Gene Expression
Analysis with R
• Slide 1: Introduction to Gene Expression Analysis
• Title: Introduction to Gene Expression Analysis with R
• Content:
• Overview of gene expression analysis.
• Importance of analyzing RNA sequencing (RNA-seq) data.
• Mention tools and packages used: DESeq2, edgeR, limma, and
Bioconductor.
• Focus on workflows: normalization, differential expression, and
visualization.
• Visual: Diagram of RNA-seq data processing pipeline.
• Slide 2: Preparing the Data
• Title: Data Preparation in R
• Content:
• Loading count data and sample metadata.
• Using DESeq2 or edgeR for preprocessing.
• Example code to load data:r
• Copy code
• counts <- read.csv("gene_counts.csv", row.names=1) meta <-
read.csv("metadata.csv", row.names=1)
• Visual: Screenshot or table showing gene count data and sample
metadata structure.
• Slide 3: Normalizing the Data
• Title: Normalization Methods
• Content:
• Importance of normalization in gene expression data.
• Explain methods: rlog, vst (variance stabilization transformation), or TMM.
• Example code for normalization:r
• Copy code
• dds <- DESeqDataSetFromMatrix(countData = counts, colData = meta,
design = ~ condition) dds <- DESeq(dds) norm_counts <- counts(dds,
normalized = TRUE)
• Visual: Plot showing raw vs normalized data.
• Slide 4: Differential Gene Expression Analysis
• Title: Performing Differential Expression Analysis
• Content:
• Steps to identify differentially expressed genes.
• Running DESeq2 for differential analysis.
• Example code:r
• Copy code
• res <- results(dds) res <- res[order(res$pvalue), ]
• Define thresholds for significance (p-value, fold change).
• Visual: Volcano plot or MA plot showing differentially expressed
genes.
• Slide 5: Visualization of Results
• Title: Visualizing Gene Expression Results
• Content:
• Plotting heatmaps and PCA for visualizing data patterns.
• Example code for heatmap:r
• Copy code
• library(pheatmap) pheatmap(assay(vst(dds))[top_genes, ])
• Example code for PCA:r
• Copy code
• plotPCA(vst(dds), intgroup = "condition")
• Visual: Heatmap and PCA plot showing gene clustering and sample
separation.

slides on Gene Expression Analysis with R:

  • 1.
  • 2.
    • Slide 1:Introduction to Gene Expression Analysis • Title: Introduction to Gene Expression Analysis with R • Content: • Overview of gene expression analysis. • Importance of analyzing RNA sequencing (RNA-seq) data. • Mention tools and packages used: DESeq2, edgeR, limma, and Bioconductor. • Focus on workflows: normalization, differential expression, and visualization. • Visual: Diagram of RNA-seq data processing pipeline.
  • 3.
    • Slide 2:Preparing the Data • Title: Data Preparation in R • Content: • Loading count data and sample metadata. • Using DESeq2 or edgeR for preprocessing. • Example code to load data:r • Copy code • counts <- read.csv("gene_counts.csv", row.names=1) meta <- read.csv("metadata.csv", row.names=1) • Visual: Screenshot or table showing gene count data and sample metadata structure.
  • 4.
    • Slide 3:Normalizing the Data • Title: Normalization Methods • Content: • Importance of normalization in gene expression data. • Explain methods: rlog, vst (variance stabilization transformation), or TMM. • Example code for normalization:r • Copy code • dds <- DESeqDataSetFromMatrix(countData = counts, colData = meta, design = ~ condition) dds <- DESeq(dds) norm_counts <- counts(dds, normalized = TRUE) • Visual: Plot showing raw vs normalized data.
  • 5.
    • Slide 4:Differential Gene Expression Analysis • Title: Performing Differential Expression Analysis • Content: • Steps to identify differentially expressed genes. • Running DESeq2 for differential analysis. • Example code:r • Copy code • res <- results(dds) res <- res[order(res$pvalue), ] • Define thresholds for significance (p-value, fold change). • Visual: Volcano plot or MA plot showing differentially expressed genes.
  • 6.
    • Slide 5:Visualization of Results • Title: Visualizing Gene Expression Results • Content: • Plotting heatmaps and PCA for visualizing data patterns. • Example code for heatmap:r • Copy code • library(pheatmap) pheatmap(assay(vst(dds))[top_genes, ]) • Example code for PCA:r • Copy code • plotPCA(vst(dds), intgroup = "condition") • Visual: Heatmap and PCA plot showing gene clustering and sample separation.