SlideShare a Scribd company logo
1 of 41
Equivalence of Relations
& Partial Ordering
Lecture 16, CMSC 56
Allyn Joy D. Calcaben
Equivalence
Equivalence
Definition 1
A relation on a set A is called an equivalence relation if it is
reflexive, symmetric, and transitive.
Equivalence
Definition 2
Two elements a and b that are related by an equivalence relation
are called equivalent.
Equivalence
Definition 2
Two elements a and b that are related by an equivalence relation
are called equivalent.
The notation a ~ b is often used to denote that a and b are
equivalent elements with respect to a particular equivalence
relation.
Example
Let R be the relation on the set of integers such that aRb if and
only if a = b or a = -b. Is R an equivalence relation?
Solution
Let R be the relation on the set of integers such that aRb if and
only if a = b or a = -b. Is R an equivalence relation?
YES
Example
Let R be the relation on the set of real numbers such that aRb if
and only if a − b is an integer. Is R an equivalence relation?
Solution
Let R be the relation on the set of real numbers such that aRb if
and only if a − b is an integer. Is R an equivalence relation?
YES
Example
Let R be the relation on the set of real numbers such that aRb if
and only if a − b is a positive integer. Is R an equivalence relation?
Solution
Let R be the relation on the set of real numbers such that aRb if
and only if a − b is a positive integer. Is R an equivalence relation?
NO
Example
Is the “divides” relation on the set of positive integers an
equivalence relation?
Solution
Is the “divides” relation on the set of positive integers an
equivalence relation?
NO
Equivalence Class
Definition 3
Let R be an equivalence relation on a set A. The set of all elements
that are related to an element a of A is called the equivalence
class of a.
Equivalence Class
Definition 3
Let R be an equivalence relation on a set A. The set of all elements
that are related to an element a of A is called the equivalence
class of a.
The equivalence class of a with respect to R is denoted by [a]R.
When only one relation is under consideration, we can delete the
subscript R and write [a] for this equivalence class.
Equivalence Class
In other words, if R is an equivalence relation on a set A, the
equivalence class of the element a is [a]R = { b | (a, b) ∈ R }.
If b ∈ [a]R, then b is called a representative of this equivalence
class
Example
Given the equivalence relation R = {(1,1), (1,2), (1,3), (2,1), (2,2),
(2,3), (3,1), (3,2), (3,3), (4,4), (5,5)} on set {1, 2, 3, 4, 5}.
Find [1], [2], [3], [4], and [5].
Solution
Given the equivalence relation R = {(1,1), (1,2), (1,3), (2,1), (2,2),
(2,3), (3,1), (3,2), (3,3), (4,4), (5,5)} on set {1, 2, 3, 4, 5}.
Find [1], [2], [3], [4], and [5].
[1] = {1, 2, 3} [4] = {4}
[2] = {1, 2, 3} [5] = {5}
[3] = {1, 2, 3}
Example
What is the equivalence class of an integer for the equivalence
relation such that aRb if and only if a = b or a = −b?
Solution
What is the equivalence class of an integer for the equivalence
relation such that aRb if and only if a = b or a = −b?
[a] = { –a, a }.
This set contains two distinct integers unless a = 0.
Solution
What is the equivalence class of an integer for the equivalence
relation such that aRb if and only if a = b or a = −b?
[a] = { –a, a }.
This set contains two distinct integers unless a = 0.
For instance, [ 7 ] = { −7, 7 },
[−5] = {−5, 5 }, and
[0] = {0}
Partial Orderings
Partial Orderings
Definition 1
A relation R on a set S is called a partial ordering or partial order if
it is reflexive, antisymmetric, and transitive.
Partial Orderings
Definition 1
A relation R on a set S is called a partial ordering or partial order if
it is reflexive, antisymmetric, and transitive.
A set S together with a partial ordering R is called a partially
ordered set, or poset, and is denoted by (S,R). Members of S are
called elements of the poset.
Example
Is the “divides” relation a partial ordering on the set of positive
integers?
Solution
Is the “divides” relation a partial ordering on the set of positive
integers?
(Z+, |) is a poset
Partial Ordering
Definition 2
The elements a and b of a poset (S, ≼ ) are called comparable if
either a ≼ b or b ≼ a.
When a and b are elements of S such that neither a ≼ b nor b ≼ a,
a and b are called incomparable.
Example
Are all the elements in the poset (Z+, |) comparable?
Solution
Are all the elements in the poset (Z+, |) comparable?
NO
For instance: 3 | 7 and 7 | 3
Partial Ordering
The adjective “partial” is used to describe partial orderings
because pairs of elements may be incomparable.
When every two elements in the set are comparable, the relation
is called a total ordering.
Partial Ordering
Definition 3
If (S, ≼ ) is a poset and every two elements of S are comparable, S
is called a totally ordered or linearly ordered set, and ≼ is called a
total order or a linear order. A totally ordered set is also called a
chain.
Example
Are all the elements in the poset (Z, ≤) comparable?
Solution
Are all the elements in the poset (Z, ≤) comparable?
Yes
The poset (Z, ≤) is totally ordered.
Hasse Diagrams
Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the
set {1, 2, 3, 4}
Hasse Diagrams
Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the
set {1, 2, 3, 4}
1. Start with the directed graph for this relation
Hasse Diagrams
Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the
set {1, 2, 3, 4}
1. Start with the directed graph for this relation
2. Because a partial ordering is reflexive, a loop (a, a) is present at every
vertex a. Remove these loops.
Hasse Diagrams
Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the
set {1, 2, 3, 4}
1. Start with the directed graph for this relation
2. Because a partial ordering is reflexive, a loop (a, a) is present at every
vertex a. Remove these loops.
3. Next, remove all edges that must be in the partial ordering because of
the presence of other edges and transitivity.
Hasse Diagrams
Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the
set {1, 2, 3, 4}
1. Start with the directed graph for this relation
2. Because a partial ordering is reflexive, a loop (a, a) is present at every
vertex a. Remove these loops.
3. Next, remove all edges that must be in the partial ordering because of
the presence of other edges and transitivity.
4. Finally, arrange each edge so that its initial vertex is below its terminal
vertex. Remove all the arrows on the directed edges, because all edges
point “upward” toward their terminal vertex.
Example
Draw the Hasse diagram representing the partial ordering { (a, b) |a divides
b } on {1, 2, 3, 4, 6, 8, 12}.
Any Question?
oSet
November 12 – December 05
41
Reminders

More Related Content

What's hot

Poset in Relations(Discrete Mathematics)
Poset in Relations(Discrete Mathematics)Poset in Relations(Discrete Mathematics)
Poset in Relations(Discrete Mathematics)Rachana Pathak
 
Logical equivalence, laws of logic
Logical equivalence, laws of logicLogical equivalence, laws of logic
Logical equivalence, laws of logicLakshmi R
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical inductionrey castro
 
Operations on sets
Operations on setsOperations on sets
Operations on setsrenceLongcop
 
Number theory
Number theory Number theory
Number theory tes31
 
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكروDiscrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكروDr. Khaled Bakro
 
Mathematical Logic
Mathematical LogicMathematical Logic
Mathematical LogicJoey Valdriz
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint PresentationAshna Rajput
 
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDiscrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDr. Khaled Bakro
 
Logic (PROPOSITIONS)
Logic (PROPOSITIONS)Logic (PROPOSITIONS)
Logic (PROPOSITIONS)D Nayanathara
 
Modular arithmetic
Modular arithmeticModular arithmetic
Modular arithmeticJanani S
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalencesallyn joy calcaben
 
CMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set OperationsCMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set Operationsallyn joy calcaben
 
Divisibility
DivisibilityDivisibility
Divisibilitymstf mstf
 

What's hot (20)

Poset in Relations(Discrete Mathematics)
Poset in Relations(Discrete Mathematics)Poset in Relations(Discrete Mathematics)
Poset in Relations(Discrete Mathematics)
 
Logical equivalence, laws of logic
Logical equivalence, laws of logicLogical equivalence, laws of logic
Logical equivalence, laws of logic
 
Sets and relations
Sets and relationsSets and relations
Sets and relations
 
Mathematical induction
Mathematical inductionMathematical induction
Mathematical induction
 
Operations on sets
Operations on setsOperations on sets
Operations on sets
 
Number theory
Number theory Number theory
Number theory
 
combinatorics
combinatoricscombinatorics
combinatorics
 
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكروDiscrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
Discrete mathematics Ch1 sets Theory_Dr.Khaled.Bakro د. خالد بكرو
 
Mathematical Logic
Mathematical LogicMathematical Logic
Mathematical Logic
 
Algebra of sets
Algebra of setsAlgebra of sets
Algebra of sets
 
Sets PowerPoint Presentation
Sets PowerPoint PresentationSets PowerPoint Presentation
Sets PowerPoint Presentation
 
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكروDiscrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
Discrete mathematics Ch2 Propositional Logic_Dr.khaled.Bakro د. خالد بكرو
 
Introductions to Relations
Introductions to RelationsIntroductions to Relations
Introductions to Relations
 
Logic (PROPOSITIONS)
Logic (PROPOSITIONS)Logic (PROPOSITIONS)
Logic (PROPOSITIONS)
 
Maths sets ppt
Maths sets pptMaths sets ppt
Maths sets ppt
 
Modular arithmetic
Modular arithmeticModular arithmetic
Modular arithmetic
 
CMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional EquivalencesCMSC 56 | Lecture 2: Propositional Equivalences
CMSC 56 | Lecture 2: Propositional Equivalences
 
CMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set OperationsCMSC 56 | Lecture 6: Sets & Set Operations
CMSC 56 | Lecture 6: Sets & Set Operations
 
Relations
RelationsRelations
Relations
 
Divisibility
DivisibilityDivisibility
Divisibility
 

Similar to CMSC 56 | Lecture 16: Equivalence of Relations & Partial Ordering

Relational Algebra (1).pptx
Relational Algebra (1).pptxRelational Algebra (1).pptx
Relational Algebra (1).pptxSarowarSuman
 
Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )OliverBaltazar2
 
Presentation2 vijayan pillai
Presentation2 vijayan pillaiPresentation2 vijayan pillai
Presentation2 vijayan pillaiunni2012
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Himanshu Dua
 
dm_13_RelationsAndTheirProperties (1).pptx
dm_13_RelationsAndTheirProperties (1).pptxdm_13_RelationsAndTheirProperties (1).pptx
dm_13_RelationsAndTheirProperties (1).pptxRockyIslam5
 
Relations
RelationsRelations
RelationsNiliha
 
Ncert class-12-mathematics-part-1
Ncert class-12-mathematics-part-1Ncert class-12-mathematics-part-1
Ncert class-12-mathematics-part-1RAHUL SINGH
 
dm_13_RelationsAndTheirProperties (1).pdf
dm_13_RelationsAndTheirProperties (1).pdfdm_13_RelationsAndTheirProperties (1).pdf
dm_13_RelationsAndTheirProperties (1).pdfSanjanaAdri
 
Top school in delhi
Top school in delhiTop school in delhi
Top school in delhiEdhole.com
 

Similar to CMSC 56 | Lecture 16: Equivalence of Relations & Partial Ordering (20)

Relational Algebra (1).pptx
Relational Algebra (1).pptxRelational Algebra (1).pptx
Relational Algebra (1).pptx
 
G-1-SETS.pdf
G-1-SETS.pdfG-1-SETS.pdf
G-1-SETS.pdf
 
Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )Week 5 ( basic concept of relation )
Week 5 ( basic concept of relation )
 
Lemh101
Lemh101Lemh101
Lemh101
 
24 partial-orderings
24 partial-orderings24 partial-orderings
24 partial-orderings
 
Relations
RelationsRelations
Relations
 
Chap2_SETS_PDF.pdf
Chap2_SETS_PDF.pdfChap2_SETS_PDF.pdf
Chap2_SETS_PDF.pdf
 
Presentation2 vijayan pillai
Presentation2 vijayan pillaiPresentation2 vijayan pillai
Presentation2 vijayan pillai
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Final relation1 m_tech(cse)
Final relation1 m_tech(cse)Final relation1 m_tech(cse)
Final relation1 m_tech(cse)
 
Per5 relasi
Per5 relasiPer5 relasi
Per5 relasi
 
dm_13_RelationsAndTheirProperties (1).pptx
dm_13_RelationsAndTheirProperties (1).pptxdm_13_RelationsAndTheirProperties (1).pptx
dm_13_RelationsAndTheirProperties (1).pptx
 
Relations
RelationsRelations
Relations
 
Ncert class-12-mathematics-part-1
Ncert class-12-mathematics-part-1Ncert class-12-mathematics-part-1
Ncert class-12-mathematics-part-1
 
dm_13_RelationsAndTheirProperties (1).pdf
dm_13_RelationsAndTheirProperties (1).pdfdm_13_RelationsAndTheirProperties (1).pdf
dm_13_RelationsAndTheirProperties (1).pdf
 
Top school in delhi
Top school in delhiTop school in delhi
Top school in delhi
 
Modern algebra
Modern algebraModern algebra
Modern algebra
 
Introduction to set theory
Introduction to set theoryIntroduction to set theory
Introduction to set theory
 
computational_Maths
computational_Mathscomputational_Maths
computational_Maths
 

More from allyn joy calcaben

CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matricesallyn joy calcaben
 
CMSC 56 | Lecture 14: Representing Relations
CMSC 56 | Lecture 14: Representing RelationsCMSC 56 | Lecture 14: Representing Relations
CMSC 56 | Lecture 14: Representing Relationsallyn joy calcaben
 
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program CorrectnessCMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctnessallyn joy calcaben
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Inductionallyn joy calcaben
 
CMSC 56 | Lecture 10: Integer Representations & Algorithms
CMSC 56 | Lecture 10: Integer Representations & AlgorithmsCMSC 56 | Lecture 10: Integer Representations & Algorithms
CMSC 56 | Lecture 10: Integer Representations & Algorithmsallyn joy calcaben
 
CMSC 56 | Lecture 9: Functions Representations
CMSC 56 | Lecture 9: Functions RepresentationsCMSC 56 | Lecture 9: Functions Representations
CMSC 56 | Lecture 9: Functions Representationsallyn joy calcaben
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functionsallyn joy calcaben
 
CMSC 56 | Lecture 4: Rules of Inference
CMSC 56 | Lecture 4: Rules of InferenceCMSC 56 | Lecture 4: Rules of Inference
CMSC 56 | Lecture 4: Rules of Inferenceallyn joy calcaben
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategyallyn joy calcaben
 
CMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & QuantifiersCMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & Quantifiersallyn joy calcaben
 
CMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional LogicCMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional Logicallyn joy calcaben
 
La Solidaridad and the Propaganda Movement
La Solidaridad and the Propaganda MovementLa Solidaridad and the Propaganda Movement
La Solidaridad and the Propaganda Movementallyn joy calcaben
 
Computer Vision: Feature matching with RANSAC Algorithm
Computer Vision: Feature matching with RANSAC AlgorithmComputer Vision: Feature matching with RANSAC Algorithm
Computer Vision: Feature matching with RANSAC Algorithmallyn joy calcaben
 
Chapter 7 expressions and assignment statements ii
Chapter 7 expressions and assignment statements iiChapter 7 expressions and assignment statements ii
Chapter 7 expressions and assignment statements iiallyn joy calcaben
 

More from allyn joy calcaben (15)

CMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: MatricesCMSC 56 | Lecture 17: Matrices
CMSC 56 | Lecture 17: Matrices
 
CMSC 56 | Lecture 14: Representing Relations
CMSC 56 | Lecture 14: Representing RelationsCMSC 56 | Lecture 14: Representing Relations
CMSC 56 | Lecture 14: Representing Relations
 
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program CorrectnessCMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
CMSC 56 | Lecture 12: Recursive Definition & Algorithms, and Program Correctness
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Induction
 
CMSC 56 | Lecture 10: Integer Representations & Algorithms
CMSC 56 | Lecture 10: Integer Representations & AlgorithmsCMSC 56 | Lecture 10: Integer Representations & Algorithms
CMSC 56 | Lecture 10: Integer Representations & Algorithms
 
CMSC 56 | Lecture 9: Functions Representations
CMSC 56 | Lecture 9: Functions RepresentationsCMSC 56 | Lecture 9: Functions Representations
CMSC 56 | Lecture 9: Functions Representations
 
CMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of FunctionsCMSC 56 | Lecture 8: Growth of Functions
CMSC 56 | Lecture 8: Growth of Functions
 
CMSC 56 | Lecture 4: Rules of Inference
CMSC 56 | Lecture 4: Rules of InferenceCMSC 56 | Lecture 4: Rules of Inference
CMSC 56 | Lecture 4: Rules of Inference
 
CMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and StrategyCMSC 56 | Lecture 5: Proofs Methods and Strategy
CMSC 56 | Lecture 5: Proofs Methods and Strategy
 
CMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & QuantifiersCMSC 56 | Lecture 3: Predicates & Quantifiers
CMSC 56 | Lecture 3: Predicates & Quantifiers
 
CMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional LogicCMSC 56 | Lecture 1: Propositional Logic
CMSC 56 | Lecture 1: Propositional Logic
 
La Solidaridad and the Propaganda Movement
La Solidaridad and the Propaganda MovementLa Solidaridad and the Propaganda Movement
La Solidaridad and the Propaganda Movement
 
Computer Vision: Feature matching with RANSAC Algorithm
Computer Vision: Feature matching with RANSAC AlgorithmComputer Vision: Feature matching with RANSAC Algorithm
Computer Vision: Feature matching with RANSAC Algorithm
 
Chapter 7 expressions and assignment statements ii
Chapter 7 expressions and assignment statements iiChapter 7 expressions and assignment statements ii
Chapter 7 expressions and assignment statements ii
 
#11 osteoporosis
#11 osteoporosis#11 osteoporosis
#11 osteoporosis
 

Recently uploaded

The State of AI in Insights and Research 2024: Results and Findings
The State of AI in Insights and Research 2024: Results and FindingsThe State of AI in Insights and Research 2024: Results and Findings
The State of AI in Insights and Research 2024: Results and FindingsRay Poynter
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptx
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptxCONCEPT OF MUTATION AND ITS CLASSIFICATION .pptx
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptxAnupkumar Sharma
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operationalssuser3e220a
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Seán Kennedy
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfErwinPantujan2
 
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptx
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptxPRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptx
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptxAnupkumar Sharma
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 

Recently uploaded (20)

The State of AI in Insights and Research 2024: Results and Findings
The State of AI in Insights and Research 2024: Results and FindingsThe State of AI in Insights and Research 2024: Results and Findings
The State of AI in Insights and Research 2024: Results and Findings
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptx
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptxCONCEPT OF MUTATION AND ITS CLASSIFICATION .pptx
CONCEPT OF MUTATION AND ITS CLASSIFICATION .pptx
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Expanded definition: technical and operational
Expanded definition: technical and operationalExpanded definition: technical and operational
Expanded definition: technical and operational
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...Student Profile Sample - We help schools to connect the data they have, with ...
Student Profile Sample - We help schools to connect the data they have, with ...
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdfVirtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
Virtual-Orientation-on-the-Administration-of-NATG12-NATG6-and-ELLNA.pdf
 
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptx
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptxPRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptx
PRINCIPLE & APPLICATIONS OF IMMUNO BLOTTING TECHNIQUES.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptxFINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
FINALS_OF_LEFT_ON_C'N_EL_DORADO_2024.pptx
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 

CMSC 56 | Lecture 16: Equivalence of Relations & Partial Ordering

  • 1. Equivalence of Relations & Partial Ordering Lecture 16, CMSC 56 Allyn Joy D. Calcaben
  • 3. Equivalence Definition 1 A relation on a set A is called an equivalence relation if it is reflexive, symmetric, and transitive.
  • 4. Equivalence Definition 2 Two elements a and b that are related by an equivalence relation are called equivalent.
  • 5. Equivalence Definition 2 Two elements a and b that are related by an equivalence relation are called equivalent. The notation a ~ b is often used to denote that a and b are equivalent elements with respect to a particular equivalence relation.
  • 6. Example Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation?
  • 7. Solution Let R be the relation on the set of integers such that aRb if and only if a = b or a = -b. Is R an equivalence relation? YES
  • 8. Example Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer. Is R an equivalence relation?
  • 9. Solution Let R be the relation on the set of real numbers such that aRb if and only if a − b is an integer. Is R an equivalence relation? YES
  • 10. Example Let R be the relation on the set of real numbers such that aRb if and only if a − b is a positive integer. Is R an equivalence relation?
  • 11. Solution Let R be the relation on the set of real numbers such that aRb if and only if a − b is a positive integer. Is R an equivalence relation? NO
  • 12. Example Is the “divides” relation on the set of positive integers an equivalence relation?
  • 13. Solution Is the “divides” relation on the set of positive integers an equivalence relation? NO
  • 14. Equivalence Class Definition 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a.
  • 15. Equivalence Class Definition 3 Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a]R. When only one relation is under consideration, we can delete the subscript R and write [a] for this equivalence class.
  • 16. Equivalence Class In other words, if R is an equivalence relation on a set A, the equivalence class of the element a is [a]R = { b | (a, b) ∈ R }. If b ∈ [a]R, then b is called a representative of this equivalence class
  • 17. Example Given the equivalence relation R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4), (5,5)} on set {1, 2, 3, 4, 5}. Find [1], [2], [3], [4], and [5].
  • 18. Solution Given the equivalence relation R = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3), (4,4), (5,5)} on set {1, 2, 3, 4, 5}. Find [1], [2], [3], [4], and [5]. [1] = {1, 2, 3} [4] = {4} [2] = {1, 2, 3} [5] = {5} [3] = {1, 2, 3}
  • 19. Example What is the equivalence class of an integer for the equivalence relation such that aRb if and only if a = b or a = −b?
  • 20. Solution What is the equivalence class of an integer for the equivalence relation such that aRb if and only if a = b or a = −b? [a] = { –a, a }. This set contains two distinct integers unless a = 0.
  • 21. Solution What is the equivalence class of an integer for the equivalence relation such that aRb if and only if a = b or a = −b? [a] = { –a, a }. This set contains two distinct integers unless a = 0. For instance, [ 7 ] = { −7, 7 }, [−5] = {−5, 5 }, and [0] = {0}
  • 23. Partial Orderings Definition 1 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive.
  • 24. Partial Orderings Definition 1 A relation R on a set S is called a partial ordering or partial order if it is reflexive, antisymmetric, and transitive. A set S together with a partial ordering R is called a partially ordered set, or poset, and is denoted by (S,R). Members of S are called elements of the poset.
  • 25. Example Is the “divides” relation a partial ordering on the set of positive integers?
  • 26. Solution Is the “divides” relation a partial ordering on the set of positive integers? (Z+, |) is a poset
  • 27. Partial Ordering Definition 2 The elements a and b of a poset (S, ≼ ) are called comparable if either a ≼ b or b ≼ a. When a and b are elements of S such that neither a ≼ b nor b ≼ a, a and b are called incomparable.
  • 28. Example Are all the elements in the poset (Z+, |) comparable?
  • 29. Solution Are all the elements in the poset (Z+, |) comparable? NO For instance: 3 | 7 and 7 | 3
  • 30. Partial Ordering The adjective “partial” is used to describe partial orderings because pairs of elements may be incomparable. When every two elements in the set are comparable, the relation is called a total ordering.
  • 31. Partial Ordering Definition 3 If (S, ≼ ) is a poset and every two elements of S are comparable, S is called a totally ordered or linearly ordered set, and ≼ is called a total order or a linear order. A totally ordered set is also called a chain.
  • 32. Example Are all the elements in the poset (Z, ≤) comparable?
  • 33. Solution Are all the elements in the poset (Z, ≤) comparable? Yes The poset (Z, ≤) is totally ordered.
  • 34. Hasse Diagrams Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the set {1, 2, 3, 4}
  • 35. Hasse Diagrams Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the set {1, 2, 3, 4} 1. Start with the directed graph for this relation
  • 36. Hasse Diagrams Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the set {1, 2, 3, 4} 1. Start with the directed graph for this relation 2. Because a partial ordering is reflexive, a loop (a, a) is present at every vertex a. Remove these loops.
  • 37. Hasse Diagrams Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the set {1, 2, 3, 4} 1. Start with the directed graph for this relation 2. Because a partial ordering is reflexive, a loop (a, a) is present at every vertex a. Remove these loops. 3. Next, remove all edges that must be in the partial ordering because of the presence of other edges and transitivity.
  • 38. Hasse Diagrams Consider the directed graph for the partial ordering { (a, b) | a ≤ b } on the set {1, 2, 3, 4} 1. Start with the directed graph for this relation 2. Because a partial ordering is reflexive, a loop (a, a) is present at every vertex a. Remove these loops. 3. Next, remove all edges that must be in the partial ordering because of the presence of other edges and transitivity. 4. Finally, arrange each edge so that its initial vertex is below its terminal vertex. Remove all the arrows on the directed edges, because all edges point “upward” toward their terminal vertex.
  • 39. Example Draw the Hasse diagram representing the partial ordering { (a, b) |a divides b } on {1, 2, 3, 4, 6, 8, 12}.
  • 41. oSet November 12 – December 05 41 Reminders

Editor's Notes

  1. With matrices, we set the diagonal to all 1’s