bridging formal semantics and social semantics on the web
010101

HELLO

Fabien Gandon, @fabien_gandon, http://fabien.info
Leader of the Wimmics research team (INRIA, CNRS, Univ. Nice)
W3C Advisory Committee Representative for INRIA
eb- nstrumented
an- achine nteractions,
ommunities, and emantics
a joint research team between INRIA Sophia Antipolis – Méditerranée
and I3S (CNRS and University Nice Sophia Antipolis).
members
Head (and INRIA contact): Fabien Gandon
Vice Head (and I3S contact): Catherine Faron-Zucker

Researchers:
1.
Michel Buffa, MdC (UNS)
2.
Olivier Corby, CR1 (INRIA)
3.
Alain Giboin, CR1 (INRIA)
4.
Nhan Le Thanh, Pr. (UNS)
5.
Isabelle Mirbel, MdC, HDR (UNS)
6.
Peter Sander, Pr. (UNS)
7.
David Simoncini, ATER (UNS)
8.
Andrea G. B. Tettamanzi, Pr. (UNS)
9.
Serena Villata, RP (INRIA)
Post-doc:
1.
Jodi Schneider(ERCIM)
2.
Elena Cabrio (CORDIS)
Research engineers:
1.
Christophe Desclaux (Boost your code)
2.
Fuqi Song (Inria ADT)

PhD students:
1. Pavel Arapov, 3rd year (EDSTIC-I3S)
2. Amel Benothman, 1st year (I3S)
3. Franck Berthelon, 4th year (UNS-EDSTIC)
4. Ahlem Bouchahda, 3rd year (UNS-SupCom Tunis)
5. Khalil Riad Bouzidi, 3rd year (UNS-CSTB)
6. Papa Fary Diallo, 2nd year (AUF-UGB-INRIA)
7. Amosse Edouard (EDSTIC-I3S)
8. Corentin Follenfant, 3rd year (SAP)
9. Rakebul Hasan, 2nd year (INRIA ANR-Kolflow)
10. Maxime Lefrançois, 3rd year (EDSTIC-INRIA)
11. Nicolas Marie, 3rd year (Bell-ALU, INRIA)
12. Zide Meng, 1st year (INRIA ANR OCTOPUS)
13. Nguyen Thi Hoa Hue, 2nd year (Vietnam-CROUS)
14. Tuan Anh Pham (Vietnam-CampusFrance)
15. Oumy Seye, 2nd year, (INRIA Rose Dieng allocation)
Assistants:
•
Christine Foggia (INRIA)
•
Magali Richir (I3S)
research problem
socio-semantic networks: combining formal
semantics and social semantics on the web
web landscape and graphs

(meta)data of the relations and the resources of the web

=
web…

+
…sites

=
typed
graphs

+
…social

+
web
(graphs)

…of data

+
networks
(graphs)

+

+

…of services

+

linked data
(graphs)

+…
…semantics

+
workflows
(graphs)

+…
schemas
(graphs)
challenge

typed graphs to analyze, model, formalize and implement
social semantic web applications for epistemic communities
 multidisciplinary approach for analyzing and modeling

the many aspects of intertwined information systems
communities of users and their interactions
 formalizing and reasoning on these models using typed graphs

new analysis tools and indicators
new functionalities and better management
<background_knowledge>
internet

n↔n

classical web

1↔n

wiki, (µ)blog, forum, etc.

n↔n

Ward Cunningham, 94

read-write web
social web networks
SOCIAL TAGGING

collaboratively create
and manage tags to
annotate and
categorize content
a crowd of users creating massive
categorizations
T
U
R
semantic web
mentioned by Tim BL
in 1994 at WWW

[Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
SEMANTIC WEB STACK

W3C®
A WEB OF
LINKED DATA

W3C®
RDF stands for
Resource: pages, images, videos, ...
everything that can have a URI
Description: attributes, features, and
relations of the resources
Framework: model, languages and
syntaxes for these descriptions
RDF is a triple model i.e. every
piece of knowledge is broken down into
( subject , predicate , object )
doc.html has for author Fabien
and has for theme Music
doc.html has for author Fabien
doc.html has for theme Music
( doc.html , author , Fabien )
( doc.html , theme , Music )

( subject , predicate , object )
RDFtriples can be seen as arcs
of a graph (vertex,edge,vertex)
(the RDF data model can be seen as a directed labelled multigraph)
Fabien
author
doc.html
theme
Music
identify what
exists on the
web
http://my-site.fr

identify,
on the web,
what exists
http://animals.org/this-zebra
http://ns.inria.fr/fabien.gandon#me

http://inria.fr/schema#author
http://inria.fr/rr/doc.html
http://inria.fr/schema#theme
"Music"
principles





use RDF as data format
use URIs as names for things
use HTTP URIs so that people can look up those names
when someone looks up a URI, provide useful information
(RDF, HTML, etc.) using content negotiation
 include links to other URIs so that related things can be
discovered
May 2007

April 2008

September 2008

Linking Open Data

March 2009

400
300

200
100
0
10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012

September 2011
Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/

September 2010
query with SPARQL
SPARQL Protocol and RDF
Query Language
e.g. DBpedia
opening datathat break the linked nature of the web
silos
created by applications and
Ontology

ontologies

->
PUBLISHED
SEMANTICS
OF SCHEMAS

W3C®
RDFS to declare classes of
resources, properties, and
organize their hierarchy
Document

creator

author

Report

Document

Person
OWL in one…



algebraic properties
!

union
disjunction
intersection
complement
restriction

1..1

disjoint properties
1..1

! qualified cardinality
individual prop. neg




chained prop.

cardinality
 equivalence
enumeration
[>18] value restrict.
disjoint union

keys

…
SKOS
knowledge

thesauri,
classifications,
subjects,
taxonomies,
folksonomies,
... controlled
vocabulary

35
labels
natural language expressions to refer to concepts

inria:CorporateSemanticWeb
skos:prefLabel "corporate semantic web"@en;
skos:prefLabel "web sémantique d'entreprise"@fr;
skos:altLabel "corporate SW"@en;
skos:altLabel "CSW"@en;
skos:hiddenLabel "web semantique d'entreprise"@fr.

36
relations
between concepts

inria:CorporateSemanticWeb
skos:broader w3c:SemanticWeb;
skos:narrower inria:CorporateSemanticWiki;
skos:related inria:KnowledgeManagement.
</background_knowledge>
http://wimmics.inria.fr
[Limpens, et al.]

e.g. structuring folksonomy
web 2.0

flat folksonomies

thesaurus
pollutant

energy

related

related

?

pollution

has narrower
soil pollution

SKOS
[Limpens, et al.]

e.g. combining metric spaces
edition distances
Monge-Elkan Soundex, JaroWinkler,
asymmetry Monge-Elkan Qgram

contextual metric
cosinus vector of co-occurring tags
tag1  tag 2
cos tag1 , tag 2 
tag1  tag 2





social metrics
inclusion of communities of interest
pollution
environment
e.g. ademe TheseNet

83 027 relations / 9 037 tags
 68 633 related
 11 254 hyponyms
 3 193 spelling variants
evolution of the place of humans in

complex web applications
=

user

=

data

=

processor
[Limpens, et al.]

e.g. search & feedback
[Erétéo, et al.]

e.g. typing sociograms
Fabien

Michel

Guillaume

Marco

Rémi


din ( p )  x ; rel( x , p )


din (Guillaume)  4

Nicolas

social network analysis

Man

creator

type

author
Fabien

type
Person

creator

Person

sub property

sub class

doc.html

title
Semantic web is not antisocial

author

Man

semantic web
Fabien
Mylène

Gérard

knows

(guillaume)=3
guillaume
d(guillaume)=5

<family>

colleague

Michel
sibling

sister

brother

parent

father mother

Yvonne
[Erétéo, et al.]

e.g. parameterized analysis
SNA indices
(G)

actor
type

nb

actor
nbrel (G)

subject
nbrel (G)

SPARQL formal definition

g
nbrel (b, from, to)

select ?from ?to ?b count($path) as ?count
where{
?from sa (param[rel])*::$path ?to
graph $path{?b param[rel] ?j}
filter(?from != ?b)
optional { ?from param[rel]::$p ?to }
filter(!bound($p))
}group by ?from ?to ?b

c
Crel ( y)

select distinct ?y ?to pathLength($path) as
?length (1/sum(?length)) as ?centrality
where{
?y s (param[rel])*::$path ?to
}group by ?y
select ?from ?to ?b
(count($path)/count($path2)) as ?betweenness
where{
?from sa (param[rel])*::$path ?to
graph $path{?b param[rel] ?j}
filter(?from != ?b)
optional { ?from param[rel]::$p ?to }
filter(!bound($p))
?from sa (param[rel])*::$path2 ?to
}group by ?from ?to ?b

select merge count(?x) as ?nbactor from <G>
where{
?x rdf:type param[type]
}
select merge count(?x) as ?nbactors from <G>
where{
{?x param[rel] ?y}
UNION{?y param[rel] ?x}
}
select merge count(?x) as ?nbsubj from <G>
where{
?x param[rel] ?y
}

object
nbrel (G)

select merge count(?y) as ?nbobj from <G>
where{
?x param[rel] ?y
}

relation
nbrel (G)

select cardinality(?p) as ?card from <G>
where {
{ ?p rdf:type rdf:Property
filter(?p ^ param[rel]) }
UNION
{ ?p rdfs:subPropertyOf ?parent
filter(?parent ^ param[rel]) }
}
select ?x ?y from <G> where {
?x param[rel] ?y
}group by any
select ?y count(?x) as ?degree where {
{?x (param[rel])*::$path ?y
filter(pathLength($path) <= param[dist])}
UNION
{?y param[rel]::$path ?x
filter(pathLength($path) <= param[dist])}
}group by ?y
select ?y count(?x) as ?indegree where{
?x (param[rel])*::$path ?y
filter(pathLength($path) <= param[dist])
}group by ?y
select ?x count(?y) as ?outdegree where {
?x (param[rel])*::$path ?y
filter(pathLength($path) <= param[dist])
}group by ?x

Brel (b, from, to)

Comprel (G)

Drel ,dist ( y)

in
Drel ,dist ( y)

out
Drel ,dist ( y)

g rel ( from, to)

select ?from ?to $path pathLength($path) as
?length where{
?from sa (param[rel])*::$path ?to
}group by ?from ?to

Diamrel (G)

select pathLength($path) as ?length from <G>
where {
?y s (param[rel])*::$path ?to
}order by desc(?length)
limit 1
select ?from ?to count($path) as ?count
where{
?from sa (param[rel])*::$path ?to
}group by ?from ?to

g
nbrel ( from, to)

nbgrel  (b, x, y)
B rel  b, x, y  
nbgrel  ( x, y )

:=

select ?from ?to ?b
(count($path)/count($path2)) as
?betweenness where{
?from sa (param[rel])*::$path ?to
graph $path{?b param[rel] ?j}
filter(?from != ?b)
optional { ?from param[rel]::$p ?to}
filter(!bound($p))
?from sa (param[rel])*::$path2 ?to
}group by ?from ?to ?b
[Erétéo, et al.]

ipernity.com dataset in RDF
61 937 actors & 494 510 relationships
–18 771 family links between 8 047 actors
–136 311 friend links implicating 17 441 actors
–339 428 favorite links for 61 425 actors, etc.
existence of a largest component in all sub networks
"the effectiveness of the social network at doing its job"
[Newman 2003]
70000
60000
50000
40000
30000
20000
10000
0

know s
favorite
friend
fam ily
m essage
num ber actors

size largest com ponent

com m ent
typed centrality:
different key actors for
different kinds of links
detecting AND labeling communities
?

?
[Eretéo, et al.]

e.g. semantic propagation

from RAK/LP to SemTagP
rugby, foot

hockey sel, eau

poivre, vin
foot, ciné

moutarde

sport

sport

condiment

condiment
sport condiment
applied to Ademe Ph.D. network
 1 853 agents
1 597 academic supervisors
256 ADEME engineers.

 13 982 relationships
10 246 rel:worksWith
3 736 rel:colleagueOf

 6 583 tags
 3 570 skos:narrower
relations between 2 785 tags
e.g. Ademe

1 pollution ; 2 développent durable ;
3 énergie ; 4 chimie ; 5 pollution de l’air ;
6 métaux ; 7 biomasse ; 8 déchets.

[Erétéo, et al.]
towards rich webmarks
[Delaforge, et al.]

Fresnel lenses to adapt results
toward social webmarks
socially defined online identities
[Delaforge, et al.]
[Delaforge, et al.]
[Delaforge, et al.]

search & navigation in info. networks
Semantic Web plugin for Gephi
activity flow and notification
web-scraping: archiving and integrating
[Buffa, et al.]

create dynamic reports in the wiki
gave birth to …
« Unveil the semantic imprint from within your Community »
cooperative society of social semantic web specialists
industrialization and maintenance of research results
developing webmarks as linked semantic traces

exhange
contributes

interested
in

Xxxxxx
xxxxxx
xxxxxx

Xxxxxx
xxxxxx
xxxxxx

link & enrich
contributes

exchange
interested in

Xxxxx
xxx

xxxxx
xxxx
Xxxxx
xxxx
xxxx

contribute
Xxxxxx
xxxxxx
xxxxxxXxxxxx
xxxxxx
xxxxxx

interested in

downloaded
Xxxxxx
xxxxxx
xxxxxxXxxxxx
xxxxxx
xxxxxx

analyse & assist

Xxxxx
x
xxxxx
going
mobile
mobile access to web of data
&
Mobile

&
Web of
Data

&
Context

Interaction
prissma

[Costabello et al.]
Context-aware Adaptation for Linked Data?

?
wimmics.inria.fr/projects/prissma

[Costabello et al.]
fault-tolerant matching with graph-edit distances
prissma:environment
:ActualCtx

prissma:poi
:actualPOI

:actualEnv

C=0

geo:lat
prissma:radius
geo:long
10

48.843453
2.32434

✓

C=0.34

C=0 ✓

✓

:museumGeo
prissma:Context
0

prissma:radius
geo:lat
geo:lon

200
48.86034
-2.337599
1

prissma:Environment
2

C=0.17

✓

{ 3, 1, 2, { pr i ssm poi } }
a:

C=0.09

✓

:atTheMuseum
{ 4, 0, 3, { pr i ssm envi r onm
a:
ent } }

[Costabello et al.]
examples
PRISSMA Browser for Android

Smartphone, user walking
in museum town.

Tablet, user at home.

[Costabello et al.]
when the linklinking data to create knwoledge
makes sense
contextual notification
propagation of interests for suggestion

[Marie, et al.]

0,4

0,9

0,7

𝒂 𝒊, 𝒏 + 𝟏, 𝒕 =

𝒘 𝒔 ∗ 𝐬(𝐢, 𝐧 + 𝟏, 𝐭) +
𝒘𝒔 +

𝐣,𝒆 𝐢,𝒋
𝐣,𝒆 𝐢,𝒋

𝒘 𝒑 𝐥 𝒆 𝐢,𝒋 , 𝒕 ∗ 𝐚(𝐣, 𝐧, 𝐭)
𝒘 𝒑 𝒆 𝐢,𝒋
Discovery Hub
1
2
3

DBpedia:
Claude Monet

4

Results identification
Ranking
Sorting/categorization
Explanation
Discovery Hub (Inria, Alcatel Bell Lucent)
ELIZA… talking to machines
Who is starring in
Batman Begins?
EAT and NE recognition:

Stanford NER+ DBpedia
Relational Patterns extraction

Query pattern
Pattern repository
owner(Thing, Thing)

[Person] is starring
in [Movie]?

[R:Person] purchased the [D:Thing]
[D:Thing] owner [R:Thing]
[D:Thing] was bought by [R:Thing]

question
answering
over
linked
data

[Cabrio, et al.]

select * where {
dbpr:Batman_Begins dbp:starring ?v
OPTIONAL {?v rdfs:label ?l
filter(lang(?l)="en")} }

starring(Work, Person)

.

[D:Work], played by [R:Person]
[D:Work] stars [R:Person]
[D:Work] film stars [R:Person]
ENTAILMENT ENGINE/
SIMILARITY ALGORITHM

QALD-2 Open Challenge:

Christian Bale, Michael Caine, ...
QAKIS demo
EMOTION
detection
transfer
adaptation

www
ns.inria.fr/emoca

[Berthelon, et al.]
e.g. DBpedia
[Cojan, et al.]
publication
Datalift process

demo
• on click setup
• raw data import
• RDF transformation
• Web publication
• online querying
[Corby, et al.]

corese/kgram

• Semantic Web Factory: RDF/S, SPARQL 1.1
Query & Updade, Inference Rules
• Open Source CeCILL-C
• Knowledge Graph Abstract Machine
with 3 Proxies (Producer, Matcher, Evaluator)
3 ANR, 2 RNRT, 1 region project, 4 european project,
4 industry grants, 10 academic grants,
>30 applications, 23 PhD, 9 edu. Institutions, etc.
left(x,y)
left(y,z)

right(z,v)
right(z,u)
right(u,v)

left(x,?p) left(?p,z)



left
x

*

left
z
y
left

left

x

z
right

right

u

v
vehicle

O

vehicle

GR

car(x)vehicle(x)
car

car

GF

FOmodulo an ontologyGF  GR
R
mapping
CORESE/ KGRAM

[Corby, et al.]
my watch has only one hand,
it is not broken, it is a feature.

why approximation is interesting
e.g. controlled approximation
vehicle
car

O

car(x) … truck(x)

car

truck
truck

t1(x)t2(x)  d(t1,t2)< threshold



(t1 , t 2 )  H c let dist (t1 , t 2 )  min t t1 ,t t2  l H c (t1 , t )  l H c (t 2 , t )
2

(t1 , t 2 )  H c ; t1  t 2 let l H c (t1 , t 2 )  t t ,t
2

1 2

 1 
,t  t1   depth ( t ) 
2



e.g. approximated search
Plugin Gephi

[Demairy, et al.]
RDF

RDF

peer
servers
web service

web service

web service

web application
RDF

RDF

SPARQL
inductive index creation for a triple store
[Basse, et al.]

• characterize distributed RDF sources
• incremental index generation and maintenance
[Gaignard, et al.]

federating KGram
control
[Villata, et al.]

socio-semantic access control

User

e.g. only my colleagues
working on the same subject
ASK{ ?res dcterms:creator ?prov .
?prov rel:hasColleague ?user .
?prov foaf:interestedBy ?topic .
?user foaf:interestedBy ?topic }
Context-Aware Access Control
Model [Villata, Costabello, et al.]
s4ac:
DisjunctiveACS
subClassOf

hasAccessPrivilege

hasAccessConditionSet

subClassOf

ConjunctiveACS

appliesTo

AccessPolicy

AccessPrivilege

AccessConditionSet
hasAccessCondition

AccessCondition
hasQueryAsk

Device

device

hasContext

Context

User
user

environment

Environment
105
Context-aware Access Control for Linked Data

Shi3ld Access Control Manager
SELECT …
WHERE {…}

GET /data/resource HTTP/1.1
Host: example.org
Authorization: ...

wimmics.inria.fr/projects/shi3ld
toward the « oh yeah? » button
representing query and reasoning
workflows [Hasan et al.]

• Ratio4TA*, a lightweight
vocabulary for encoding
justifications.
• A specialization of the W3C
PROV ontology

*

http://ns.inria.fr/ratio4ta/
[Hasan et al.]

overwhelming…

evaluating quality
of summaries
doggy-bag
of the talk
web 1, 2
web 1, 2, 3
person
price

homepage?
convert?

more info?
wikipedia editions by users…
3500000
3000000
2500000
2000000

1500000
1000000
500000
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

3500000

without bots…

3000000
2500000
2000000
1500000
1000000
500000

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
one web…
person

document
informal
formal

program

data

metadata
usage

representation
he who controls metadata, controls the web
and through the world-wide web many things in our world.

fabien, gandon, @fabien_gandon, http://fabien.info

bridging formal semantics and social semantics on the web

  • 1.
    bridging formal semanticsand social semantics on the web 010101 HELLO Fabien Gandon, @fabien_gandon, http://fabien.info Leader of the Wimmics research team (INRIA, CNRS, Univ. Nice) W3C Advisory Committee Representative for INRIA
  • 2.
    eb- nstrumented an- achinenteractions, ommunities, and emantics a joint research team between INRIA Sophia Antipolis – Méditerranée and I3S (CNRS and University Nice Sophia Antipolis).
  • 3.
    members Head (and INRIAcontact): Fabien Gandon Vice Head (and I3S contact): Catherine Faron-Zucker Researchers: 1. Michel Buffa, MdC (UNS) 2. Olivier Corby, CR1 (INRIA) 3. Alain Giboin, CR1 (INRIA) 4. Nhan Le Thanh, Pr. (UNS) 5. Isabelle Mirbel, MdC, HDR (UNS) 6. Peter Sander, Pr. (UNS) 7. David Simoncini, ATER (UNS) 8. Andrea G. B. Tettamanzi, Pr. (UNS) 9. Serena Villata, RP (INRIA) Post-doc: 1. Jodi Schneider(ERCIM) 2. Elena Cabrio (CORDIS) Research engineers: 1. Christophe Desclaux (Boost your code) 2. Fuqi Song (Inria ADT) PhD students: 1. Pavel Arapov, 3rd year (EDSTIC-I3S) 2. Amel Benothman, 1st year (I3S) 3. Franck Berthelon, 4th year (UNS-EDSTIC) 4. Ahlem Bouchahda, 3rd year (UNS-SupCom Tunis) 5. Khalil Riad Bouzidi, 3rd year (UNS-CSTB) 6. Papa Fary Diallo, 2nd year (AUF-UGB-INRIA) 7. Amosse Edouard (EDSTIC-I3S) 8. Corentin Follenfant, 3rd year (SAP) 9. Rakebul Hasan, 2nd year (INRIA ANR-Kolflow) 10. Maxime Lefrançois, 3rd year (EDSTIC-INRIA) 11. Nicolas Marie, 3rd year (Bell-ALU, INRIA) 12. Zide Meng, 1st year (INRIA ANR OCTOPUS) 13. Nguyen Thi Hoa Hue, 2nd year (Vietnam-CROUS) 14. Tuan Anh Pham (Vietnam-CampusFrance) 15. Oumy Seye, 2nd year, (INRIA Rose Dieng allocation) Assistants: • Christine Foggia (INRIA) • Magali Richir (I3S)
  • 4.
    research problem socio-semantic networks:combining formal semantics and social semantics on the web
  • 5.
    web landscape andgraphs (meta)data of the relations and the resources of the web = web… + …sites = typed graphs + …social + web (graphs) …of data + networks (graphs) + + …of services + linked data (graphs) +… …semantics + workflows (graphs) +… schemas (graphs)
  • 6.
    challenge typed graphs toanalyze, model, formalize and implement social semantic web applications for epistemic communities  multidisciplinary approach for analyzing and modeling the many aspects of intertwined information systems communities of users and their interactions  formalizing and reasoning on these models using typed graphs new analysis tools and indicators new functionalities and better management
  • 7.
  • 8.
    internet n↔n classical web 1↔n wiki, (µ)blog,forum, etc. n↔n Ward Cunningham, 94 read-write web
  • 10.
  • 11.
    SOCIAL TAGGING collaboratively create andmanage tags to annotate and categorize content
  • 12.
    a crowd ofusers creating massive categorizations T U R
  • 13.
    semantic web mentioned byTim BL in 1994 at WWW [Tim Berners-Lee 1994, http://www.w3.org/Talks/WWW94Tim/]
  • 14.
  • 15.
    A WEB OF LINKEDDATA W3C®
  • 16.
    RDF stands for Resource:pages, images, videos, ... everything that can have a URI Description: attributes, features, and relations of the resources Framework: model, languages and syntaxes for these descriptions
  • 17.
    RDF is atriple model i.e. every piece of knowledge is broken down into ( subject , predicate , object )
  • 18.
    doc.html has forauthor Fabien and has for theme Music
  • 19.
    doc.html has forauthor Fabien doc.html has for theme Music
  • 20.
    ( doc.html ,author , Fabien ) ( doc.html , theme , Music ) ( subject , predicate , object )
  • 21.
    RDFtriples can beseen as arcs of a graph (vertex,edge,vertex) (the RDF data model can be seen as a directed labelled multigraph)
  • 22.
  • 24.
    identify what exists onthe web http://my-site.fr identify, on the web, what exists http://animals.org/this-zebra
  • 25.
  • 26.
    principles     use RDF asdata format use URIs as names for things use HTTP URIs so that people can look up those names when someone looks up a URI, provide useful information (RDF, HTML, etc.) using content negotiation  include links to other URIs so that related things can be discovered
  • 27.
    May 2007 April 2008 September2008 Linking Open Data March 2009 400 300 200 100 0 10/10/2006 28/04/2007 14/11/2007 01/06/2008 18/12/2008 06/07/2009 22/01/2010 10/08/2010 26/02/2011 14/09/2011 01/04/2012 September 2011 Linking Open Data cloud diagram, by Richard Cyganiak and Anja Jentzsch. http://lod-cloud.net/ September 2010
  • 28.
    query with SPARQL SPARQLProtocol and RDF Query Language
  • 29.
  • 30.
    opening datathat breakthe linked nature of the web silos created by applications and
  • 31.
  • 32.
  • 33.
    RDFS to declareclasses of resources, properties, and organize their hierarchy Document creator author Report Document Person
  • 34.
    OWL in one…  algebraicproperties ! union disjunction intersection complement restriction 1..1 disjoint properties 1..1 ! qualified cardinality individual prop. neg   chained prop. cardinality  equivalence enumeration [>18] value restrict. disjoint union  keys …
  • 35.
  • 36.
    labels natural language expressionsto refer to concepts inria:CorporateSemanticWeb skos:prefLabel "corporate semantic web"@en; skos:prefLabel "web sémantique d'entreprise"@fr; skos:altLabel "corporate SW"@en; skos:altLabel "CSW"@en; skos:hiddenLabel "web semantique d'entreprise"@fr. 36
  • 37.
    relations between concepts inria:CorporateSemanticWeb skos:broader w3c:SemanticWeb; skos:narrowerinria:CorporateSemanticWiki; skos:related inria:KnowledgeManagement.
  • 38.
  • 39.
  • 41.
    [Limpens, et al.] e.g.structuring folksonomy web 2.0 flat folksonomies thesaurus pollutant energy related related ? pollution has narrower soil pollution SKOS
  • 42.
    [Limpens, et al.] e.g.combining metric spaces edition distances Monge-Elkan Soundex, JaroWinkler, asymmetry Monge-Elkan Qgram contextual metric cosinus vector of co-occurring tags tag1  tag 2 cos tag1 , tag 2  tag1  tag 2   social metrics inclusion of communities of interest pollution environment
  • 43.
    e.g. ademe TheseNet 83027 relations / 9 037 tags  68 633 related  11 254 hyponyms  3 193 spelling variants
  • 44.
    evolution of theplace of humans in complex web applications = user = data = processor
  • 45.
    [Limpens, et al.] e.g.search & feedback
  • 47.
    [Erétéo, et al.] e.g.typing sociograms Fabien Michel Guillaume Marco Rémi  din ( p )  x ; rel( x , p )  din (Guillaume)  4 Nicolas social network analysis Man creator type author Fabien type Person creator Person sub property sub class doc.html title Semantic web is not antisocial author Man semantic web
  • 48.
  • 49.
    [Erétéo, et al.] e.g.parameterized analysis SNA indices (G) actor type nb actor nbrel (G) subject nbrel (G) SPARQL formal definition g nbrel (b, from, to) select ?from ?to ?b count($path) as ?count where{ ?from sa (param[rel])*::$path ?to graph $path{?b param[rel] ?j} filter(?from != ?b) optional { ?from param[rel]::$p ?to } filter(!bound($p)) }group by ?from ?to ?b c Crel ( y) select distinct ?y ?to pathLength($path) as ?length (1/sum(?length)) as ?centrality where{ ?y s (param[rel])*::$path ?to }group by ?y select ?from ?to ?b (count($path)/count($path2)) as ?betweenness where{ ?from sa (param[rel])*::$path ?to graph $path{?b param[rel] ?j} filter(?from != ?b) optional { ?from param[rel]::$p ?to } filter(!bound($p)) ?from sa (param[rel])*::$path2 ?to }group by ?from ?to ?b select merge count(?x) as ?nbactor from <G> where{ ?x rdf:type param[type] } select merge count(?x) as ?nbactors from <G> where{ {?x param[rel] ?y} UNION{?y param[rel] ?x} } select merge count(?x) as ?nbsubj from <G> where{ ?x param[rel] ?y } object nbrel (G) select merge count(?y) as ?nbobj from <G> where{ ?x param[rel] ?y } relation nbrel (G) select cardinality(?p) as ?card from <G> where { { ?p rdf:type rdf:Property filter(?p ^ param[rel]) } UNION { ?p rdfs:subPropertyOf ?parent filter(?parent ^ param[rel]) } } select ?x ?y from <G> where { ?x param[rel] ?y }group by any select ?y count(?x) as ?degree where { {?x (param[rel])*::$path ?y filter(pathLength($path) <= param[dist])} UNION {?y param[rel]::$path ?x filter(pathLength($path) <= param[dist])} }group by ?y select ?y count(?x) as ?indegree where{ ?x (param[rel])*::$path ?y filter(pathLength($path) <= param[dist]) }group by ?y select ?x count(?y) as ?outdegree where { ?x (param[rel])*::$path ?y filter(pathLength($path) <= param[dist]) }group by ?x Brel (b, from, to) Comprel (G) Drel ,dist ( y) in Drel ,dist ( y) out Drel ,dist ( y) g rel ( from, to) select ?from ?to $path pathLength($path) as ?length where{ ?from sa (param[rel])*::$path ?to }group by ?from ?to Diamrel (G) select pathLength($path) as ?length from <G> where { ?y s (param[rel])*::$path ?to }order by desc(?length) limit 1 select ?from ?to count($path) as ?count where{ ?from sa (param[rel])*::$path ?to }group by ?from ?to g nbrel ( from, to) nbgrel  (b, x, y) B rel  b, x, y   nbgrel  ( x, y ) := select ?from ?to ?b (count($path)/count($path2)) as ?betweenness where{ ?from sa (param[rel])*::$path ?to graph $path{?b param[rel] ?j} filter(?from != ?b) optional { ?from param[rel]::$p ?to} filter(!bound($p)) ?from sa (param[rel])*::$path2 ?to }group by ?from ?to ?b
  • 50.
    [Erétéo, et al.] ipernity.comdataset in RDF 61 937 actors & 494 510 relationships –18 771 family links between 8 047 actors –136 311 friend links implicating 17 441 actors –339 428 favorite links for 61 425 actors, etc. existence of a largest component in all sub networks "the effectiveness of the social network at doing its job" [Newman 2003] 70000 60000 50000 40000 30000 20000 10000 0 know s favorite friend fam ily m essage num ber actors size largest com ponent com m ent
  • 51.
    typed centrality: different keyactors for different kinds of links
  • 53.
    detecting AND labelingcommunities ? ?
  • 54.
    [Eretéo, et al.] e.g.semantic propagation from RAK/LP to SemTagP rugby, foot hockey sel, eau poivre, vin foot, ciné moutarde sport sport condiment condiment sport condiment
  • 55.
    applied to AdemePh.D. network  1 853 agents 1 597 academic supervisors 256 ADEME engineers.  13 982 relationships 10 246 rel:worksWith 3 736 rel:colleagueOf  6 583 tags  3 570 skos:narrower relations between 2 785 tags
  • 56.
    e.g. Ademe 1 pollution; 2 développent durable ; 3 énergie ; 4 chimie ; 5 pollution de l’air ; 6 métaux ; 7 biomasse ; 8 déchets. [Erétéo, et al.]
  • 59.
  • 60.
    [Delaforge, et al.] Fresnellenses to adapt results
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
    [Delaforge, et al.] search& navigation in info. networks
  • 66.
  • 67.
    activity flow andnotification
  • 68.
  • 69.
    [Buffa, et al.] createdynamic reports in the wiki
  • 71.
    gave birth to… « Unveil the semantic imprint from within your Community » cooperative society of social semantic web specialists industrialization and maintenance of research results developing webmarks as linked semantic traces exhange contributes interested in Xxxxxx xxxxxx xxxxxx Xxxxxx xxxxxx xxxxxx link & enrich contributes exchange interested in Xxxxx xxx xxxxx xxxx Xxxxx xxxx xxxx contribute Xxxxxx xxxxxx xxxxxxXxxxxx xxxxxx xxxxxx interested in downloaded Xxxxxx xxxxxx xxxxxxXxxxxx xxxxxx xxxxxx analyse & assist Xxxxx x xxxxx
  • 73.
  • 74.
    mobile access toweb of data & Mobile & Web of Data & Context Interaction prissma [Costabello et al.]
  • 75.
    Context-aware Adaptation forLinked Data? ? wimmics.inria.fr/projects/prissma [Costabello et al.]
  • 76.
    fault-tolerant matching withgraph-edit distances prissma:environment :ActualCtx prissma:poi :actualPOI :actualEnv C=0 geo:lat prissma:radius geo:long 10 48.843453 2.32434 ✓ C=0.34 C=0 ✓ ✓ :museumGeo prissma:Context 0 prissma:radius geo:lat geo:lon 200 48.86034 -2.337599 1 prissma:Environment 2 C=0.17 ✓ { 3, 1, 2, { pr i ssm poi } } a: C=0.09 ✓ :atTheMuseum { 4, 0, 3, { pr i ssm envi r onm a: ent } } [Costabello et al.]
  • 77.
    examples PRISSMA Browser forAndroid Smartphone, user walking in museum town. Tablet, user at home. [Costabello et al.]
  • 78.
    when the linklinkingdata to create knwoledge makes sense
  • 79.
    contextual notification propagation ofinterests for suggestion [Marie, et al.] 0,4 0,9 0,7 𝒂 𝒊, 𝒏 + 𝟏, 𝒕 = 𝒘 𝒔 ∗ 𝐬(𝐢, 𝐧 + 𝟏, 𝐭) + 𝒘𝒔 + 𝐣,𝒆 𝐢,𝒋 𝐣,𝒆 𝐢,𝒋 𝒘 𝒑 𝐥 𝒆 𝐢,𝒋 , 𝒕 ∗ 𝐚(𝐣, 𝐧, 𝐭) 𝒘 𝒑 𝒆 𝐢,𝒋
  • 80.
    Discovery Hub 1 2 3 DBpedia: Claude Monet 4 Resultsidentification Ranking Sorting/categorization Explanation
  • 81.
    Discovery Hub (Inria,Alcatel Bell Lucent)
  • 82.
  • 83.
    Who is starringin Batman Begins? EAT and NE recognition: Stanford NER+ DBpedia Relational Patterns extraction Query pattern Pattern repository owner(Thing, Thing) [Person] is starring in [Movie]? [R:Person] purchased the [D:Thing] [D:Thing] owner [R:Thing] [D:Thing] was bought by [R:Thing] question answering over linked data [Cabrio, et al.] select * where { dbpr:Batman_Begins dbp:starring ?v OPTIONAL {?v rdfs:label ?l filter(lang(?l)="en")} } starring(Work, Person) . [D:Work], played by [R:Person] [D:Work] stars [R:Person] [D:Work] film stars [R:Person] ENTAILMENT ENGINE/ SIMILARITY ALGORITHM QALD-2 Open Challenge: Christian Bale, Michael Caine, ...
  • 84.
  • 85.
  • 86.
  • 88.
  • 89.
    publication Datalift process demo • onclick setup • raw data import • RDF transformation • Web publication • online querying
  • 91.
    [Corby, et al.] corese/kgram •Semantic Web Factory: RDF/S, SPARQL 1.1 Query & Updade, Inference Rules • Open Source CeCILL-C • Knowledge Graph Abstract Machine with 3 Proxies (Producer, Matcher, Evaluator) 3 ANR, 2 RNRT, 1 region project, 4 european project, 4 industry grants, 10 academic grants, >30 applications, 23 PhD, 9 edu. Institutions, etc.
  • 92.
  • 93.
  • 94.
  • 95.
    my watch hasonly one hand, it is not broken, it is a feature. why approximation is interesting
  • 96.
    e.g. controlled approximation vehicle car O car(x)… truck(x) car truck truck t1(x)t2(x)  d(t1,t2)< threshold  (t1 , t 2 )  H c let dist (t1 , t 2 )  min t t1 ,t t2  l H c (t1 , t )  l H c (t 2 , t ) 2 (t1 , t 2 )  H c ; t1  t 2 let l H c (t1 , t 2 )  t t ,t 2 1 2  1  ,t  t1   depth ( t )  2  
  • 97.
  • 98.
  • 99.
    RDF RDF peer servers web service web service webservice web application RDF RDF SPARQL
  • 100.
    inductive index creationfor a triple store [Basse, et al.] • characterize distributed RDF sources • incremental index generation and maintenance
  • 101.
  • 103.
  • 104.
    [Villata, et al.] socio-semanticaccess control User e.g. only my colleagues working on the same subject ASK{ ?res dcterms:creator ?prov . ?prov rel:hasColleague ?user . ?prov foaf:interestedBy ?topic . ?user foaf:interestedBy ?topic }
  • 105.
    Context-Aware Access Control Model[Villata, Costabello, et al.] s4ac: DisjunctiveACS subClassOf hasAccessPrivilege hasAccessConditionSet subClassOf ConjunctiveACS appliesTo AccessPolicy AccessPrivilege AccessConditionSet hasAccessCondition AccessCondition hasQueryAsk Device device hasContext Context User user environment Environment 105
  • 106.
    Context-aware Access Controlfor Linked Data Shi3ld Access Control Manager SELECT … WHERE {…} GET /data/resource HTTP/1.1 Host: example.org Authorization: ... wimmics.inria.fr/projects/shi3ld
  • 107.
    toward the «oh yeah? » button
  • 108.
    representing query andreasoning workflows [Hasan et al.] • Ratio4TA*, a lightweight vocabulary for encoding justifications. • A specialization of the W3C PROV ontology * http://ns.inria.fr/ratio4ta/
  • 109.
  • 110.
  • 111.
  • 112.
    web 1, 2,3 person price homepage? convert? more info?
  • 113.
    wikipedia editions byusers… 3500000 3000000 2500000 2000000 1500000 1000000 500000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 3500000 without bots… 3000000 2500000 2000000 1500000 1000000 500000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  • 114.
  • 115.
    he who controlsmetadata, controls the web and through the world-wide web many things in our world. fabien, gandon, @fabien_gandon, http://fabien.info