scientists and Bioinformaticians
Biomedical Knowledge Graphs for Data Scientists and Bioinformaticians
 
Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024Columbus Data & Analytics Wednesdays - June 2024
Columbus Data & Analytics Wednesdays - June 2024
 
Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |Astute Business Solutions | Oracle Cloud Partner |
Astute Business Solutions | Oracle Cloud Partner |
 
Fueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte WebinarFueling AI with Great Data with Airbyte Webinar
Fueling AI with Great Data with Airbyte Webinar
 
Essentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation ParametersEssentials of Automations: Exploring Attributes & Automation Parameters
Essentials of Automations: Exploring Attributes & Automation Parameters
 
Generating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and MilvusGenerating privacy-protected synthetic data using Secludy and Milvus
Generating privacy-protected synthetic data using Secludy and Milvus
 
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
“Temporal Event Neural Networks: A More Efficient Alternative to the Transfor...
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
Leveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and StandardsLeveraging the Graph for Clinical Trials and Standards
Leveraging the Graph for Clinical Trials and Standards
 
Choosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptxChoosing The Best AWS Service For Your Website + API.pptx
Choosing The Best AWS Service For Your Website + API.pptx
 

Zeros of a Polynomial in a given Circle

  • 1. International Journal of Engineering Inventions e-ISSN: 2278-7461, p-ISSN: 2319-6491 Volume 3, Issue 2 (September 2013) PP: 38-46 www.ijeijournal.com Page | 38 Zeros of a Polynomial in a given Circle M. H. Gulzar Department of Mathematics, University of Kashmir, Srinagar 190006 Abstract: In this paper we discuss the problem of finding the number of zeros of a polynomial in a given circle when the coefficients of the polynomial or their real or imaginary parts are restricted to certain conditions. Our results in this direction generalize some well- known results in the theory of the distribution of zeros of polynomials. Mathematics Subject Classification: 30C10, 30C15 Keywords and phrases: Coefficient, Polynomial, Zero. I. Introduction and Statement of Results In the literature many results have been proved on the number of zeros of a polynomial in a given circle. In this direction Q. G. Mohammad [5] has proved the following result: Theorem A: Let     0 )( j j j zazP be a polynomial o f degree n such that 0...... 011   aaaa nn , Then the number of zeros of P(z) in 2 1 z does not exceed 0 log 2log 1 1 a an  . K. K. Dewan [2] generalized Theorem A to polynomials with complex coefficients and proved the following results: Theorem B: Let     0 )( j j j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and 0...... 011    nn , Then the number of zeros of P(z) in 2 1 z does not exceed 0 0 log 2log 1 1 a n j jn     . Theorem C: Let     0 )( j j j zazP be a polynomial o f degree n with complex coefficients such that for some real , , nja j ,......,2,1,0, 2 arg    and 011 ...... aaaa nn   . Then the number f zeros of P(z) in 2 1 z does not exceed 0 1 0 sin2)1sin(cos log 2log 1 a aa n j jn      .
  • 2. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 39 The above results were further generalized by researchers in various ways. M. H. Gulzar[4] proved the following results: Theorem D: Let     0 )( j j j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and 01111 ............    knknknnn , for some real numbers .0,1,10,0,  knnk  If knkn   1 , then the number f zeros of P(z) in 10,  z , does not exceed 0 0 000 22)(1)1(2 log 1 log 1 a n j jknknnn      and if 1  knkn  , then the number f zeros of P(z) in 10,  z , does not exceed 0 0 000 22)(1)1(2 log 1 log 1 a n j jknknnn      Theorem E: Let     0 )( j j j zazP be a polynomial o f degree n with complex coefficients such that for some real , , nja j ,......,2,1,0, 2 arg    and 01111 ............ aaaaaaa knknknnn    , for some 10,0,1,0,0    knnk . If 1..1   eiaa knkn , then the number of zeros of P(z) in 10,  z , does not exceed 0 1 log 1 log 1 a M  , where )1sincossin(cos)1sin)(cos(1    knn aaM     1 ,1 00 sin22)1sin(cos n knjj jaaa  , and if 1..1   eiaa knkn , then the number of zeros of P(z) in 10,  z , does not exceed 0 2 log 1 log 1 a M  , where )1sincossin(cos)1sin)(cos(2    knn aaM     1 ,1 00 sin22)1sin(cos n knjj jaaa  .
  • 3. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 40 In the present paper , we find bounds for the number of zeros of P(z) of the above results in a circle of any positive radius. More precisely, we prove the following resuls: Theorem 1: Let     0 )( j j j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and 01111 ............    knknknnn , for some real numbers .0,1,10,0,  knnk  . If knkn   1 , then the number f zeros of P(z) in )1,0(  cR c R z , does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R . If 1  knkn  , then the number f zeros of P(z) in )1,0(  cR c R z does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R . Remark 1: Taking R=1and 10, 1    c , Theorem 1 reduces to Theorem D. If the coefficients ja are real i.e. jj  ,0 , then we get the following result from Theorem 1: Corollary 1: Let     0 )( j j j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and 01111 ............ aaaaaaa knknknnn    , for some real numbers .0,1,10,0,  knank . If knkn aa  1 , then the number f zeros of P(z) in )1,0(  cR c R z does not exceed 0 000 1 2)(1)1(2[ log log 1 a aaaaaaaR c knknnn n     for 1R
  • 4. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 41 and 0 0000 )(1)1(2[ log log 1 a aaaaaaaRa c knknnn    for 1R . If 1  knkn aa , then the number f zeros of P(z) in )1,0(  cR c R z does not exceed 0 000 1 2)(1)1(2[ log log 1 a aaaaaaaR c knknnn n     for 1R and 0 0000 )(1)1(2[ log log 1 a aaaaaaaRa c knknnn    for 1R . Applying Theorem 1 to the polynomial –iP(z) , we get the following result: Theorem 2: : Let     0 )( j j j zazP be a polynomial o f degree n such that jja )Re( , jja )Im( and 01111 ............    knknknnn , for some real numbers .0,1,10,0,  knnk  . If knkn    1 , then the number f zeros of P(z) in )1,0(  cR c R z does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R . If 1  knkn  , then the number f zeros of P(z) in )1,0(  cR c R z does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R .
  • 5. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 42 Theorem 3: Let     0 )( j j j zazP be a polynomial o f degree n with complex coefficients such that for some real , , nja j ,......,2,1,0, 2 arg    and 01111 ............ aaaaaaa knknknnn    , for some 10,0,1,0,0    knnk . If 1..1   eiaa knkn , then the number of zeros of P(z) in )1,0(  cR c R z , does not exceed 0 3 log log 1 a M c , where )1sincossin(cos)1sin)(cos[(1 3     knn n aaRM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  , for 1R and )1sincossin(cos)1sin)(cos[(03    knn aaRaM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  , for 1R . If 1..1   eiaa knkn , then the number of zeros of P(z) in )1,0(  cR c R z does not exceed 0 4 log log 1 a M c , Where )1sincossin(cos)1sin)(cos[(1 4     knn n aaRM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  for 1R and )1sincossin(cos)1sin)(cos[(04    knn aaRaM ]sin2)1sin(cos 1 ,1 00     n knjj jaaa  for 1R . Remark 2: Taking R=1and 10, 1    c , Theorem 1 reduces to Theorem E. For different values of the parameters R, c, k, , , we get many other interesting results. 2. Lemmas For the proofs of the above results we need the following results: Lemma 1: If f(z) is analytic in Rz  ,but not identically zero, f(0)  0 and nkaf k ,......,2,1,0)(  , then    n j j i a R fdf 1 2 0 log)0(log(Relog 2 1     .
  • 6. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 43 Lemma 1 is the famous Jensen’s theorem (see page 208 of [1]). Lemma 2: If f(z) is analytic and )()( rMzf  in rz  , then the number of zeros of F(z) in 1,  c c r z does not exceed )0( )( log log 1 f rM c . Lemma 2 is a simple deduction from Lemma 1. Lemma 3: Let     0 )( j j j zazP be a polynomial o f degree n with complex coefficients such that for some real , , ,0, 2 arg nja j    and ,0,1 njaa jj   then any t>0,  sin)(cos)( 111   jjjjjj aataatata .s Lemma 3 is due to Govil and Rahman [3]. 3.Proofs of Theorems Proof of Theorem 1: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    1 11 1 )(......)()(     kn knkn n nn n nn zzzi  0 1 100 01 1 211 )()1( )(......)()(   iziz zzz n j j jj kn knkn kn knkn         If ,1 knkn    then 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  .)()1()( ......)()1()( 0 1 10001 1 211   izizz zzz n j j jj kn knkn kn kn kn knkn           For Rz  , we have by using the hypothesis    ......)( 1 11 n nn nn n n n RRRRzF  1 1    kn knkn R + kn kn kn knkn RR       11 RRR kn knkn 001 1 21 )1(......     j j n j j R)( 1 0 00      ]22)(1)1(2[ 0 000 1     n j jknknnn n R  for 1R and
  • 7. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 44    n j jknknnnRa 1 00000 2)(1)1(2[  for 1R . Hence by Lemma 2, the number of zeros of F(z) in )1,0(  cR c R z , does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R . If ,1  knkn  then 1 11 1 )(......)()()(     kn knkn n nn nn nn zzzzizF  .)()( ......)()1()( 0 1 1001 1 21 1 1   iziz zzz n j j jj kn knkn kn kn kn knkn           For Rz  , we have by using the hypothesis    ......)( 1 11 n nn nn n n n RRRRzF  1 1    kn knkn R +      kn kn kn knkn RR  11 RRR kn knkn 001 1 21 )1(......     j j n j j R)( 1 0 00      ]22)(1)1(2[ 0 000 1     n j jknknnn n R  for 1R and    n j jknknnnRa 1 00000 2)(1)1(2[  for 1R . Hence by Lemma 2, the number of zeros of F(z) in )1,0(  cR c R z does not exceed 0 0 000 1 ]22)(1)1(2[ log log 1 a R c n j jknknnn n      for 1R and 0 0 00000 ]2)(1)1(2[ log log 1 a Ra c n j jknknnn     for 1R . That proves Theorem 1 completely.
  • 8. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 45 Proof of Theorem 4: Consider the polynomial )()1()( zPzzF  kn knkn kn knkn n nn n n n n n n zaazaazaaza azazazaz          )()(......)( )......)(1( 1 1 11 1 01 1 1 001 1 21 )(......)( azaazaa kn knkn    If knkn aa  1 , i.e. 1 , then 1 11 1 )(......)()(     kn knkn n nn nn n zaazaazzazF  ......)()1()( 1 211        kn knkn kn kn kn knkn zaazazaa  0001 )1()( azazaa   so that for Rz  , we have by using Lemma 3, kn knkn kn knkn n nn nn n RaaRaaRaaRRazF       1 1 11 1 ......)(  0001 1 21 )1(......1 aRaRaaRaaRa kn knkn kn kn       ......sin)(cos)([ 11 1     nnnnn n aaaaaR ])1(sin)(cos)( ......sin)(cos)( sin)(cos)( )1(sin)(cos)( 000101 2121 11 11 aaaaaa aaaa aaaa aaaaa knknknkn knknknkn knknknknkn             cossin(cos)1sin)(cos[(1    knn n aaR     1 ,1 00 sin22)1sin(cos)1sin n knjj jaaa  ] for 1R and  cossin(cos)1sin)(cos[(0  knn aaRa     1 ,1 00 sin2)1sin(cos)1sin n knjj jaaa  ] for 1R Hence , by Lemma 2, the number of zeros of F(z) and hence P(z) in )1,0(  cR c R z does not exceed 0 3 log log 1 a M c , where )1sincossin(cos)1sin)(cos[(1 3     knn n aaRM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  , for 1R and )1sincossin(cos)1sin)(cos[(03    knn aaRaM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  , for 1R . If 1  knkn aa , i.e. 1 , then
  • 9. Zeros of a Polynomial in a given Circle www.ijeijournal.com Page | 46 1 11 1 )(......)()(     kn knkn n nn nn n zaazaazzazF  ......)()1()( 1 21 1 1        kn knkn kn kn kn knkn zaazazaa  001 )( azaa  so that for Rz  , we have by hypothesis and Lemma 3, kn knkn kn knkn n nn nn n RaaRaaRaaRRazF       1 1 11 1 ......)(  ......1 1 21 1      kn knkn kn kn RaaRa 0001 )1( aRaRaa   ......sin)(cos)([ 11 1     nnnnn n aaaaaR ])1(sin)(cos)( ......sin)(cos)( sin)(cos)( 1sin)(cos)( 000101 2121 11 11 aaaaaa aaaa aaaa aaaaa knknknkn knknknkn knknknknkn             cossin(cos)1sin)(cos[(1    knn n aaR )1sin   ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  for 1R and  cossin(cos)1sin)(cos[(0  knn aaRa )1sin   ]sin2)1sin(cos 1 ,1 00     n knjj jaaa  for 1R . Hence the number of zeros of P(z) in )1,0(  cR c R z does not exceed 0 4 log log 1 a M c , Where )1sincossin(cos)1sin)(cos[(1 4     knn n aaRM ]sin22)1sin(cos 1 ,1 00     n knjj jaaa  for 1R and )1sincossin(cos)1sin)(cos[(04    knn aaRaM ]sin2)1sin(cos 1 ,1 00     n knjj jaaa  for 1R . That completes the proof of Theorem 3. References [1] L.V.Ahlfors, Complex Analysis, 3rd edition, Mc-Grawhill [2] K. K. Dewan, Extremal Properties and Coefficient estimates for Polynomials with restricted Zeros and on location of Zeros of Polynomials, Ph.D. Thesis, IIT Delhi, 1980. [3] N. K. Govil and Q. I. Rahman, On the Enestrom- Kakeya Theorem, Tohoku Math. J. 20(1968),126-136. [4] M. H. Gulzar, On the Zeros of a Polynomial inside the Unit Disk, IOSR Journal of Engineering, Vol.3, Issue 1(Jan.2013) IIV3II, 50-59. [5] Q. G. Mohammad, On the Zeros of Polynomials,Amer. Math. Monthly 72(1965), 631-633.