Solar Energy for Electric
Power Generation
Our power, our future
Mrs Shimi S.L
Assistant Professor,EE
NITTTR,Chandigarh
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
RENEWABLE RESOURCES
Renewable resources are natural
resources that can be replenished
in a short period of time.
● Solar
● Wind
● Water
● Geothermal
● Biomass Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
SOLAR Energy
Nuclear fusion reaction inside
sun release energy in the
form of heat and light.
Solar energy received near
earth space is app. 1.4 KJ/S/M2
- Solar Constant.
Applications of Solar Energy
 Solar heat collectors
 Solar cells
 Solar Cooker
 Solar Water heater
 Solar Furnace
 Solar Power Plant
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
solar furnace
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Photovoltaics
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Australia hosts the solar car the Nuna3
Helios Unmanned Aerial Vehicles
(UAV )in solar powered flight
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Orbital Solar Farm
Japan Aerospace Exploration Agency (JAXA)
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
5 billion tiny rectifying antennas, which convert microwave
energy into DC electricity
giant solar collectors in geosynchronous orbit are
beaming microwaves down
1-gigawatt commercial system
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Solar Thermal Power Plant outside
Seville in southern Spain.(11MW)
1. The solar tower is 115m (377ft) tall and
surrounded by 600 steel reflectors (heliostats).
They track the sun and direct its rays to a heat
exchanger (receiver) at the top of the tower
2. The receiver converts concentrated solar
energy from the heliostats into steam
3. Steam is stored in tanks and used to drive
turbines that will produce enough electricity for
more than 6,000 homesMrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Solar thermal plants
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
MAXIMUM POWER POINT
TRACKING (MPPT)
There are two basic approaches in
maximizing the power extraction:
(a) Using automatic sun tracker
(b)Searching for the MPP conditions
 Perturb and Observe method
 Incremental Conductance method
 Artificial intelligence (AI) methods
http://www.discovery.com/tv-sh
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Stirling engine
Despite the fact that solar energy is totally
pollution free (green energy), and available
in great abundance, it has not yet become
commercially popular because of the
following shortcoming.
Solar radiation (energy available per unit
area) being rather weak, collection of solar
energy is too costly.
Solar radiation is neither uniform nor
continuous in nature.
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
MIT Researchers Turn Used
Car Batteries into Solar Cells
Methylammonium lead tri-iodide
belongs to a family of crystals known
as perovskites.
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
The world’s first moving building, Dynamic
Tower, a skyscraper with 80 independently
rotating floors, in Dubai and another 70-storey
structure in Moscow.
Wind Power: The power for the building will be
supplied by horizontal wind turbines installed
between the floors, thus avoiding the visual
impact, one of the major drawbacks of the
familiar “propellor” turbine. The blades are
designed and constructed of materials to allow
for quiet operation.
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Solar Power: Photovoltaic solar panels are
installed on the roof of each rotating floor
because they are constantly in motion,
20% of each roof will be open to the sky and to t
.
These sources are designed to generate
more electricity than is used in the building,
and to make this the first skyscraper that is
self-powered.
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
MPPT of a PV System
PV Array
Buck
Converter
Dspace
ds1104Voltage
Sensor
Current
Sensor
load
PC with
MATLAB/
SIMULINK
(MPPT
Algorithm)
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Thanks
The photovoltaic effect is the creation of voltage or electric current in
a material upon exposure to light. Though the photovoltaic effect is
directly related to the photoelectric effect, they are different processes.
In the photoelectric effect, electrons are ejected from a material's
surface upon exposure to radiation. The photovoltaic effect differs in
that electrons are transferred between different bands (i.e., from the
valence to conduction bands) within the material, resulting in the
buildup of voltage between two electrodes.[1]
In most photovoltaic applications the radiation is sunlight, which is why
the devices are known as solar cells. In the case of a p-n junction
solar cell, illuminating the material creates an electric current as
excited electrons and the remaining holes are swept in different
directions by the built-in electric field of the depletion region.[2]
The photovoltaic effect was first observed by
Alexandre-Edmond Becquerel in 1839.[3][4]
Mrs Shimi S.L, Asst. Prof.,
NITTTR, CHD
Two isotopes of the element Hydrogen (tritium and deuterium) collide 
with each other under extreme heat in the interior of the sun. The two 
atoms smash into each other so hard that several things happen:
1. Like cars smashing into each other in a high speed crash, the atoms 
lose pieces of themselves, atomic particles
2. Unlike anything else we know of in the universe, however, an 
ENORMOUS amount of energy is released into the surrounding area, 
on the order of 450 times the amount of energy required for a fusion 
reaction to initiate (talk about a big return on your investment!)
3. The atomic particles from the Hydrogen atoms that were released 
during the collision are fused together, forming an entirely new 
molecule called Helium
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
Thermosiphon (alt. thermosyphon) refers to a method of passive 
heat exchange based on natural convection, which circulates liquid 
without the necessity of a mechanical pump.
This circulation can either be open-loop, as when liquid in a holding 
tank is passed in one direction via a heated transfer tube mounted at 
the bottom of the tank to a distribution point - even one mounted above 
the originating tank - or it can be a vertical closed-loop circuit with 
return to the original vessel. Its intended purpose is to simplify moving 
liquid and/or heat transfer, by avoiding the cost and complexity of a 
conventional liquid pump.
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
Pumped-storage hydroelectricity (PSH) is a type of 
hydroelectric power generation used by some power plants for 
load balancing. The method stores energy in the form of water, 
pumped from a lower elevation reservoir to a higher elevation. 
Low-cost off-peak electric power is used to run the pumps. 
During periods of high electrical demand, the stored water is 
released through turbines to produce electric power. Although 
the losses of the pumping process makes the plant a net 
consumer of energy overall, the system increases revenue by 
selling more electricity during periods of peak demand, when 
electricity prices are highest.
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
A heliostat (from helios, the Greek 
word for sun, and stat, as in stationary) 
is a device that includes a mirror, 
usually a plane mirror, which turns so 
as to keep reflecting sunlight toward a 
predetermined target, compensating for 
the sun's apparent motions in the sky.
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
An unmanned aerial vehicle (UAV), commonly known as 
a drone, is an aircraft without a human pilot on board. Its flight 
is either controlled autonomously by computers in the vehicle, 
or under the remote control of a navigator, or pilot (in military 
UAVs called a Combat Systems Officer on UCAVs) on the 
ground or in another vehicle.
There are a wide variety of drone shapes, sizes, configurations, 
and characteristics. Historically, UAVs were simple remotely 
pilotedaircraft, but autonomous control is increasingly being 
employed.[1]
Their largest use is within military applications. UAVs are also 
used in a small but growing number of civil applications, such 
as firefightingor nonmilitary security work, such as surveillance 
of pipelines. UAVs are often preferred for missions that are too 
"dull, dirty, or dangerous" for manned aircraft.Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
"Geothermal Engineering" redirects here. For the British company specializing in the development of geothermal resources, see
Geothermal Engineering Ltd..
Steam rising from the Nesjavellir Geothermal Power Station in Iceland.
Geothermal energy is thermal energy generated and stored in the Earth. Thermal energy is the energy that determines the 
temperature of matter. The geothermal energy of the Earth's crust originates from the original formation of the planet (20%) and 
from radioactive decay of minerals (80%).[1][2]
 The geothermal gradient, which is the difference in temperature between the core of 
the planet and its surface, drives a continuous conduction of thermal energy in the form of heat from the core to the surface. The 
adjective geothermal originates from the Greek roots γη (ge), meaning earth, and θερμος (thermos), meaning hot.
At the core of the Earth, thermal energy is created by radioactive decay[1]
 and temperatures may reach over 5000 °C (9,000 °F). 
Heat conducts from the core to surrounding cooler rock. The high temperature and pressure cause some rock to melt, creating 
magma convection upward since it is lighter than the solid rock. The magma heats rock and water in the crust, sometimes up to 
370 °C (700 °F).[3]
From hot springs, geothermal energy has been used for bathing since Paleolithic times and for space heating since ancient 
Roman times, but it is now better known for electricity generation. Worldwide, about 10,715 megawatts (MW) of geothermal 
power is online in 24 countries. An additional 28 gigawatts of direct geothermal heating capacity is installed for district heating, 
space heating, spas, industrial processes, desalination and agricultural applications.[4]
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
"The basic concept of seismology is quite simple. As 
the Earth's crust is composed of different layers, 
each with its own properties, energy (in the form of 
seismic waves) traveling underground interacts 
differently with each of these layers. These seismic 
waves, emitted from a source, will travel through the 
earth, but also be reflected back toward the source 
by the different underground layers. Through 
seismology, geophysicists are able to artificially 
create vibrations on the surface and record how 
these vibrations are reflected back to the surface, 
revealing the properties of the geology beneath.
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
Applications of the Stirling engine range from mechanical propulsion to 
heating and cooling to electrical generation systems. A Stirling engine is a 
heat engine operating by cyclic compression and expansion of air or other gas, 
the "working fluid", at different temperature levels such that there is a net 
conversion of heat energy to mechanical work.[1][2]
 The Stirling cycle heat engine 
can also be driven in reverse, using a mechanical energy input to drive heat 
transfer in a reversed direction (i.e. a heat pump, or refrigerator).
There are several design configurations for Stirling engines that can be built, 
many of which require rotary or sliding seals, which can introduce difficult 
tradeoffs between frictional losses and refrigerant leakage. A free-piston variant 
of the Stirling engine can be built, which can be completely hermetically sealed, 
reducing friction losses and completely eliminating refrigerant leakage. For 
example, a Free Piston Stirling Cooler (FPSC) can convert an electrical energy 
input into a practical heat pump effect, used for high-efficiency portable 
refrigerators and freezers. Conversely, a free-piston electrical generator could 
be built, converting a heat flow into mechanical energy, and then into electricity. 
In both cases, energy is usually converted from/to electrical energy using 
magnetic fields in a way that avoids compromising the hermetic seal.
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD
Imagine looking out over Tokyo Bay from high above and seeing a man-made island in the harbor, 3 kilometers long. A 
massive net is stretched over the island and studded with 5 billion tiny rectifying antennas, which convert microwave energy 
into DC electricity. Also on the island is a substation that sends that electricity coursing through a submarine cable to Tokyo, 
to help keep the factories of the Keihin industrial zone humming and the neon lights of Shibuya shining bright.
But you can’t even see the most interesting part. Several giant solar collectors in geosynchronous orbit are beaming 
microwaves down to the island from 36 000 km above Earth.
It’s been the subject of many previous studies and the stuff of sci-fi for decades, but space-based solar power could at last 
become a reality—and within 25 years, according to a proposal from researchers at the 
Japan Aerospace Exploration Agency (JAXA). The agency, which leads the world in research on space-based solar power 
systems, now has a technology road map that suggests a series of ground and orbital demonstrations leading to the 
development in the 2030s of a 1-gigawatt commercial system—about the same output as a typical nuclear power plant.
It’s an ambitious plan, to be sure. But a combination of technical and social factors is giving it currency, especially in Japan. 
On the technical front, recent advances in wireless power transmission allow moving antennas to coordinate in order to 
send a precise beam across vast distances. At the same time, heightened public concerns about the climatic effects of 
greenhouse gases produced by the burning of fossil fuels are prompting a look at alternatives. Renewable energy 
technologies to harvest the sun and the wind are constantly improving, but large-scale solar and wind farms occupy huge 
swaths of land, and they provide only intermittent power. Space-based solar collectors in geosynchronous orbit, on the other 
hand, could generate power nearly 24 hours a day. Japan has a particular interest in finding a practical clean energy source: 
The accident at the Fukushima Daiichi nuclear power plant prompted an exhaustive and systematic search for alternatives, 
yet Japan lacks both fossil fuel resources and empty land suitable for renewable power installations.
Soon after we humans invented silicon-based photovoltaic cells to convert sunlight directly into electricity, more than 
60 years ago, we realized that space would be the best place to perform that conversion. The concept was first proposed 
formally in 1968 by the American aerospace engineer Peter Glaser. In a seminal paper, he acknowledged the challenges of 
constructing, launching, and operating these satellites but argued that improved photovoltaics and easier access to space 
would soon make them achievable. In the 1970s, NASA and the U.S. Department of Energy carried out serious studies on 
space-based solar power, and over the decades since, various types of solar power satellites (SPSs) have been proposed. 
No such satellites have been orbited yet because of concerns regarding costs and technical feasibility. The relevant 
technologies have made great strides in recent years, however. It’s time to take another look at space-based solar power.
A commercial SPS capable of producing 1 GW would be a magnificent structure weighing more than 10 000 metric tons 
and measuring several kilometers across. To complete and operate an electricity system based on such satellites, we would 
have to demonstrate mastery of six different disciplines: wireless power transmission, space transportation, construction of 
large structures in orbit, satellite attitude and orbit control, power generation, and power management. Of those six 
challenges, it’s the wireless power transmission that remains the most daunting. So that’s where JAXA has focused its 
research.
 Illustration: John MacNeillThe Japan Aerospace Exploration Agency is working on several models for solar-collecting 
satellites, which would fly in geosynchronous orbit 36 000 kilometers above their receiving stations. With the basic model 
[top left-hand side], the photovoltaic-topped panel’s efficiency would decrease as the world turned away from the sun. The 
advanced model [top right-hand side] would feature two mirrors to reflect sunlight onto two photovoltaic panels. This model 
would be more difficult to build, but it could generate electricity continuously.
In either model, the photovoltaic panels would generate DC current, which would be converted to microwaves aboard the 
satellite. The satellite’s many microwave-transmitting antenna panels would receive a pilot signal from the ground, allowing 
Mrs Shimi S.L, Asst. Prof., 
NITTTR, CHD

Solar energy application for electric power generation