SlideShare a Scribd company logo
1 of 13
Scope of Parallelism
• Conventional architectures coarsely comprise of a processor, memory system, and the datapath.
• Each of these components present significant performance bottlenecks.
• Parallelism addresses each of these components in significant ways.
• Different applications utilize different aspects of parallelism - e.g., data itensive applications
utilize high aggregate throughput, server applications utilize high aggregate network bandwidth,
and scientific applications typically utilize high processing and memory system performance.
• It is important to understand each of these performance bottlenecks.
Implicit Parallelism: Trends in Microprocessor
Architectures
• Microprocessor clock speeds have posted impressive gains over the past two decades (two to
three orders of magnitude).
• Higher levels of device integration have made available a large number of transistors.
• The question of how best to utilize these resources is an important one.
• Current processors use these resources in multiple functional units and execute multiple
instructions in the same cycle.
• The precise manner in which these instructions are selected and executed provides impressive
diversity in architectures.
Pipelining and Superscalar Execution
• Pipelining overlaps various stages of instruction execution to achieve
performance.
• At a high level of abstraction, an instruction can be executed while
the next one is being decoded and the next one is being fetched.
• This is akin to an assembly line for manufacture of cars.
Pipelining and Superscalar Execution
• Pipelining, however, has several limitations.
• The speed of a pipeline is eventually limited by the slowest stage.
• For this reason, conventional processors rely on very deep pipelines
(20 stage pipelines in state-of-the-art Pentium processors).
• However, in typical program traces, every 5-6th instruction is a
conditional jump! This requires very accurate branch prediction.
• The penalty of a misprediction grows with the depth of the pipeline,
since a larger number of instructions will have to be flushed.
Pipelining and Superscalar Execution
• One simple way of alleviating these bottlenecks is to use multiple
pipelines.
• The question then becomes one of selecting these instructions.
Superscalar Execution: An Example
Example of a two-way superscalar execution of instructions.
Superscalar Execution: An Example
• In the above example, there is some wastage of resources due to data
dependencies.
• The example also illustrates that different instruction mixes with
identical semantics can take significantly different execution time.
Superscalar Execution
• Scheduling of instructions is determined by a number of factors:
• True Data Dependency: The result of one operation is an input to the next.
• Resource Dependency: Two operations require the same resource.
• Branch Dependency: Scheduling instructions across conditional branch
statements cannot be done deterministically a-priori.
• The scheduler, a piece of hardware looks at a large number of instructions in
an instruction queue and selects appropriate number of instructions to
execute concurrently based on these factors.
• The complexity of this hardware is an important constraint on superscalar
processors.
What Parallelism ???
Superscalar Execution:
Issue Mechanisms
• In the simpler model, instructions can be issued only in the order in
which they are encountered. That is, if the second instruction cannot
be issued because it has a data dependency with the first, only one
instruction is issued in the cycle. This is called in-order issue.
• In a more aggressive model, instructions can be issued out of order. In
this case, if the second instruction has data dependencies with the
first, but the third instruction does not, the first and third instructions
can be co-scheduled. This is also called dynamic issue.
• Performance of in-order issue is generally limited.
Superscalar Execution:
Efficiency Considerations
• Not all functional units can be kept busy at all times.
• If during a cycle, no functional units are utilized, this is referred to as
vertical waste.
• If during a cycle, only some of the functional units are utilized, this is
referred to as horizontal waste.
• Due to limited parallelism in typical instruction traces, dependencies,
or the inability of the scheduler to extract parallelism, the
performance of superscalar processors is eventually limited.
• Conventional microprocessors typically support four-way superscalar
execution.
Very Long Instruction Word (VLIW) Processors
• The hardware cost and complexity of the superscalar scheduler is a
major consideration in processor design.
• To address this issues, VLIW processors rely on compile time analysis
to identify and bundle together instructions that can be executed
concurrently.
• These instructions are packed and dispatched together, and thus the
name very long instruction word.
• This concept was used with some commercial success in the
Multiflow Trace machine (circa 1984).
• Variants of this concept are employed in the Intel IA64 processors.
Very Long Instruction Word (VLIW)
Processors: Considerations
• Issue hardware is simpler.
• Compiler has a bigger context from which to select co-scheduled
instructions.
• Compilers, however, do not have runtime information such as cache
misses. Scheduling is, therefore, inherently conservative.
• Branch and memory prediction is more difficult.
• VLIW performance is highly dependent on the compiler. A number of
techniques such as loop unrolling, speculative execution, branch
prediction are critical.
• Typical VLIW processors are limited to 4-way to 8-way parallelism.

More Related Content

What's hot

Basic communication operations - One to all Broadcast
Basic communication operations - One to all BroadcastBasic communication operations - One to all Broadcast
Basic communication operations - One to all BroadcastRashiJoshi11
 
advanced computer architesture-conditions of parallelism
advanced computer architesture-conditions of parallelismadvanced computer architesture-conditions of parallelism
advanced computer architesture-conditions of parallelismPankaj Kumar Jain
 
Physical organization of parallel platforms
Physical organization of parallel platformsPhysical organization of parallel platforms
Physical organization of parallel platformsSyed Zaid Irshad
 
distributed shared memory
 distributed shared memory distributed shared memory
distributed shared memoryAshish Kumar
 
Fault Tolerance System
Fault Tolerance SystemFault Tolerance System
Fault Tolerance Systemprakashjjaya
 
All-Reduce and Prefix-Sum Operations
All-Reduce and Prefix-Sum Operations All-Reduce and Prefix-Sum Operations
All-Reduce and Prefix-Sum Operations Syed Zaid Irshad
 
Design issues of dos
Design issues of dosDesign issues of dos
Design issues of dosvanamali_vanu
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSKathirvel Ayyaswamy
 
Synchronization in distributed systems
Synchronization in distributed systems Synchronization in distributed systems
Synchronization in distributed systems SHATHAN
 
Distributed system Tanenbaum chapter 1,2,3,4 notes
Distributed system Tanenbaum chapter 1,2,3,4 notes Distributed system Tanenbaum chapter 1,2,3,4 notes
Distributed system Tanenbaum chapter 1,2,3,4 notes SAhammedShakil
 
OS - Process Concepts
OS - Process ConceptsOS - Process Concepts
OS - Process ConceptsMukesh Chinta
 
Advanced computer architecture lesson 5 and 6
Advanced computer architecture lesson 5 and 6Advanced computer architecture lesson 5 and 6
Advanced computer architecture lesson 5 and 6Ismail Mukiibi
 
program flow mechanisms, advanced computer architecture
program flow mechanisms, advanced computer architectureprogram flow mechanisms, advanced computer architecture
program flow mechanisms, advanced computer architecturePankaj Kumar Jain
 
Interprocess communication (IPC) IN O.S
Interprocess communication (IPC) IN O.SInterprocess communication (IPC) IN O.S
Interprocess communication (IPC) IN O.SHussain Ala'a Alkabi
 
Lect4 software economics
Lect4 software economicsLect4 software economics
Lect4 software economicsmeena466141
 

What's hot (20)

Basic communication operations - One to all Broadcast
Basic communication operations - One to all BroadcastBasic communication operations - One to all Broadcast
Basic communication operations - One to all Broadcast
 
advanced computer architesture-conditions of parallelism
advanced computer architesture-conditions of parallelismadvanced computer architesture-conditions of parallelism
advanced computer architesture-conditions of parallelism
 
Physical organization of parallel platforms
Physical organization of parallel platformsPhysical organization of parallel platforms
Physical organization of parallel platforms
 
Draw and explain the architecture of general purpose microprocessor
Draw and explain the architecture of general purpose microprocessor Draw and explain the architecture of general purpose microprocessor
Draw and explain the architecture of general purpose microprocessor
 
Distributed and clustered systems
Distributed and clustered systemsDistributed and clustered systems
Distributed and clustered systems
 
Message passing in Distributed Computing Systems
Message passing in Distributed Computing SystemsMessage passing in Distributed Computing Systems
Message passing in Distributed Computing Systems
 
distributed shared memory
 distributed shared memory distributed shared memory
distributed shared memory
 
Fault Tolerance System
Fault Tolerance SystemFault Tolerance System
Fault Tolerance System
 
All-Reduce and Prefix-Sum Operations
All-Reduce and Prefix-Sum Operations All-Reduce and Prefix-Sum Operations
All-Reduce and Prefix-Sum Operations
 
Design issues of dos
Design issues of dosDesign issues of dos
Design issues of dos
 
CS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMSCS9222 ADVANCED OPERATING SYSTEMS
CS9222 ADVANCED OPERATING SYSTEMS
 
Synchronization in distributed systems
Synchronization in distributed systems Synchronization in distributed systems
Synchronization in distributed systems
 
Distributed system Tanenbaum chapter 1,2,3,4 notes
Distributed system Tanenbaum chapter 1,2,3,4 notes Distributed system Tanenbaum chapter 1,2,3,4 notes
Distributed system Tanenbaum chapter 1,2,3,4 notes
 
OS - Process Concepts
OS - Process ConceptsOS - Process Concepts
OS - Process Concepts
 
Distributed Operating System_4
Distributed Operating System_4Distributed Operating System_4
Distributed Operating System_4
 
Advanced computer architecture lesson 5 and 6
Advanced computer architecture lesson 5 and 6Advanced computer architecture lesson 5 and 6
Advanced computer architecture lesson 5 and 6
 
program flow mechanisms, advanced computer architecture
program flow mechanisms, advanced computer architectureprogram flow mechanisms, advanced computer architecture
program flow mechanisms, advanced computer architecture
 
Interprocess communication (IPC) IN O.S
Interprocess communication (IPC) IN O.SInterprocess communication (IPC) IN O.S
Interprocess communication (IPC) IN O.S
 
Lect4 software economics
Lect4 software economicsLect4 software economics
Lect4 software economics
 
Message passing interface
Message passing interfaceMessage passing interface
Message passing interface
 

Similar to Scope of parallelism

Superscalar & superpipeline processor
Superscalar & superpipeline processorSuperscalar & superpipeline processor
Superscalar & superpipeline processorMuhammad Ishaq
 
Parallel Computing
Parallel ComputingParallel Computing
Parallel ComputingMohsin Bhat
 
SOC System Design Approach
SOC System Design ApproachSOC System Design Approach
SOC System Design ApproachA B Shinde
 
Advanced processor principles
Advanced processor principlesAdvanced processor principles
Advanced processor principlesDhaval Bagal
 
Chip Multithreading Systems Need a New Operating System Scheduler
Chip Multithreading Systems Need a New Operating System Scheduler Chip Multithreading Systems Need a New Operating System Scheduler
Chip Multithreading Systems Need a New Operating System Scheduler Sarwan ali
 
Operating system 20 threads
Operating system 20 threadsOperating system 20 threads
Operating system 20 threadsVaibhav Khanna
 
Superscalar processor
Superscalar processorSuperscalar processor
Superscalar processornoor ul ain
 
FIne Grain Multithreading
FIne Grain MultithreadingFIne Grain Multithreading
FIne Grain MultithreadingDharmesh Tank
 
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDS
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDSFAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDS
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDSMaurvi04
 
Module2 MultiThreads.ppt
Module2 MultiThreads.pptModule2 MultiThreads.ppt
Module2 MultiThreads.pptshreesha16
 
Fault tolerant presentation
Fault tolerant presentationFault tolerant presentation
Fault tolerant presentationskadyan1
 
chapter4-processes nd processors in DS.ppt
chapter4-processes nd processors in DS.pptchapter4-processes nd processors in DS.ppt
chapter4-processes nd processors in DS.pptaakarshsiwani1
 
Multithreaded Programming Part- I.pdf
Multithreaded Programming Part- I.pdfMultithreaded Programming Part- I.pdf
Multithreaded Programming Part- I.pdfHarika Pudugosula
 
Performance Enhancement with Pipelining
Performance Enhancement with PipeliningPerformance Enhancement with Pipelining
Performance Enhancement with PipeliningAneesh Raveendran
 
Cloud Computing - Geektalk
Cloud Computing - GeektalkCloud Computing - Geektalk
Cloud Computing - GeektalkMalisa Ncube
 

Similar to Scope of parallelism (20)

Chap2 slides
Chap2 slidesChap2 slides
Chap2 slides
 
Chap2 slides
Chap2 slidesChap2 slides
Chap2 slides
 
Superscalar & superpipeline processor
Superscalar & superpipeline processorSuperscalar & superpipeline processor
Superscalar & superpipeline processor
 
Parallel Computing
Parallel ComputingParallel Computing
Parallel Computing
 
SOC System Design Approach
SOC System Design ApproachSOC System Design Approach
SOC System Design Approach
 
Advanced processor principles
Advanced processor principlesAdvanced processor principles
Advanced processor principles
 
Chip Multithreading Systems Need a New Operating System Scheduler
Chip Multithreading Systems Need a New Operating System Scheduler Chip Multithreading Systems Need a New Operating System Scheduler
Chip Multithreading Systems Need a New Operating System Scheduler
 
Operating system 20 threads
Operating system 20 threadsOperating system 20 threads
Operating system 20 threads
 
Superscalar processor
Superscalar processorSuperscalar processor
Superscalar processor
 
FIne Grain Multithreading
FIne Grain MultithreadingFIne Grain Multithreading
FIne Grain Multithreading
 
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDS
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDSFAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDS
FAULT TOLERANCE OF RESOURCES IN COMPUTATIONAL GRIDS
 
Module2 MultiThreads.ppt
Module2 MultiThreads.pptModule2 MultiThreads.ppt
Module2 MultiThreads.ppt
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
Difficulties in Pipelining
Difficulties in PipeliningDifficulties in Pipelining
Difficulties in Pipelining
 
Fault tolerant presentation
Fault tolerant presentationFault tolerant presentation
Fault tolerant presentation
 
chapter4-processes nd processors in DS.ppt
chapter4-processes nd processors in DS.pptchapter4-processes nd processors in DS.ppt
chapter4-processes nd processors in DS.ppt
 
Multithreaded Programming Part- I.pdf
Multithreaded Programming Part- I.pdfMultithreaded Programming Part- I.pdf
Multithreaded Programming Part- I.pdf
 
Performance Enhancement with Pipelining
Performance Enhancement with PipeliningPerformance Enhancement with Pipelining
Performance Enhancement with Pipelining
 
Cloud computing
Cloud computingCloud computing
Cloud computing
 
Cloud Computing - Geektalk
Cloud Computing - GeektalkCloud Computing - Geektalk
Cloud Computing - Geektalk
 

More from Syed Zaid Irshad

More from Syed Zaid Irshad (20)

Operating System.pdf
Operating System.pdfOperating System.pdf
Operating System.pdf
 
DBMS_Lab_Manual_&_Solution
DBMS_Lab_Manual_&_SolutionDBMS_Lab_Manual_&_Solution
DBMS_Lab_Manual_&_Solution
 
Data Structure and Algorithms.pptx
Data Structure and Algorithms.pptxData Structure and Algorithms.pptx
Data Structure and Algorithms.pptx
 
Design and Analysis of Algorithms.pptx
Design and Analysis of Algorithms.pptxDesign and Analysis of Algorithms.pptx
Design and Analysis of Algorithms.pptx
 
Professional Issues in Computing
Professional Issues in ComputingProfessional Issues in Computing
Professional Issues in Computing
 
Reduce course notes class xi
Reduce course notes class xiReduce course notes class xi
Reduce course notes class xi
 
Reduce course notes class xii
Reduce course notes class xiiReduce course notes class xii
Reduce course notes class xii
 
Introduction to Database
Introduction to DatabaseIntroduction to Database
Introduction to Database
 
C Language
C LanguageC Language
C Language
 
Flowchart
FlowchartFlowchart
Flowchart
 
Algorithm Pseudo
Algorithm PseudoAlgorithm Pseudo
Algorithm Pseudo
 
Computer Programming
Computer ProgrammingComputer Programming
Computer Programming
 
ICS 2nd Year Book Introduction
ICS 2nd Year Book IntroductionICS 2nd Year Book Introduction
ICS 2nd Year Book Introduction
 
Security, Copyright and the Law
Security, Copyright and the LawSecurity, Copyright and the Law
Security, Copyright and the Law
 
Computer Architecture
Computer ArchitectureComputer Architecture
Computer Architecture
 
Data Communication
Data CommunicationData Communication
Data Communication
 
Information Networks
Information NetworksInformation Networks
Information Networks
 
Basic Concept of Information Technology
Basic Concept of Information TechnologyBasic Concept of Information Technology
Basic Concept of Information Technology
 
Introduction to ICS 1st Year Book
Introduction to ICS 1st Year BookIntroduction to ICS 1st Year Book
Introduction to ICS 1st Year Book
 
Using the set operators
Using the set operatorsUsing the set operators
Using the set operators
 

Recently uploaded

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Christo Ananth
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 

Recently uploaded (20)

Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
Call for Papers - African Journal of Biological Sciences, E-ISSN: 2663-2187, ...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANJALI) Dange Chowk Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 

Scope of parallelism

  • 1. Scope of Parallelism • Conventional architectures coarsely comprise of a processor, memory system, and the datapath. • Each of these components present significant performance bottlenecks. • Parallelism addresses each of these components in significant ways. • Different applications utilize different aspects of parallelism - e.g., data itensive applications utilize high aggregate throughput, server applications utilize high aggregate network bandwidth, and scientific applications typically utilize high processing and memory system performance. • It is important to understand each of these performance bottlenecks.
  • 2. Implicit Parallelism: Trends in Microprocessor Architectures • Microprocessor clock speeds have posted impressive gains over the past two decades (two to three orders of magnitude). • Higher levels of device integration have made available a large number of transistors. • The question of how best to utilize these resources is an important one. • Current processors use these resources in multiple functional units and execute multiple instructions in the same cycle. • The precise manner in which these instructions are selected and executed provides impressive diversity in architectures.
  • 3. Pipelining and Superscalar Execution • Pipelining overlaps various stages of instruction execution to achieve performance. • At a high level of abstraction, an instruction can be executed while the next one is being decoded and the next one is being fetched. • This is akin to an assembly line for manufacture of cars.
  • 4. Pipelining and Superscalar Execution • Pipelining, however, has several limitations. • The speed of a pipeline is eventually limited by the slowest stage. • For this reason, conventional processors rely on very deep pipelines (20 stage pipelines in state-of-the-art Pentium processors). • However, in typical program traces, every 5-6th instruction is a conditional jump! This requires very accurate branch prediction. • The penalty of a misprediction grows with the depth of the pipeline, since a larger number of instructions will have to be flushed.
  • 5. Pipelining and Superscalar Execution • One simple way of alleviating these bottlenecks is to use multiple pipelines. • The question then becomes one of selecting these instructions.
  • 6. Superscalar Execution: An Example Example of a two-way superscalar execution of instructions.
  • 7. Superscalar Execution: An Example • In the above example, there is some wastage of resources due to data dependencies. • The example also illustrates that different instruction mixes with identical semantics can take significantly different execution time.
  • 8. Superscalar Execution • Scheduling of instructions is determined by a number of factors: • True Data Dependency: The result of one operation is an input to the next. • Resource Dependency: Two operations require the same resource. • Branch Dependency: Scheduling instructions across conditional branch statements cannot be done deterministically a-priori. • The scheduler, a piece of hardware looks at a large number of instructions in an instruction queue and selects appropriate number of instructions to execute concurrently based on these factors. • The complexity of this hardware is an important constraint on superscalar processors.
  • 10. Superscalar Execution: Issue Mechanisms • In the simpler model, instructions can be issued only in the order in which they are encountered. That is, if the second instruction cannot be issued because it has a data dependency with the first, only one instruction is issued in the cycle. This is called in-order issue. • In a more aggressive model, instructions can be issued out of order. In this case, if the second instruction has data dependencies with the first, but the third instruction does not, the first and third instructions can be co-scheduled. This is also called dynamic issue. • Performance of in-order issue is generally limited.
  • 11. Superscalar Execution: Efficiency Considerations • Not all functional units can be kept busy at all times. • If during a cycle, no functional units are utilized, this is referred to as vertical waste. • If during a cycle, only some of the functional units are utilized, this is referred to as horizontal waste. • Due to limited parallelism in typical instruction traces, dependencies, or the inability of the scheduler to extract parallelism, the performance of superscalar processors is eventually limited. • Conventional microprocessors typically support four-way superscalar execution.
  • 12. Very Long Instruction Word (VLIW) Processors • The hardware cost and complexity of the superscalar scheduler is a major consideration in processor design. • To address this issues, VLIW processors rely on compile time analysis to identify and bundle together instructions that can be executed concurrently. • These instructions are packed and dispatched together, and thus the name very long instruction word. • This concept was used with some commercial success in the Multiflow Trace machine (circa 1984). • Variants of this concept are employed in the Intel IA64 processors.
  • 13. Very Long Instruction Word (VLIW) Processors: Considerations • Issue hardware is simpler. • Compiler has a bigger context from which to select co-scheduled instructions. • Compilers, however, do not have runtime information such as cache misses. Scheduling is, therefore, inherently conservative. • Branch and memory prediction is more difficult. • VLIW performance is highly dependent on the compiler. A number of techniques such as loop unrolling, speculative execution, branch prediction are critical. • Typical VLIW processors are limited to 4-way to 8-way parallelism.