SlideShare a Scribd company logo
1 of 31
Download to read offline
PWM IC                                    Power Switches                       Filter & Load
       (Voltage Mode)
          U?
                                                 (Semiconductor)
         PWM_IC                                          RON = 100m
                                                                                       1
                                                                                             L
                                                                                                 2         Vo
                                                                                                                   VOUT
                               -
-




               +         E/A                                     S1   D1                             C




                                                             -
+




                                                         +
                               +
           Comp                                                  S    DIODE




                                                          +
                                                          -
               -                                                                                           Rload
                       OSC                         pwm
                                   REF                                                               ESR

         FOSC = 52K
VREF     VREF = 1.23
         VP = 2.5




Concept Kit:
PWM Buck Converter
Transients Model
                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                1
Contents
1.    Concept of Simulation
2.    Buck Converter Circuit
3.    Power Switches (Semiconductor)
4.    Buck Converter Design Workflow
        1 Setting PWM Controller’s Parameters.
        2 Programming Output Voltage: Rupper, Rlower
        3 Inductor Selection: L
        4 Capacitor Selection: C, ESR
        5 Stabilizing the Converter

5. Buck Converter Simulation (Example)
        5.1 Switching Waveforms
        5.2 Power State Switches Voltage and Current
6. Load Transient Response Simulation (Example)
7. Buck Converter Optimization (Example)
8. Converter Efficiency
        8.1 Converter Efficiency vs. MOSFET, Rds(on)
        8.2 Converter Efficiency vs. DIODE, VF
9. Simulation Using Real Device Models
        9.1 Switching Waveforms (Real Device Models)
        9.2 Converter Efficiency (Real Device Models)
     Simulation Index

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   2
1.Concept of Simulation
Block Diagram:

              PWM IC                                  Power Switches                       Filter & Load
              (Voltage Mode)                          (Semiconductor)
                                                                                             Parameter:             VOUT
                Parameter:                             • MOSFET                              •L
    -
     +




                • VOSC                                 • Diode                               •C
                • VREF                                                                       • ESR
    VREF        • VP                                                                         • Rload




Models:
           U?                                              RON = 100m                                L
           PWM_IC                                                                             1           2         Vo

                                                                    S1      D1
                                                                -
                                                                                                              C
                                                            +



                                 -
                                                                    S       DIODE
                                                             +
                                                             -



                 +         E/A   +                  pwm                                                             Rload
             Comp
                 -                                                                                            ESR
                         OSC
                                     REF

           FOSC = 52K
           VREF = 1.23
           VP = 2.5


                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                          3
2.Buck Converter Circuit
                      Power Switches                               Filter & Load
                       RON = 100m                                          L
                                                                   1                  2              Vo

                                S1     D1                                                 C




                            -
                        +
                                S      DIODE




                         +
                         -
          Vin   pwm                                                                                   Rload

                                                                                          ESR




      0
                                               PWM Controller
                                                     Type 2 Compensator
                                                                   C2



                                                              R2                 C1

                                                                                                                  Rupper

                                               U3
                                               PWM_IC

                                                                       -                        FB
                                                      +        E/A  +
                                                  Comp
                                                      -
                                                                                                                  Rlower
                                                             OSC
                                                                               REF

                                               FOSC = 52K
                                               VREF = 1.23                                                    0
                                               VP = 2.5



                All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                        4
3.Power Switches (Semiconductor)

       The parameter RON represents Rds(on) characteristics
       of MOSFET, that are usually provide by the manufacturer
       datasheet. The value could be about 10m to 10 ohm.


        RON = 100m


                 S1   D1
                                   • A Near-Ideal DIODE can be modeled by
             -
         +




                 S    DIODE
         +
         -




 pwm                                 using SPICE primitive model (D), which
             MOSFET
                                     parameters are : N=0.01 RS=0.
                                   • A near-ideal MOSFET can be modeled by
                                     using PSpice VSWITCH that is voltage
                                     controlled switch.



                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   5
4.Buck Regulator Design Workflow
The Purpose of the Circuit Simulation
•   To Evaluate and Verify the Design of the PWM Buck Converter.
•   To Optimize the Parameters of the PWM Buck Converter.


          1 Setting PWM Controller’s Parameters: FOSC , VREF, VP

                     2   Setting Output Voltage: Rupper, Rlower

                                      3   Inductor Selection: L

                                4   Capacitor Selection: C, ESR

               5   Setting the Compensator Parameters: R2, C1, C2

                                          Continue next slide


                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   6
4.Buck Regulator Design Workflow


                                       Evaluations:
             •    Switching Waveforms,
             •    Power State Switches Voltage and Current,
             • Load Step Transient Response,
             •    and so on


                            Optimization: L (example)

                                       Evaluations:
             • Converter Efficiency vs. MOSFET, Rds(on)
             •     Converter Efficiency vs. Diode, VF


                 Evaluations Using Real Device Models


                 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   7
4.Buck Regulator Design Workflow

                      RON = 100m                             3            L
                                                                  1                  2              Vo

                               S1    D1                                                  C




                           -
                       +
                               S     DIODE




                        +
                        -
         Vin   pwm                                                                                   Rload

                                                                                         ESR

                                                                                         4
     0

                                                 5       Type 2 Compensator
                                                                  C2



                                                             R2                 C1                                  2
                                                                                                                 Rupper

                                              U3
                                              PWM_IC

                                                                      -                        FB
                                                     +        E/A +
                                                 Comp
                                                     -
                                                                                                                 Rlower
                                                            OSC
                                                                              REF

                                              FOSC = 52K
                                         1    VREF = 1.23                                                    0
                                              VP = 2.5



               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                        8
1    Setting PWM Controller’s Parameters
            U?                   comp
            PWM_IC                                                          • FOSC, Oscillation frequency (frequency of the
                                                -              FB
                                                                            sawtooth signal).

  PWM                +                    E/A
                 Comp
                                                +
                                                                            • VREF, feedback reference voltage, value is
                     -            OSC                                       given by the datasheet
                                                       REF

            FOSC = 52K                                                      • VP = (Error Amp. Gain  vFB ) / d
            VREF = 1.23
            VP = 2.5                                                             • vFB = vFBH – vFBL
    The Comparator compares the error voltage
    (between FB and REF) with a sawtooth signal                                  • d = dMAX – dMIN
    (frequency = FOSC, peak saw voltage =
    VP) to generate PWM signal, as shown in the
                                                                                 • Error Amp. Gain is 100 (approximated)
    figure below.
                                                                             where
             f = FOSC
3.0V                                                                             VP is the sawtooth peak voltage.
2.0V


SEL>>
                                                                       VP        vFBH is maximum FB voltage where d = 0
   0V
        V(osc)   V(comp)
                                                                                 vFBL is minimum FB voltage where d =1(100%)
                                                                                 dMAX is maximum duty cycle, e.g. d = 0(0%)

        V(PWM)         Duty cycle (d) is a value from 0 to 1
                                                                                 dMIN is minimum duty cycle, e.g. d =1(100%)
                                   Time


                                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011        9
1      Setting PWM Controller’s Parameters (Example)
  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet,
 It can be approximated from the characteristics below.

                                                                from
     vFBH
                                                                       VP = (Error Amp. Gain  vFB )/d

                                                vFB =          •Error Amp. Gain = 100 (approximated)
                                                25mV
                                                                •from the graph on the left, vFB = 25mV
                                                                (15m - (-10m))
     vFBL
                   d = 1 (100%)                                • d = 1 – 0 = 1


                                                                       VP ≈ ( 100  25mV )/1
            dMIN                         dMAX
                                                                          ≈ 2.5V
 LM2575: Feedback Voltage vs. Duty Cycle




 If vFBH and vFBL are not provided, the default value, VP=2.5 could be used.
                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011            10
2   Setting Output Voltage: Rupper, Rlower

• Use the following formula to select the resistor values.

                    Rupper 
        VOUT  VREF1      
                    Rlower                                    Type 2 Compensator
                                                                            C2
    • Rlower can be between 1k and 5k.

                                                                      R2            C1
Example
Given:     VOUT = 5V                                 U3           Comp                                Rupper
                                                     PWM_IC
           VREF = 1.23
                                                                              -              FB
           Rlower = 1k
                                                            +           E/A
then:      Rupper = 3.065k
                                                                              +
                                                        Comp
                                                            -                                         Rlower
                                                                    OSC
                                                                                  REF

                                                     FOSC = 52K
                                                     VREF = 1.23                                  0
                                                     VP = 2.5


                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011               11
3   Inductor Selection: L

    L
1         2               Vo       Inductor Value
               C
                                   • The output inductor value is selected to set the
                                     converter to work in CCM (Continuous Current
                         Rload
              ESR
                                     Mode) or DCM (Discontinuous Current Mode).
                                   • Calculated by


                                         LCCM 
                                                VI , max VOUT  RL, min
                                                                   2 fosc VI , max
              Where
                    •   LCCM is the inductor that make the converter to work in CCM.
                    •   VI,max is input maximum voltage
                    •   RL,min is load resistance at the minimum output current ( IOUT,min )
                    •   fosc is switching frequency

                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011    12
3   Inductor Selection: L (Example)

    L
1        2           Vo       Inductor Value
             C
                              from

             ESR
                    Rload
                                    LCCM 
                                           VI , max VOUT  RL, min
                                                               2 foscVI , max
                       Given:
                           • VI,max = 40V, VOUT = 5V
                           • IOUT,min = 0.2A
                           • RL,min = (VOUT / IOUT,min ) = 25
                           • fosc = 52kHz

                       Then:
                          • LCCM  210(uH),
                          • L = 330(uH) is selected

                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   13
4       Capacitor Selection: C, ESR

         L
    1            2           Vo       Capacitor Value
                                      • The minimum allowable output capacitor value should
                     C
                                        be determined by
                            Rload
                     ESR

                                             C  7,785 
                                                            VI , max
                                                                       F
                                                         VOUT  L( H)
                                      Where
                                      • VI, max is the maximum input voltage.
                                      • L (H) is the inductance calculated from previous step ( 3 ).

•       In addition, the output ripple voltage due to the capacitor ESR must be considered as
        the following equation.


                                                      VO , RIPPLE
                                                ESR 
                                                      IL , RIPPLE
                           All Rights Reserved Copyright (C) Bee Technologies Corporation 2011          14
4   Capacitor Selection: C, ESR (Example)

    L
1        2           Vo       Capacitor Value
                              From
             C
                                         C  7,785 
                                                               VI , max
                                                                          F
             ESR
                    Rload
                                                            VOUT  L( H)
                              and
                                                           VO , RIPPLE
                                                ESR 
                                                           IL , RIPPLE
                              Given:
                                  •       VI, max = 40 V
                                  •       VOUT = 5 V
                                  •       L (H) = 330
                              Then:
                                  •       C  188 (F)

                              In addition:
                                   • ESR  100m

                   All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   15
5    Stabilizing the Converter
 • Loop gain for this configuration is                                                                                                         H(s)
                                                                         RON = 100m                                         L
                                                                                                                    1                  2              Vo

                                                                                 S1     D1                                                 C




                                                                             -
                                                                         +
                                                                                 S      DIODE




                                                                          +
                                                                          -
                                                      Vin                                                                                              Rload
                                                                   pwm
                                                                                                                                           ESR



      T ( s)  H ( s)  G( s)  GPWM              0
                                                                                                                                                               G(s)
                                                                                                          Type 2 Compensator
                                                                                                                    C2



                                                                                                               R2                 C1


 • The purpose of the compensator G(s)
                                                                                      GPWM      U3         Comp                                                    Rupper
   is to tailor the converter loop gain                                                         PWM_IC

                                                                                                                                                 FB
   (frequency response) to make it stable                                             PWM
                                                                                                      +         E/A +
                                                                                                                        -


                                                                                                  Comp
   when operated in closed-loop                                                                       -       OSC
                                                                                                                                                                   Rlower
                                                                                                                                REF
   conditions.                                                                                  FOSC = 52K
                                                                                                VREF = 1.23                                                    0
                                                                                                VP = 2.5



 • The element of the Type 2 compensator ( R2, C1, and C2 ) can be extracted by using
   Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the
   Average Models (ac models).

 Remark: The Average Models are not included with this package.

                                  All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                                16
5.Buck Converter Simulation (Example)
 Specification:                                             RON = 100m
                                                                                                                L
                                                                                                                330uH
                                                                                                        1               2             Vo
 VOUT = 5V
                                                                     S1     D1                                              C




                                                                 -
                                                             +
 VIN = 7 ~ 40V                                                       S      DIODE                                           330uF




                                                              +
                                                              -
                                       Vin                                                                                  IC = 5     Rload
 ILOAD = 0.2 ~ 1A                      12Vdc          pwm
                                                                                                                            ESR
                                                                                                                                       5

                                                                                                                            100m


 L = 330uH,                  0                                                                Type 2 Compensator 2
 C = 330uF (ESR = 100m),                                                                               C2
                                                                                                        21.60p
 Rupper = 3.1k,
 Rlower = 1k,    e.g. Characteristics
                                                                                                   R2
                                                                                                   122.780k
                                                                                                                   C1
                                                                                                                   0.778n

                        from National
 PWM Controller:        Semiconductor Corp.                                         U3         Comp                                                Rupper
 fOSC = 52kHz           IC: LM2575                                                  PWM_IC                                                         3.1k
                                                                                                                                 FB
 VP1 = 2.5V
                                                                                                            -
                                                                                          +         E/A
                                                                          pwm                           +
                                                                                      Comp
 VREF = 1.23V                                                                             -       OSC
                                                                                                                                                   Rlower
                                                                                                                                                   1k
                                                                                                                 REF


 Task:                                                                              FOSC = 52K
                                                                                    VREF = 1.23                                                0
                                                                                    VP = 2.5


 •Voltage and Current Waveforms Evaluation.                                                    *Analysis directives:
                                                                                               .TRAN 0 10ms 0 200n SKIPBP

 1. Please see topic: 6.1 Calculate the VP, for detail.
 2. Please check the Average Model manual for the Type2 Compensator’s elements (R2, C1, and C2) calculation.


                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                       17
5.1 Switching Waveforms
Simulation                                                                 Measurement
  5.0V



    0V
         A: Control Voltage V(PWM)
         V(PWM)
  2.0A
         B: Switch Current ID(S1), 1A/div
  1.0A


    0A
         I(S1:3)



  1.0A

         C: Inductor Current I(L), 0.5A/div
         I(L)
 5.06V
                             (9.942m,5.0345)
 5.04V
           (9.931m,5.0511)
 SEL>>   D: Output Ripple Voltage, 20 mV/div,
 5.02V                                                                               VOUT = 5V
   9.925ms      9.935ms         9.945ms        9.955ms    9.965ms
        V(Vo)
                                                                                     A: Output Pin Voltage, 10V/div
                                     Time                                            B: Output Pin Current, 1A/div
                                                                                     C: Inductor Current, 0.5A/div
                                                                                     D: Output Ripple Voltage, 20 mV/div,

• The simulation results are compared with the measurement data (National
  Semiconductor Corp. IC LM2575 datasheet).
• Output ripple voltage (Simulation) is 16.6mVP-P.

                                       All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                  18
5.2 Power State Switches Voltage and Current
             16V            1.6A
        1              2
                                                       (9.933m,12.008)

             12V            1.2A
                                                            SW (MOSFET) Voltage VDS

                                                                                                           (9.951m,1.0946)
                                       SW (MOSFET) Current ID
              8V            0.8A



              4V            0.4A


                              >>
              0V              0A
                                   1    V(S1:3,S1:4)    2    I(S1:3)
            16V             1.6A
    1              2                                                                                        (9.951m,1.0950)
                                                            Diode Forward Current IF
                            0.8A



             0V               0A


                                                                             (9.942m,-11.908)
                           -0.8A


                           SEL>>    Diode Voltage VAK
        -16V               -1.6A
                             9.925ms    9.930ms   9.935ms          9.940ms      9.945ms          9.950ms      9.955ms    9.960ms   9.965ms 9.970ms
                                 1   V(D1:A,D1:C) 2    I(D1)
                                                                                          Time


   • Switch (MOSFET) has the steady state voltage: VDS, PEAK = 12.008V and
     current: ID, PEAK = 1.0946A
   • Diode has the steady state voltage: VAK, PEAK = -11.908V and current: IF, PEAK
     = 1.095A

                                              All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                    19
6.Load Transient Response Simulation (Example)
The converter are connected with step-load to perform load transient response simulation.
                                                                                     L
                                                                                                   load
                                 RON = 100m                                          330uH
                                                                             1               2             Vo

                                          S1     D1                                              C




                                      -
                                  +
                                          S      DIODE                                           330uF                             I1




                                  +
                                  -
                 Vin                                                                             IC = 5         Rload            I1 = 0
                 12Vdc    pwm                                                                                   25               I2 = 0.8
                                                                                                 ESR                             TD = 10m
                                                                                                 100m                            TF = 25u
                                                                                                                                 TR = 20u
                                                                                                                                 PW = 0.43m
                                                                                                                                 PER = 1
             0                                                     Type 2 Compensator
                                                                             C2
                                                                             21.60p                                         5V/25 = 0.2A step
                                                                                                                            to 0.2+0.8=1.0A load
                                                                        R2              C1
                                                                        122.780k        0.778n




                                                         U3         Comp                                                    Rupper
                                                         PWM_IC                                                             3.1k
                                                                                 -                    FB
                                                               +         E/A
                                               pwm                           +
                                                           Comp
                                                               -
                                                                                                                            Rlower
                                                                       OSC                                                  1k
                                                                                      REF

                                                         FOSC = 52K
*Analysis directives:                                    VREF = 1.23
                                                         VP = 2.5
                                                                                                                        0

.TRAN 0 15ms 0 200n SKIPBP



                         All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                       20
6.Load Transient Response Simulation (Example)

    Simulation                                                                       Measurement
    5.2V       4.0A
1          2

                      Output Voltage Change
    5.1V       3.5A



    5.0V       3.0A



    4.9V       2.5A



    4.8V       2.0A



    4.7V       1.5A

                      Load Current
    4.6V       1.0A



    4.5V       0.5A


                 >>
    4.4V         0A
                 9.9ms       10.1ms       10.3ms          10.5ms   10.7ms   10.9ms
                    1    V(Vo) 2      I(load)
                                                   Time




    • The simulation results are compared with the measurement data (National
      Semiconductor Corp. IC LM2575 datasheet).


                                               All Rights Reserved Copyright (C) Bee Technologies Corporation 2011   21
7.Buck Converter Optimization (Example)
                                                                                                             PARAMETERS:
 Specification:                                         RON = 100m
                                                                                                      L
                                                                                                      {L}
                                                                                                          L = 330u
                                                                                                                                Vo
 VOUT = 5V                                                                                          1           2

                                                                 S1     D1                                            C




                                                             -
                                                         +
 VIN = 7 ~ 40V                                                   S      DIODE                                         330u




                                                         +
                                                         -
                                     Vin                                                                              IC = 5     Rload
 ILOAD = 0.2 ~ 1A                    12Vdc       pwm
                                                                                                                      ESR
                                                                                                                                 25

                                                                                                                      100m


 L = Optimization Parameter      0                                                        Type 2 Compensator
 C = 330uF (ESR = 100m),                                                                           C2
                                                                                                    21.60p
 Rupper = 3.1k,
 Rlower = 1k,                                                                                 R2
                                                                                               122.780k
                                                                                                             C1
                                                                                                             0.778n



 PWM Controller:                                                                U3         Comp                                              Rupper
 fOSC = 52kHz                                                                   PWM_IC                                                       3.1k
                                                                                                                           FB
 VP = 2.5V                                                                            +         E/A
                                                                                                      -

                                                                      pwm                           +
 VREF = 1.23V                                                                     Comp
                                                                                      -       OSC
                                                                                                                                             Rlower
                                                                                                                                             1k
                                                                                                          REF


 Task:                                                                          FOSC = 52K
                                                                                VREF = 1.23                                              0
                                                                                VP = 2.5

 •Optimize the Inductor value.
                                                                            *Analysis directives:
                                                                            .TRAN 0 10ms 0 200n SKIPBP
                                                                            .STEP PARAM L LIST 330u, 220u, 100u

                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                     22
7.Buck Converter Optimization (Example)

A: V(PWM),      5.0V
10V/div                                                                                                                                L=330uH
                                                                                                                                       L=220uH
                    0V                                                                                                                 L=100uH
                           V(PWM)
               500mA
B: ID(S1), 1A/div



                    0A
                           I(S1:3)
               600mA
C: I(L), 0.5A/div                             L=100uH, converter work in DCM
               400mA

               200mA

                    0A
                           I(L)
               5.08V
D: VOUT, RIPPLE,                  (9.931m,5.0555)
               5.06V
20 mV/div
                                                           (9.942m,5.0300)                                                            VOUT, RIPPLE,
               SEL>>                                                                                                                  at L=220uH
               5.02V
                 9.925ms      9.930ms        9.935ms   9.940ms     9.945ms          9.950ms   9.955ms   9.960ms   9.965ms   9.970ms
                           V(Vo)
                                                                             Time

       • As an equation (1), the converter works in DCM when the inductor: L is 100uH
         at the minimum output current: ILOAD = 0.2A
       • VOUT, RIPPLE = 25.5mVP-P when the inductor: L is 220uH (Increased from
         16.6mVP-P of L=330uH). IF VOUT, RIPPLE = 25.5mVP-P is acceptable then L=220uH
         can replace the 330uH.
                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                   23
8.Converter Efficiency
Perform transient simulation to measure the converter efficiency at Rds(on) = 100m and 1 .
                                                 PARAMETERS:
                                                 Rdson = 100m
                                                                                            L
                                        RON = {Rdson}                                       330uH
                                                                                    1               2             Vo

                                                 S1     D1                                              C




                                             -
                                         +
                                                 S      DIODE                                           330uF




                                         +
                                         -
                    Vin                                                                                 IC = 5     Rload
                    12Vdc        pwm                                                                               5
                                                                                                        ESR
                                                                                                        100m



                0                                                         Type 2 Compensator
                                                                                    C2
                                                                                    21.60p


                                                                               R2              C1
                                                                               122.780k        0.778n




                                                                U3         Comp                                                Rupper
                                                                PWM_IC                                                         3.1k
                                                                                        -                    FB
                                                                      +         E/A
                                                      pwm                           +
                                                                  Comp
                                                                      -
                                                                                                                               Rlower
                                                                              OSC                                              1k
                                                                                             REF

*Analysis directives:                                           FOSC = 52K
                                                                                                                           0
.TRAN 0 10ms 0 200n SKIPBP                                      VREF = 1.23
                                                                VP = 2.5

.STEP PARAM Rdson LIST 100m, 1


                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                         24
8.1 Converter Efficiency vs. MOSFET Rds(on)
Efficiency (%)
             100


                      Rds(on) = 100m, Efficiency = 98.5 %
                                                                         (9.500m,98.492)




                 90
                      Rds(on) = 1, Efficiency = 90.9 %
                                                                         (9.500m,90.917)




                 80




                                                                                                         Rds(on)=100m
                                                                                                         Rds(on)=1

                 70
                 9.0ms                   9.2ms               9.4ms                9.6ms                9.8ms        10.0ms
                         100*AVG(W(Rload))/-AVG(W(Vin))
                                                                        Time



            • The converter efficiency is decreased from 98.5% to 90.9% when
              Rds(on) increase from 100m to 1.


                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                  25
8.2 Converter Efficiency vs. Diode, VF
Perform transient simulation to measure the converter efficiency at DIODE (N) = 0.01 and 1.
                                                                                                         PARAMETERS:
                                                                                                         Rdson = 100m
                                                                                                                                                    L
                                                                                                RON = {Rdson}                                       330uH
                                                                                                                                            1               2             Vo

                                                                                                         S1     D1                                              C




                                                                                                     -
                                                                                                 +
                                                                                                         S      DIODE                                           330uF




                                                                                                 +
                                                                                                 -
            Diode Forward Voltage vs.                                         Vin                                                                               IC = 5     Rload
                                                                              12Vdc      pwm                                                                               5
            Diode model parameter: N                                                                                                                            ESR
                                                                                                                                                                100m



        Diode Forward I – V Characteristics                               0                                                       Type 2 Compensator
1.0A                                                                                                                                        C2
            VF increases when DIODE (N) increases.                                                                                          21.60p
0.9A


0.8A
                                                                                                                                       R2              C1
0.7A
                                                                                                                                       122.780k        0.778n

0.6A


0.5A
                                                                                                                        U3         Comp                                                Rupper
0.4A                                                                                                                    PWM_IC                                                         3.1k
0.3A                                                                                                                                            -                    FB
                                                                                                                              +         E/A
0.2A                                                                                                          pwm                           +
                                                                                                                          Comp
                                                                                                                                                                                       Rlower
0.1A             VF                                                                                                           -       OSC                                              1k
                                                                                                                                                     REF
  0A
       0V    0.12V 0.24V 0.36V 0.48V   0.60V 0.72V 0.84V 0.96V   1.08V
                 I(D1)                                                                                                  FOSC = 52K
                                       V_V1
                                                                                                                        VREF = 1.23                                                0
                                                                         *Analysis directives:                          VP = 2.5
                                                                         .TRAN 0 10ms 0 200n SKIPBP
                                                                         .STEP D DIODE(N) LIST 0.01, 1



                                                             All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                                       26
8.2 Converter Efficiency vs. Diode, VF
Efficiency (%)
             100


                      DIODE (N) = 0.01, Efficiency = 98.5 %
                                                                         (9.500m,98.492)




                 90
                      DIODE (N) = 1, Efficiency = 90.6 %
                                                                          (9.500m,90.564)




                 80




                                                                                                               N=0.01
                                                                                                               N=1
                 70
                 9.0ms                   9.2ms               9.4ms                 9.6ms               9.8ms        10.0ms
                         100*AVG(W(Rload))/-AVG(W(Vin))
                                                                        Time



            • The converter efficiency is decreased from 98.5% to 90.6% when
              DIODE’s parameter N increase from 0.01 to 1.


                                        All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                  27
9.Simulation Using Real Device Models
As we can see in the efficiency simulation (topic #9) that’s how the switching devices
characteristics effect the simulation result. For the accurate simulation result, the accurate
models, that relate to the real devices characteristics, are needed.
                                 U1                                                       L
                                                                                          330uH
                                                                                  1               2             Vo

                                                                                                      C
                                                         D1                                           330uF
                    Vin                                                                               IC = 5     Rload
                    12Vdc                                                                                        5
                                                                                                      ESR
                                                                                                      100m



                0                             E1                        Type 2 Compensator
                                      +
                                      -
                                      +



                                              E
                                      -



                                                                                  C2
                                                                                  21.60p
      The Real Device Models              0

      of MOSFET and                                                          R2              C1
                                                                             122.780k        0.778n
      Schottky Barrier Diode

                                                              U3         Comp                                                Rupper
                                                              PWM_IC                                                         3.1k
                                                                                      -                    FB
                                                                    +         E/A
                                                   pwm                            +
                                                                Comp
                                                                    -                                                        Rlower
                                                                            OSC                                              1k
                                                                                           REF

                                                              FOSC = 52K
                                                              VREF = 1.23                                                0
                                                              VP = 2.5




                            All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                                       28
9.1 Switching Waveforms (Real Device Models)
Simulation                                                               Measurement
  5.0V


         A: Control Voltage V(PWM), 10V/div
    0V

         V(PWM)                                             Spike current                                      Spike current
         B: MOSFET Drain Current ID, 1A/div
  1.0A


 SEL>>
    0A
         I(U1:D)



  1.0A

         C: Inductor Current I(L), 0.5A/div
         I(L)
 5.06V


 5.04V
         D: Output Ripple Voltage, 20 mV/div,
 5.02V                                                                             VOUT = 5V
   9.925ms         9.935ms    9.945ms         9.955ms   9.965ms                    A: Output Pin Voltage, 10V/div
        V(Vo)
                                   Time
                                                                                   B: Output Pin Current, 1A/div
                                                                                   C: Inductor Current, 0.5A/div
                                                                                   D: Output Ripple Voltage, 20 mV/div,


• The real device model enable designers to include the spike signal in the
  switching waveforms simulation.


                                     All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                       29
9.2 Converter Efficiency (Real Device Models)
Efficiency (%) 100



                      Efficiency = 92.9 %                             (9.500m,92.877)




                90




                80




                70
                9.0ms                 9.2ms               9.4ms                9.6ms               9.8ms   10.0ms
                    100*AVG(W(Rload))/-AVG(W(Vin))
                                                                     Time




            • The converter efficiency is decreased from 98.5% to 92.9% when the
              device models are changed from the near-Ideal to the real model.


                                    All Rights Reserved Copyright (C) Bee Technologies Corporation 2011             30
Simulation Index

 Simulations                                                                                    Folder name
 1. Switching Waveforms......................................................                   waveforms
 2. Power Stage Switches Voltage and Current....................                                powersw
 3. Load Transient Response................................................                     stepload
 4. Buck Converter Optimization............................................ optimize
 5. Converter Efficiency vs. MOSFET Rds(on) .................... efficiency-diode

 6. Converter Efficiency vs. MOSFET Diode, VF.................. efficiency-rdson

 Libraries :
 1. ..¥pwmic.lib
 2. ..¥diode.lib




                          All Rights Reserved Copyright (C) Bee Technologies Corporation 2011                 31

More Related Content

What's hot

SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)Sarah Krystelle
 
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...Design of Charging Module and Charging Balancing Module for Electric Vehicle ...
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...Suhaimi Adanan
 
Phd 3rd year Research Activity
Phd 3rd year Research ActivityPhd 3rd year Research Activity
Phd 3rd year Research Activityalexzio
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)Sarah Krystelle
 
Acx502 bmu
Acx502 bmuAcx502 bmu
Acx502 bmuUjwal Ks
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)Sarah Krystelle
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)Sarah Krystelle
 
SPICE MODEL of NJM2374A in SPICE PARK
SPICE MODEL of NJM2374A in SPICE PARKSPICE MODEL of NJM2374A in SPICE PARK
SPICE MODEL of NJM2374A in SPICE PARKTsuyoshi Horigome
 

What's hot (20)

SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for CAUAN)
 
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...Design of Charging Module and Charging Balancing Module for Electric Vehicle ...
Design of Charging Module and Charging Balancing Module for Electric Vehicle ...
 
Objective2
Objective2Objective2
Objective2
 
Phd 3rd year Research Activity
Phd 3rd year Research ActivityPhd 3rd year Research Activity
Phd 3rd year Research Activity
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for AGDON)
 
Objectives
ObjectivesObjectives
Objectives
 
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 2 - FINALS (for PULA)
 
74hc4020
74hc402074hc4020
74hc4020
 
Acx502 bmu
Acx502 bmuAcx502 bmu
Acx502 bmu
 
Exp f1 maycen
Exp f1 maycenExp f1 maycen
Exp f1 maycen
 
Datasheet of TB62206FG
Datasheet of TB62206FGDatasheet of TB62206FG
Datasheet of TB62206FG
 
Comm008 e4 bani
Comm008 e4 baniComm008 e4 bani
Comm008 e4 bani
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for CAUAN)
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for ABDON)
 
Lm741
Lm741Lm741
Lm741
 
Objectives
ObjectivesObjectives
Objectives
 
Comm008 e4 cauan
Comm008 e4 cauanComm008 e4 cauan
Comm008 e4 cauan
 
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
SIGNAL SPECTRA EXPERIMENT 1 - FINALS (for PULA)
 
G0514551
G0514551G0514551
G0514551
 
SPICE MODEL of NJM2374A in SPICE PARK
SPICE MODEL of NJM2374A in SPICE PARKSPICE MODEL of NJM2374A in SPICE PARK
SPICE MODEL of NJM2374A in SPICE PARK
 

Viewers also liked

18289602 buck-converter
18289602 buck-converter18289602 buck-converter
18289602 buck-converterAli Baihaqi
 
Motor Control Relay, Pwm, DC and Stepper Motors
Motor Control Relay, Pwm, DC and Stepper MotorsMotor Control Relay, Pwm, DC and Stepper Motors
Motor Control Relay, Pwm, DC and Stepper MotorsDevashish Raval
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitUniv of Jember
 
BUCK converter fed by PV array
BUCK converter fed by PV arrayBUCK converter fed by PV array
BUCK converter fed by PV arrayMonika Rout
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck ConverterAkhil Syamalan
 

Viewers also liked (8)

18289602 buck-converter
18289602 buck-converter18289602 buck-converter
18289602 buck-converter
 
Motor Control Relay, Pwm, DC and Stepper Motors
Motor Control Relay, Pwm, DC and Stepper MotorsMotor Control Relay, Pwm, DC and Stepper Motors
Motor Control Relay, Pwm, DC and Stepper Motors
 
POWER POINT TRACKING
POWER POINT TRACKINGPOWER POINT TRACKING
POWER POINT TRACKING
 
Analysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC CircuitAnalysis Buck Converter DC-DC Circuit
Analysis Buck Converter DC-DC Circuit
 
BUCK converter fed by PV array
BUCK converter fed by PV arrayBUCK converter fed by PV array
BUCK converter fed by PV array
 
Design of Buck Converter
Design of Buck ConverterDesign of Buck Converter
Design of Buck Converter
 
BUCK CONVERTER
BUCK CONVERTERBUCK CONVERTER
BUCK CONVERTER
 
Boost converter
Boost converterBoost converter
Boost converter
 

Similar to Concept Kit:PWM Buck Converter Transients Model

Concept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average ModelConcept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average ModelTsuyoshi Horigome
 
SPICE MODEL of LM111J/883 in SPICE PARK
SPICE MODEL of LM111J/883 in SPICE PARKSPICE MODEL of LM111J/883 in SPICE PARK
SPICE MODEL of LM111J/883 in SPICE PARKTsuyoshi Horigome
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書Tsuyoshi Horigome
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKSPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKSPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78M06A in SPICE PARK
SPICE MODEL of uPC78M06A in SPICE PARKSPICE MODEL of uPC78M06A in SPICE PARK
SPICE MODEL of uPC78M06A in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARK
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARKSPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARK
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKSPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKSPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKTsuyoshi Horigome
 
SPICE MODEL of LM211H in SPICE PARK
SPICE MODEL of LM211H in SPICE PARKSPICE MODEL of LM211H in SPICE PARK
SPICE MODEL of LM211H in SPICE PARKTsuyoshi Horigome
 

Similar to Concept Kit:PWM Buck Converter Transients Model (20)

Concept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average ModelConcept Kit:PWM Boost Converter Average Model
Concept Kit:PWM Boost Converter Average Model
 
Objective4
Objective4Objective4
Objective4
 
Objective1
Objective1Objective1
Objective1
 
Objective6
Objective6Objective6
Objective6
 
O
OO
O
 
Objective3
Objective3Objective3
Objective3
 
SPICE MODEL of LM111J/883 in SPICE PARK
SPICE MODEL of LM111J/883 in SPICE PARKSPICE MODEL of LM111J/883 in SPICE PARK
SPICE MODEL of LM111J/883 in SPICE PARK
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
SPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARKSPICE MODEL of uPC78L10J in SPICE PARK
SPICE MODEL of uPC78L10J in SPICE PARK
 
44
4444
44
 
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARKSPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARK
SPICE MODEL of TPCF8102 (Professional+BDP Model) in SPICE PARK
 
SPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARKSPICE MODEL of uPC78L07T in SPICE PARK
SPICE MODEL of uPC78L07T in SPICE PARK
 
SPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARKSPICE MODEL of uPC78L07J in SPICE PARK
SPICE MODEL of uPC78L07J in SPICE PARK
 
SPICE MODEL of uPC78M06A in SPICE PARK
SPICE MODEL of uPC78M06A in SPICE PARKSPICE MODEL of uPC78M06A in SPICE PARK
SPICE MODEL of uPC78M06A in SPICE PARK
 
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARK
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARKSPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARK
SPICE MODEL of DF2S6.8UFS , PSpice Model in SPICE PARK
 
SPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARKSPICE MODEL of NJM78LR05 in SPICE PARK
SPICE MODEL of NJM78LR05 in SPICE PARK
 
SPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARKSPICE MODEL of uPC78L08J in SPICE PARK
SPICE MODEL of uPC78L08J in SPICE PARK
 
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPCF8302 (Standard+BDS Model) in SPICE PARK
 
SPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARKSPICE MODEL of uPC78L08T in SPICE PARK
SPICE MODEL of uPC78L08T in SPICE PARK
 
SPICE MODEL of LM211H in SPICE PARK
SPICE MODEL of LM211H in SPICE PARKSPICE MODEL of LM211H in SPICE PARK
SPICE MODEL of LM211H in SPICE PARK
 

More from Tsuyoshi Horigome

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 

More from Tsuyoshi Horigome (20)

Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 

Recently uploaded

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxOnBoard
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetEnjoy Anytime
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphNeo4j
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsHyundai Motor Group
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Patryk Bandurski
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 

Recently uploaded (20)

Maximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptxMaximizing Board Effectiveness 2024 Webinar.pptx
Maximizing Board Effectiveness 2024 Webinar.pptx
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your BudgetHyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
Hyderabad Call Girls Khairatabad ✨ 7001305949 ✨ Cheap Price Your Budget
 
Pigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping ElbowsPigging Solutions Piggable Sweeping Elbows
Pigging Solutions Piggable Sweeping Elbows
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
The transition to renewables in India.pdf
The transition to renewables in India.pdfThe transition to renewables in India.pdf
The transition to renewables in India.pdf
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge GraphSIEMENS: RAPUNZEL – A Tale About Knowledge Graph
SIEMENS: RAPUNZEL – A Tale About Knowledge Graph
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter RoadsSnow Chain-Integrated Tire for a Safe Drive on Winter Roads
Snow Chain-Integrated Tire for a Safe Drive on Winter Roads
 
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptxVulnerability_Management_GRC_by Sohang Sengupta.pptx
Vulnerability_Management_GRC_by Sohang Sengupta.pptx
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
Integration and Automation in Practice: CI/CD in Mule Integration and Automat...
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 

Concept Kit:PWM Buck Converter Transients Model

  • 1. PWM IC Power Switches Filter & Load (Voltage Mode) U? (Semiconductor) PWM_IC RON = 100m 1 L 2 Vo VOUT - - + E/A S1 D1 C - + + + Comp S DIODE + - - Rload OSC pwm REF ESR FOSC = 52K VREF VREF = 1.23 VP = 2.5 Concept Kit: PWM Buck Converter Transients Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 1
  • 2. Contents 1. Concept of Simulation 2. Buck Converter Circuit 3. Power Switches (Semiconductor) 4. Buck Converter Design Workflow 1 Setting PWM Controller’s Parameters. 2 Programming Output Voltage: Rupper, Rlower 3 Inductor Selection: L 4 Capacitor Selection: C, ESR 5 Stabilizing the Converter 5. Buck Converter Simulation (Example) 5.1 Switching Waveforms 5.2 Power State Switches Voltage and Current 6. Load Transient Response Simulation (Example) 7. Buck Converter Optimization (Example) 8. Converter Efficiency 8.1 Converter Efficiency vs. MOSFET, Rds(on) 8.2 Converter Efficiency vs. DIODE, VF 9. Simulation Using Real Device Models 9.1 Switching Waveforms (Real Device Models) 9.2 Converter Efficiency (Real Device Models) Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 2
  • 3. 1.Concept of Simulation Block Diagram: PWM IC Power Switches Filter & Load (Voltage Mode) (Semiconductor) Parameter: VOUT Parameter: • MOSFET •L - + • VOSC • Diode •C • VREF • ESR VREF • VP • Rload Models: U? RON = 100m L PWM_IC 1 2 Vo S1 D1 - C + - S DIODE + - + E/A + pwm Rload Comp - ESR OSC REF FOSC = 52K VREF = 1.23 VP = 2.5 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 3
  • 4. 2.Buck Converter Circuit Power Switches Filter & Load RON = 100m L 1 2 Vo S1 D1 C - + S DIODE + - Vin pwm Rload ESR 0 PWM Controller Type 2 Compensator C2 R2 C1 Rupper U3 PWM_IC - FB + E/A + Comp - Rlower OSC REF FOSC = 52K VREF = 1.23 0 VP = 2.5 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 4
  • 5. 3.Power Switches (Semiconductor) The parameter RON represents Rds(on) characteristics of MOSFET, that are usually provide by the manufacturer datasheet. The value could be about 10m to 10 ohm. RON = 100m S1 D1 • A Near-Ideal DIODE can be modeled by - + S DIODE + - pwm using SPICE primitive model (D), which MOSFET parameters are : N=0.01 RS=0. • A near-ideal MOSFET can be modeled by using PSpice VSWITCH that is voltage controlled switch. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 5
  • 6. 4.Buck Regulator Design Workflow The Purpose of the Circuit Simulation • To Evaluate and Verify the Design of the PWM Buck Converter. • To Optimize the Parameters of the PWM Buck Converter. 1 Setting PWM Controller’s Parameters: FOSC , VREF, VP 2 Setting Output Voltage: Rupper, Rlower 3 Inductor Selection: L 4 Capacitor Selection: C, ESR 5 Setting the Compensator Parameters: R2, C1, C2 Continue next slide All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 6
  • 7. 4.Buck Regulator Design Workflow Evaluations: • Switching Waveforms, • Power State Switches Voltage and Current, • Load Step Transient Response, • and so on Optimization: L (example) Evaluations: • Converter Efficiency vs. MOSFET, Rds(on) • Converter Efficiency vs. Diode, VF Evaluations Using Real Device Models All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 7
  • 8. 4.Buck Regulator Design Workflow RON = 100m 3 L 1 2 Vo S1 D1 C - + S DIODE + - Vin pwm Rload ESR 4 0 5 Type 2 Compensator C2 R2 C1 2 Rupper U3 PWM_IC - FB + E/A + Comp - Rlower OSC REF FOSC = 52K 1 VREF = 1.23 0 VP = 2.5 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 8
  • 9. 1 Setting PWM Controller’s Parameters U? comp PWM_IC • FOSC, Oscillation frequency (frequency of the - FB sawtooth signal). PWM + E/A Comp + • VREF, feedback reference voltage, value is - OSC given by the datasheet REF FOSC = 52K • VP = (Error Amp. Gain  vFB ) / d VREF = 1.23 VP = 2.5 • vFB = vFBH – vFBL The Comparator compares the error voltage (between FB and REF) with a sawtooth signal • d = dMAX – dMIN (frequency = FOSC, peak saw voltage = VP) to generate PWM signal, as shown in the • Error Amp. Gain is 100 (approximated) figure below. where f = FOSC 3.0V VP is the sawtooth peak voltage. 2.0V SEL>> VP vFBH is maximum FB voltage where d = 0 0V V(osc) V(comp) vFBL is minimum FB voltage where d =1(100%) dMAX is maximum duty cycle, e.g. d = 0(0%) V(PWM) Duty cycle (d) is a value from 0 to 1 dMIN is minimum duty cycle, e.g. d =1(100%) Time All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 9
  • 10. 1 Setting PWM Controller’s Parameters (Example)  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximated from the characteristics below. from vFBH VP = (Error Amp. Gain  vFB )/d vFB = •Error Amp. Gain = 100 (approximated) 25mV •from the graph on the left, vFB = 25mV (15m - (-10m)) vFBL d = 1 (100%) • d = 1 – 0 = 1 VP ≈ ( 100  25mV )/1 dMIN dMAX ≈ 2.5V LM2575: Feedback Voltage vs. Duty Cycle  If vFBH and vFBL are not provided, the default value, VP=2.5 could be used. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 10
  • 11. 2 Setting Output Voltage: Rupper, Rlower • Use the following formula to select the resistor values.  Rupper  VOUT  VREF1    Rlower  Type 2 Compensator C2 • Rlower can be between 1k and 5k. R2 C1 Example Given: VOUT = 5V U3 Comp Rupper PWM_IC VREF = 1.23 - FB Rlower = 1k + E/A then: Rupper = 3.065k + Comp - Rlower OSC REF FOSC = 52K VREF = 1.23 0 VP = 2.5 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 11
  • 12. 3 Inductor Selection: L L 1 2 Vo Inductor Value C • The output inductor value is selected to set the converter to work in CCM (Continuous Current Rload ESR Mode) or DCM (Discontinuous Current Mode). • Calculated by LCCM  VI , max VOUT  RL, min 2 fosc VI , max Where • LCCM is the inductor that make the converter to work in CCM. • VI,max is input maximum voltage • RL,min is load resistance at the minimum output current ( IOUT,min ) • fosc is switching frequency All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 12
  • 13. 3 Inductor Selection: L (Example) L 1 2 Vo Inductor Value C from ESR Rload LCCM  VI , max VOUT  RL, min 2 foscVI , max Given: • VI,max = 40V, VOUT = 5V • IOUT,min = 0.2A • RL,min = (VOUT / IOUT,min ) = 25 • fosc = 52kHz Then: • LCCM  210(uH), • L = 330(uH) is selected All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 13
  • 14. 4 Capacitor Selection: C, ESR L 1 2 Vo Capacitor Value • The minimum allowable output capacitor value should C be determined by Rload ESR C  7,785  VI , max F VOUT  L( H) Where • VI, max is the maximum input voltage. • L (H) is the inductance calculated from previous step ( 3 ). • In addition, the output ripple voltage due to the capacitor ESR must be considered as the following equation. VO , RIPPLE ESR  IL , RIPPLE All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 14
  • 15. 4 Capacitor Selection: C, ESR (Example) L 1 2 Vo Capacitor Value From C C  7,785  VI , max F ESR Rload VOUT  L( H) and VO , RIPPLE ESR  IL , RIPPLE Given: • VI, max = 40 V • VOUT = 5 V • L (H) = 330 Then: • C  188 (F) In addition: • ESR  100m All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 15
  • 16. 5 Stabilizing the Converter • Loop gain for this configuration is H(s) RON = 100m L 1 2 Vo S1 D1 C - + S DIODE + - Vin Rload pwm ESR T ( s)  H ( s)  G( s)  GPWM 0 G(s) Type 2 Compensator C2 R2 C1 • The purpose of the compensator G(s) GPWM U3 Comp Rupper is to tailor the converter loop gain PWM_IC FB (frequency response) to make it stable PWM + E/A + - Comp when operated in closed-loop - OSC Rlower REF conditions. FOSC = 52K VREF = 1.23 0 VP = 2.5 • The element of the Type 2 compensator ( R2, C1, and C2 ) can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the Average Models (ac models).  Remark: The Average Models are not included with this package. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 16
  • 17. 5.Buck Converter Simulation (Example) Specification: RON = 100m L 330uH 1 2 Vo VOUT = 5V S1 D1 C - + VIN = 7 ~ 40V S DIODE 330uF + - Vin IC = 5 Rload ILOAD = 0.2 ~ 1A 12Vdc pwm ESR 5 100m L = 330uH, 0 Type 2 Compensator 2 C = 330uF (ESR = 100m), C2 21.60p Rupper = 3.1k, Rlower = 1k, e.g. Characteristics R2 122.780k C1 0.778n from National PWM Controller: Semiconductor Corp. U3 Comp Rupper fOSC = 52kHz IC: LM2575 PWM_IC 3.1k FB VP1 = 2.5V - + E/A pwm + Comp VREF = 1.23V - OSC Rlower 1k REF Task: FOSC = 52K VREF = 1.23 0 VP = 2.5 •Voltage and Current Waveforms Evaluation. *Analysis directives: .TRAN 0 10ms 0 200n SKIPBP 1. Please see topic: 6.1 Calculate the VP, for detail. 2. Please check the Average Model manual for the Type2 Compensator’s elements (R2, C1, and C2) calculation. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 17
  • 18. 5.1 Switching Waveforms Simulation Measurement 5.0V 0V A: Control Voltage V(PWM) V(PWM) 2.0A B: Switch Current ID(S1), 1A/div 1.0A 0A I(S1:3) 1.0A C: Inductor Current I(L), 0.5A/div I(L) 5.06V (9.942m,5.0345) 5.04V (9.931m,5.0511) SEL>> D: Output Ripple Voltage, 20 mV/div, 5.02V VOUT = 5V 9.925ms 9.935ms 9.945ms 9.955ms 9.965ms V(Vo) A: Output Pin Voltage, 10V/div Time B: Output Pin Current, 1A/div C: Inductor Current, 0.5A/div D: Output Ripple Voltage, 20 mV/div, • The simulation results are compared with the measurement data (National Semiconductor Corp. IC LM2575 datasheet). • Output ripple voltage (Simulation) is 16.6mVP-P. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 18
  • 19. 5.2 Power State Switches Voltage and Current 16V 1.6A 1 2 (9.933m,12.008) 12V 1.2A SW (MOSFET) Voltage VDS (9.951m,1.0946) SW (MOSFET) Current ID 8V 0.8A 4V 0.4A >> 0V 0A 1 V(S1:3,S1:4) 2 I(S1:3) 16V 1.6A 1 2 (9.951m,1.0950) Diode Forward Current IF 0.8A 0V 0A (9.942m,-11.908) -0.8A SEL>> Diode Voltage VAK -16V -1.6A 9.925ms 9.930ms 9.935ms 9.940ms 9.945ms 9.950ms 9.955ms 9.960ms 9.965ms 9.970ms 1 V(D1:A,D1:C) 2 I(D1) Time • Switch (MOSFET) has the steady state voltage: VDS, PEAK = 12.008V and current: ID, PEAK = 1.0946A • Diode has the steady state voltage: VAK, PEAK = -11.908V and current: IF, PEAK = 1.095A All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 19
  • 20. 6.Load Transient Response Simulation (Example) The converter are connected with step-load to perform load transient response simulation. L load RON = 100m 330uH 1 2 Vo S1 D1 C - + S DIODE 330uF I1 + - Vin IC = 5 Rload I1 = 0 12Vdc pwm 25 I2 = 0.8 ESR TD = 10m 100m TF = 25u TR = 20u PW = 0.43m PER = 1 0 Type 2 Compensator C2 21.60p 5V/25 = 0.2A step to 0.2+0.8=1.0A load R2 C1 122.780k 0.778n U3 Comp Rupper PWM_IC 3.1k - FB + E/A pwm + Comp - Rlower OSC 1k REF FOSC = 52K *Analysis directives: VREF = 1.23 VP = 2.5 0 .TRAN 0 15ms 0 200n SKIPBP All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 20
  • 21. 6.Load Transient Response Simulation (Example) Simulation Measurement 5.2V 4.0A 1 2 Output Voltage Change 5.1V 3.5A 5.0V 3.0A 4.9V 2.5A 4.8V 2.0A 4.7V 1.5A Load Current 4.6V 1.0A 4.5V 0.5A >> 4.4V 0A 9.9ms 10.1ms 10.3ms 10.5ms 10.7ms 10.9ms 1 V(Vo) 2 I(load) Time • The simulation results are compared with the measurement data (National Semiconductor Corp. IC LM2575 datasheet). All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 21
  • 22. 7.Buck Converter Optimization (Example) PARAMETERS: Specification: RON = 100m L {L} L = 330u Vo VOUT = 5V 1 2 S1 D1 C - + VIN = 7 ~ 40V S DIODE 330u + - Vin IC = 5 Rload ILOAD = 0.2 ~ 1A 12Vdc pwm ESR 25 100m L = Optimization Parameter 0 Type 2 Compensator C = 330uF (ESR = 100m), C2 21.60p Rupper = 3.1k, Rlower = 1k, R2 122.780k C1 0.778n PWM Controller: U3 Comp Rupper fOSC = 52kHz PWM_IC 3.1k FB VP = 2.5V + E/A - pwm + VREF = 1.23V Comp - OSC Rlower 1k REF Task: FOSC = 52K VREF = 1.23 0 VP = 2.5 •Optimize the Inductor value. *Analysis directives: .TRAN 0 10ms 0 200n SKIPBP .STEP PARAM L LIST 330u, 220u, 100u All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 22
  • 23. 7.Buck Converter Optimization (Example) A: V(PWM), 5.0V 10V/div L=330uH L=220uH 0V L=100uH V(PWM) 500mA B: ID(S1), 1A/div 0A I(S1:3) 600mA C: I(L), 0.5A/div L=100uH, converter work in DCM 400mA 200mA 0A I(L) 5.08V D: VOUT, RIPPLE, (9.931m,5.0555) 5.06V 20 mV/div (9.942m,5.0300) VOUT, RIPPLE, SEL>> at L=220uH 5.02V 9.925ms 9.930ms 9.935ms 9.940ms 9.945ms 9.950ms 9.955ms 9.960ms 9.965ms 9.970ms V(Vo) Time • As an equation (1), the converter works in DCM when the inductor: L is 100uH at the minimum output current: ILOAD = 0.2A • VOUT, RIPPLE = 25.5mVP-P when the inductor: L is 220uH (Increased from 16.6mVP-P of L=330uH). IF VOUT, RIPPLE = 25.5mVP-P is acceptable then L=220uH can replace the 330uH. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 23
  • 24. 8.Converter Efficiency Perform transient simulation to measure the converter efficiency at Rds(on) = 100m and 1 . PARAMETERS: Rdson = 100m L RON = {Rdson} 330uH 1 2 Vo S1 D1 C - + S DIODE 330uF + - Vin IC = 5 Rload 12Vdc pwm 5 ESR 100m 0 Type 2 Compensator C2 21.60p R2 C1 122.780k 0.778n U3 Comp Rupper PWM_IC 3.1k - FB + E/A pwm + Comp - Rlower OSC 1k REF *Analysis directives: FOSC = 52K 0 .TRAN 0 10ms 0 200n SKIPBP VREF = 1.23 VP = 2.5 .STEP PARAM Rdson LIST 100m, 1 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 24
  • 25. 8.1 Converter Efficiency vs. MOSFET Rds(on) Efficiency (%) 100 Rds(on) = 100m, Efficiency = 98.5 % (9.500m,98.492) 90 Rds(on) = 1, Efficiency = 90.9 % (9.500m,90.917) 80 Rds(on)=100m Rds(on)=1 70 9.0ms 9.2ms 9.4ms 9.6ms 9.8ms 10.0ms 100*AVG(W(Rload))/-AVG(W(Vin)) Time • The converter efficiency is decreased from 98.5% to 90.9% when Rds(on) increase from 100m to 1. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 25
  • 26. 8.2 Converter Efficiency vs. Diode, VF Perform transient simulation to measure the converter efficiency at DIODE (N) = 0.01 and 1. PARAMETERS: Rdson = 100m L RON = {Rdson} 330uH 1 2 Vo S1 D1 C - + S DIODE 330uF + - Diode Forward Voltage vs. Vin IC = 5 Rload 12Vdc pwm 5 Diode model parameter: N ESR 100m Diode Forward I – V Characteristics 0 Type 2 Compensator 1.0A C2 VF increases when DIODE (N) increases. 21.60p 0.9A 0.8A R2 C1 0.7A 122.780k 0.778n 0.6A 0.5A U3 Comp Rupper 0.4A PWM_IC 3.1k 0.3A - FB + E/A 0.2A pwm + Comp Rlower 0.1A VF - OSC 1k REF 0A 0V 0.12V 0.24V 0.36V 0.48V 0.60V 0.72V 0.84V 0.96V 1.08V I(D1) FOSC = 52K V_V1 VREF = 1.23 0 *Analysis directives: VP = 2.5 .TRAN 0 10ms 0 200n SKIPBP .STEP D DIODE(N) LIST 0.01, 1 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 26
  • 27. 8.2 Converter Efficiency vs. Diode, VF Efficiency (%) 100 DIODE (N) = 0.01, Efficiency = 98.5 % (9.500m,98.492) 90 DIODE (N) = 1, Efficiency = 90.6 % (9.500m,90.564) 80 N=0.01 N=1 70 9.0ms 9.2ms 9.4ms 9.6ms 9.8ms 10.0ms 100*AVG(W(Rload))/-AVG(W(Vin)) Time • The converter efficiency is decreased from 98.5% to 90.6% when DIODE’s parameter N increase from 0.01 to 1. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 27
  • 28. 9.Simulation Using Real Device Models As we can see in the efficiency simulation (topic #9) that’s how the switching devices characteristics effect the simulation result. For the accurate simulation result, the accurate models, that relate to the real devices characteristics, are needed. U1 L 330uH 1 2 Vo C D1 330uF Vin IC = 5 Rload 12Vdc 5 ESR 100m 0 E1 Type 2 Compensator + - + E - C2 21.60p The Real Device Models 0 of MOSFET and R2 C1 122.780k 0.778n Schottky Barrier Diode U3 Comp Rupper PWM_IC 3.1k - FB + E/A pwm + Comp - Rlower OSC 1k REF FOSC = 52K VREF = 1.23 0 VP = 2.5 All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 28
  • 29. 9.1 Switching Waveforms (Real Device Models) Simulation Measurement 5.0V A: Control Voltage V(PWM), 10V/div 0V V(PWM) Spike current Spike current B: MOSFET Drain Current ID, 1A/div 1.0A SEL>> 0A I(U1:D) 1.0A C: Inductor Current I(L), 0.5A/div I(L) 5.06V 5.04V D: Output Ripple Voltage, 20 mV/div, 5.02V VOUT = 5V 9.925ms 9.935ms 9.945ms 9.955ms 9.965ms A: Output Pin Voltage, 10V/div V(Vo) Time B: Output Pin Current, 1A/div C: Inductor Current, 0.5A/div D: Output Ripple Voltage, 20 mV/div, • The real device model enable designers to include the spike signal in the switching waveforms simulation. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 29
  • 30. 9.2 Converter Efficiency (Real Device Models) Efficiency (%) 100 Efficiency = 92.9 % (9.500m,92.877) 90 80 70 9.0ms 9.2ms 9.4ms 9.6ms 9.8ms 10.0ms 100*AVG(W(Rload))/-AVG(W(Vin)) Time • The converter efficiency is decreased from 98.5% to 92.9% when the device models are changed from the near-Ideal to the real model. All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 30
  • 31. Simulation Index Simulations Folder name 1. Switching Waveforms...................................................... waveforms 2. Power Stage Switches Voltage and Current.................... powersw 3. Load Transient Response................................................ stepload 4. Buck Converter Optimization............................................ optimize 5. Converter Efficiency vs. MOSFET Rds(on) .................... efficiency-diode 6. Converter Efficiency vs. MOSFET Diode, VF.................. efficiency-rdson Libraries : 1. ..¥pwmic.lib 2. ..¥diode.lib All Rights Reserved Copyright (C) Bee Technologies Corporation 2011 31