SlideShare a Scribd company logo
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Implied Volatility Models
Tahar FERHATI
MSc Probability and Finance
Sorbonne Université, École polytechnique X
tahar.ferhati@gmail.com
September 27, 2019
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Outline
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Overview
Subject: study the interpolation and extrapolation methods for the
implied volatility slice and multi-slices under arbitrage free
conditions.
Many authors in the past such as Shimko (1993), Kahalé
(2004), Fengler (2009) Jäckel (2014) tried to model implied
volatility.
Two interpolation techniques: parametric interpolation models
such as: SABR, Heston, and non-parametric interpolation like
cubic spline, shape-preserving, natural smoothing splines...etc.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Figure: Implied volatility models overview
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Overview
Kahalé (2004) interpolates the call price using piece-wise
convex polynomials, then he calculates the implied volatility
and he interpolates linearly the total implied variance.
Jim Gatheral (2004) presented for the first time the
Stochastic Volatility Inspired model (SVI) in Madrid.
Benko et al.(2007)applied non-parametric smoothing
methods to estimate the impliedvolatility (IV).
Fengler (2009) uses the natural smoothing splines under
suitable shape constraints.
Andreasen-Huge (2010) presented a method based on one
step implicit finite difference Euler scheme to local volatility.
Fingler-Hin (2013) uses semi-nonparametric estimator for
the entire call price surface basedon a tensor-product B-spline.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Select Model
We choose Stochastic Volatility Inspired model (SVI) model
presented by Gatheral & Jacquier (2014), Why ?
It’s a parametric model that fits very well the input data (total
implied variance) in the equity market.
Model with closed formula.
SVI is a good fit for the slice.
Explicit formula to pass from implied volatility (slice) to
multi-slices (surface).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Stochastic Volatility Inspired Model (SVI)
A parametric model with parameters set χR = {a, b, ρ, m, σ}, the
raw SVI parameterization of total implied variance is
w (k; χR) = σ2
imp (k; χR) T = a + b{ρ(k − m) + (k − m)2 + σ2}
Where a ∈ R, b ≥ 0, |ρ| < 1, m ∈ R, σ > 0 and the positivity
condition a + bσ 1 − ρ2 ≥ 0 that ensure w (k, χR) ≥ 0
With k is the log forward moneyness k := log K
FT
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Stochastic Volatility Inspired (SVI)
Figure: Stochastic Volatility Inspired Model (SVI) with
{a, b, ρ, m, σ} = (1, 0.3, −0.2, 0.001, 0.5)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Parameters Interpretation
a: determines the overall level of variance: an increasing a
increases the general level of variance, a vertical translation of
the smile.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Parameters Interpretation
b: controls the angle between the left and right asymptotes:
Increasing b increases the slopes of both the put and call
wings, tightening the smile.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Parameters Interpretation
ρ: determines the orientation of the smile: increasing ρ
decreases the slope of the left wing, and increases the slope of
the right wing a counter-clockwise rotation of the smile.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Parameters Interpretation
m: translates the graph: increasing m translates the smile to
the right.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Parameters Interpretation
σ: determines how smooth the vertex is: increasing σ reduces
the at-the-money (ATM) curvature of the smile.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
w (k; χN) for Large Strikes
The total implied variance w (k; χN) has the left and right
asymptotes that respect the assumption of linear wings:
w (k; χR) = a − b(1 − ρ)(k − m) k → −∞ (1)
w (k; χR) = a + b(1 + ρ)(k − m) k → ∞ (2)
SVI is consistent with the Roger Lee’s moment formula.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Convergence From Heston Model to SVI
Gatheral and Jacquier (2010) show the large-time asymptotic
convergence of the Heston implied volatility to SVI.
We consider the Heston model where (St)t≥0 follow the process
dSt =
√
vtStdWt, S0 ∈ R∗
+
dvt = κ (θ − vt) dt + η
√
vtdZt, v0 ∈ R∗
+
d W , Z t = ˜ρdt
(3)
With ˜ρ ∈ [−1, 1], κ, θ, η and v0 are strictly positive and 2κθ ≥ η2
(the Feller condition).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Convergence From Heston Model To SVI
Proposition: If κ − ˜ρη > 0 then σ2
SVI (x) = σ2
∞(x) for all x ∈ R
and (T −→ ∞)
The SVI parameters in function of the Heston parameters model
are:
ω1 :=
4κθ
η2 (1 − ˜ρ2)
(2κ − ˜ρη)2 + η2 (1 − ˜ρ2) − (2κ − ˜ρη) , and
ω2 := η
κθ
and we find the equivalent SVI parameters (a, b, ρ, m, σ);
a =
ω1
2
1 − ρ2
, b =
ω1ω2
2T
, ρ = ˜ρ
m = −
ρT
ω2
, σ =
1 − ρ2T
ω2
(4)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The SVI Jump-Wings (SVI-JW)
In order to be more intuitive for traders, SVI-JW with parameters
set χJ = {vt, ψt, pt, ct, vt} is defined from the raw SVI parameters
by
vt =
a + b{−ρm +
√
m2 + σ2}
t
ψt =
1
√
wt
b
2
−
m
√
m2 + σ2
+ ρ
pt =
1
√
wt
b(1 − ρ)
ct =
1
√
wt
b(1 + ρ)
˜vt = a + bσ 1 − ρ2 /t
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Interpretation of SVI-JW parameters
The SVI-JW parameters have the following interpretations:
Vt gives the ATM variance;
ψt gives the ATM skew;
Pt gives the slope of the left (put) wing;
Ct gives the slope of the right (call) wing;
vt is the minimum implied variance.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Characterisation of Static Arbitrage
Definition:
A volatility surface is free of static arbitrage if and only if the
following conditions are satisfied:
1. It is free of calendar spread arbitrage;
2. Each time slice is free of butterfly arbitrage.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Calendar Spread Arbitrage (Expiry T axis)
Definition: the volatility surface w is free of calendar spread
arbitrage if and only if
∂tw(k, t) ≥ 0, for all k ∈ R and t > 0
There is no calendar spread arbitrage if there are no crossed lines
on a total variance plot (fig. right).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Butterfly Arbitrage (strike k axis)
Butterfly arbitrage is related to the convexity of the (call/put)
price with respect to the strike k.
We can find an equivalent condition to the (call/put)
price convexity in terms of the total implied variance w(k).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Definition: A slice is said to be free of butterfly arbitrage if the
corresponding density is non-negative.
Breeden and Litzenberger, derive an expression of the
discounted risk neutral density p(k) as function of
the second derivative of the call price C(K) with respect to
the strike K.
p(k) =
∂2C(k)
∂K2
K=Ft ek
=
∂2CBS(k, w(k))
∂K2
K=Ft ek
, k ∈ IR (5)
p(k) =
g(k)
2πw(k)
exp −
d−(k)2
2
(6)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Butterfly Arbitrage (Strike k axis)
Where the function g : IR → IR
g(k) := 1 −
kw (k)
2w(k)
2
−
w (k)2
4
1
w(k)
+
1
4
+
w (k)
2
(7)
Lemma: A slice is free of butterfly arbitrage if and only if
g(k) ≥ 0 for all k ∈ R.
limK→+∞ CBS(T, k) = 0 ⇐⇒ limk→+∞ d+(k) = −∞
Problem: the nonlinear behavior of g(k) makes it difficult to find
general conditions on the parameters that would eliminate butterfly
arbitrage.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI’s Parameters Boundaries
We determine Lower and Upper boundaries of each of the SVI
parameters (a, b, ρ, m, σ).
We have some restrictions on the parameters that follow from the
parameterization of the model such as:
b ≥ 0; | ρ |< 1; σ > 0.
Parameter a and SVI Minimum
wmin(k∗
) = a + b σ 1 − ρ2 > 0 ⇐⇒ (a > 0)
0 < a ≤ max(wmarket
)
Parameter b and left wing: for the right wing the slop is
b(ρ + 1) and it should not exceed to 2 which is consistent with
Roger Lee formula.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI’s Parameters Boundaries
lim
K→+∞
CBS(T, k) = 0 ⇐⇒ lim
k→+∞
d+(k) = −∞
Is satisfied for a function w(k) if
lim sup
k→∞
w(k)
2k
< 1.
Or we have,
lim sup
k→∞
w(k)
k
= b(ρ + 1)
Finally, we obtain
b(ρ + 1) < 2, for | ρ |< 1 (8)
The b boundaries are: 0 < b < 1
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI’s Parameters Boundaries
Correlation Parameter ρ
−1 < ρ < 1
We can summarize the obvious boundaries for the SVI raw
parameters as following



0 < amin = 10−5
≤ a ≤ max(wmarket
)
0 < bmin = 0.001 < b < 1
−1 < ρ < 1
2 min
i
ki ≤ m ≤ 2 max
i
ki
0 < σmin = 0.01 ≤ σ ≤ σmax = 1
(9)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Sequential Least-Squares Quadratic Programming (SLSQP)
To calibrate the SVI, we apply a Sequential Quadratic
Programming (SQP) algorithm which is a non-linearly
constrained gradient-based optimization.
SQP algorithm is proposed for the first time by Wilson in his
PhD thesis (1963).
Definition: we consider xk
k∈N0
a sequence of iterates
converging to x∗, the sequence is said to convergence quadratically,
if there exist c > 0 and kmax ≥ 0 such that for all k ≥ kmax
xk+1
− x∗
≤ c xk
− x∗
2
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Some Classification of QP’s
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The Objective Function
The least-Squares objective function to optimize is f (k; χR), where
χR = {a, b, ρ, m, σ} is the set of the parameters model, for an
expiry time fix T.
f (k; χR) =
n
i=1
ωmodel
SVI(i) − ωmarket
Total(i)
2
f (k; χR) =
n
i=1
a + b ρ(k − m) + (k − m)2 + σ2 − ωmarket
Total(i)
2
Where ki := log Ki
FT
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The Non Linear Problem (NLP)
We optimize the objective function subject to constraints then the
problem is reduced to find the optimal parameters
χR = (a∗, b∗, ρ∗, m∗, σ∗) s.t:



(NLP) : min
x∈R5
f (k; χR)
ad ≤ a ≤ au
bd ≤ b < bu
ρd < ρ < ρu
md ≤ m ≤ mu
σd ≤ σ ≤ σu
g (k; χR) > = constant
(10)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Lagrangian of the NLP
The problem define in (10) is a Quadratic Problem with
inequality and bound constraints.
The Lagrange function of the (NLP) SVI optimization problem
is
L (k; χR) = f (k; χR) −
m
j=1
λj [gj (k; χR) − ] (11)
Where λj is the Lagrange multiplier.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Sequential Quadratic Programming (SQP) in Brief
Given a constrained optimization problem
A rough scheme for the SQP algorithm:
Step 0: start from x0
Step k: xk+1 = xk + αkdk
where αk the step-length and dk is the search-direction.
To find the search direction dk, we reformulate the original (NLP)
problem to a Quadratic Programming Sub-problem by
A quadratic approximation of the Lagrange function L (k; χR).
A linear approximation of the constraints function gj (k; χR).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Sequential Quadratic Programming (SQP) in Brief
The search-direction dk: is computed using a Quadratic
Programming Sub-problem:
(QP) : min
d∈Rn
1
2
dT
Bk
d + f xk
d
Subject to
gj xk
d + gj xk
≥ , j = 1, . . . , m
Where B := 2
xx L(x, λ) is the Hessian of the Lagrangian.
The step-length αk: is determine by a 1D minimization of a
merit function M xk + αdk a function that guarantees a
sufficient decrease in the objective f (x) and satisfaction of
constraints along dk with an appropriate step length αk
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Some Arbitrage Examples
Example 01: Axel Vogt From Wilmott.com
Using Sequential Least-Squares Quadratic Programming
(SLSQP), we are able to tackle this problem and to calibrate
the SVI with arbitrage free.
We consider the following raw SVI parameters:
(a, b, m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153)
With T = 1
Then the new SVI parameters arbitrage free are;
(a, b, m, ρ, σ) = (10−5
, 0.08414, 0.24957, 0.16962, 0.1321)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Example 01 Axel Vogt
Figure: Plots of the total variance (left) and the function g(k) (right),
with and without arbitrage for g(k) > = 0.05
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Arbitrage Examples 02
Let’s consider the following example
(a, b, m, ρ, σ) = (0.001, 0.6, −0.5, 0.07, 0.1)
Some thing interesting in our example is that the SVI
parameters even when they respect the boundaries conditions
(14), we can have an arbitrage.
Then the new SVI parameters with arbitrage free after
calibration are
(a, b, m, ρ, σ) = (10−5
, 0.5691, −0.4345, 0.1318, 0.1428)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Arbitrage Examples 02
Figure: Plots of the total variance (left) and the function g(k) (right),
with and without arbitrage
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Equity Indexes Calibration
After testing our algorithm in two arbitrage examples, we test
the performance of our algorithm.
The input data is the options prices (Call and Put) listed on
23 indexes (14 maturities each one) such as: EURO STOXX
50, CAC 40, NIKKEI 225, FTSE Mid 250 Index, SWISS
MARKET IND, Hang Seng, NASDAQ 100, FTSE 100, MSCI
world TR Index, Sao Paulo SE Bovespa Index,...etc
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Calibration for CAC40
Figure: SVI fits for the total implied variance CAC40 on April 05, 2019
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
We apply the Sequential Least-Squares Quadratic
Programming (SLSQP) method to calibrate the SVI model in
both axes: strikes andmaturities.
This calibration will respect the SVI’s bounds and mostly both
type of arbitrage: butterfly ( in the strikes axis) and calendar
spread (in the maturity axis).
The objective function f (k; χR) as previously, where
χR = {a, b, ρ, m, σ} is the set of the model’s parameters, for
an expiry time fix T.
f (k; χR) =
n
i=1
ωmodel
SVI(i) − ωmarket
Total(i)
2
(12)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration



(NLP) : min
x∈R5
f (k; χR)
ad ≤ a ≤ au
bd ≤ b < bu
ρd < ρ < ρu
md ≤ m ≤ mu
σd ≤ σ ≤ σu
g (k; χR) > = constant > 0
∂T w(k, T) ≥ , ∀k ∈ IR, T > 0, > 0
(13)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
In practice, we start the calibration with SVI slice corresponding to
the lowest maturity and more we move up to the next maturity
more we add the constraint of non-crossing slices as bellow



w(k, T0) > 0, > 0
w(k, T1) > w(k, T0)
...
w(k, Ti ) > w(k, Ti−1) 1 ≤ i ≤ n
(14)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
The Lagrange function of the (NLP) SVI optimization problem is
L (k; χR) = f (k; χR) −
m
j=1
λj [gj (k; χR) − ]
−
n
i=1
m
j=1
νj [wj (k, Ti ) − wj (k, Ti−1) − ]
Applying the SLSQP algorithm for calibration allows to
eliminate both arbitrages: calendar spread and butterfly during
the calibration step. Our SVI’s parameters are arbitrage free.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
The Lagrange function of the (NLP) SVI optimization problem is
L (k; χR) = f (k; χR) −
m
j=1
λj [gj (k; χR) − ]
−
n
i=1
m
j=1
νj [wj (k, Ti ) − wj (k, Ti−1) − ]
The continues lines represent the fit of the SVI model, and we note
that this lines are separated as following.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
Figure: SVI calibration arbitrage free (butterfly & calendar spread) for
(SP ASX 200), dots (input data), continue line (SVI model)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Multi-Slices SVI Calibration
Figure: SVI calibration for the index (DJ Stoxx 600 Utilities Rt Inde)
(left) and (Swiss Market Ind) (right), with both butterfly & calendar
spread arbitrage free. Dots (input data) and continue line is SVI model.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Calibration without Weights
The SVI calibration fits all the input data points with the same
weight which is one.
Figure: SVI fits without weights for the TOPIX Stock Index
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Calibration with Weights
In practice, the very important and liquid zone is At The
Money zone (ATM), hence, giving more weights in this zone is
very important comparing to the wings zone.
The most appropriate method is to give weights to the loss
function that gradually decreases from the ATM to the wings.
f (k; χR) =
n
i=1
wi SVImodel
(i) − SVImarket
Total(i)
2
W = (..., wi−3, wi−2, wi−1, wATM, wi , wi+1, wi+2, ...)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
SVI Calibration with Weights
Figure: SVI fits with weights for the TOPIX Stock Index
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Non-parametric Interpolation
Arbitrage-Free Smoothing by Fengler
Fengler presented an approach for smoothing implied volatility
interpolation.
Method: natural (cubic) splines to interpolate call price under
suitable shape constraints.
The input data: don’t need to be arbitrage free.
These splines fit the input data backwards in time axis starting
with the largest maturity.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Let’s consider yi is the call prices observed in the market with
respect to strikes a = u0, u1, ..., un+1 = b.
g is the natural cubic spline function (call price model)
twice differentiable C2([a, b]) and defined on [a, b] by
g(u) =
n
i=0
1 {[ui , ui+1)} si (u) (15)
With;
si (u)
def
= di (u − ui )3
+ ci (u − ui )2
+ bi (u − ui ) + ai
For i = 0, . . . , n and given constants parameters ai , bi , ci , di .
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Problem Optimization
We consider the optimization problem subject to a number of linear
inequality constraints
n
i=1
{yi − g (ui )}2
+ λ
b
a
g (v) dv (16)
The smoothness of g can be determined by varying the
parameter λ > 0.
The optimization problem in (16) can be written as the
solution of the quadratic program.
min
x
− y x +
1
2
x Bx
subject to A x = 0
(17)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
No Arbitrage Constraints
The convexity constraint of the call price
g (ui ) = γi ≥ 0, γ1 = γn = 0
The monotonicity & positivity
g2 − g1 ≥ −e−rt,τ τ
(u2 − u1)
gn−1 − gn ≥ 0
The no-arbitrage constraints on the call price
e−δt,r τ
St − e−rt,τ τ
u1 ≤ g1 ≤ e−δt,τ τ
St
gn ≥ 0
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Conclusion
In this thesis we studied the Stochastic Volatility Inspired
model (SVI) as implied volatility model and we gave an
overview for some non-parametric interpolation methods.
We established the characterization of static arbitrage
(calendar spread & butterfly).
We provided the SVI’s parameters boundaries and the
initial guess.
The main result in this thesis is: a new robust calibration
method for the SVI model using Sequential Quadratic
Programming (SQP) optimization method that allows
automatic elimination of arbitrage (butterfly and calendar
spread) during the calibration.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Conclusion
We illustrated the performance of our algorithm in two
numerical examples with arbitrage, one of them is the famous
Axel Vogt example.
We applied the method to calibrate the implied volatility for 23
indexes with 14 maturities each (322 slices).
We presented calibration with weights to give more
importance to the ATM zone rather than the wings.
The prospects results in the future: use the SVI calibration
model in the FX market and also to price different interest
rates derivatives such as: swaptions, cap and floor...
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Conclusion
We plan to make an asymptotic study of the function
g(k), and to find an analytic expression that guarantees the
positivity of this function.
We could also apply the same calibration method (SLSQP) to
the SABR model which will could guarantee calibration
arbitrage free and to fix the arbitrage problem in this model.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
ANNEX - Solution of The NLP
There are two classes of algorithms:
The active-set method (ASM)
The interior point method (IPM).
Active Set Method: the solution of the (NLP) problem is
iteratively, we start with initial value of the parameter’s vector x0,
and the (k+1) interation of xk+1 will be obtained from the previous
one of xk.
xk+1
:= xk
+ αk
dk
(18)
Where;
dk is the search direction in the kth step.
αth is the step length.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The search direction
To find the search direction dk, we reformulate the original (NLP)
problem to a Quadratic Programming Sub-problem by
A quadratic approximation of the Lagrange function L (k; χR).
A linear approximation of the constraints function gj (k; χR).
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The search direction
The SQP algorithm replace the objective function by its local
quadratic approximation,
f (x) ≈ f xk
+ f xk
x − xk
+
1
2
x − xk
T
Hf xk
x − xk
and similarly the constraint function will be replaced by linear
approximation,
g(x) ≈ g xk
+ g xk
x − xk
We define,
d(x) := x − xk
, Bk
:= Hf xk
Where H is the Hessian matrix.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
The search direction
The formulation of the subproblem will be
(QP) : min
d∈Rn
1
2
dT
Bk
d + f xk
d
Subject to
gj xk
d + gj xk
≥ , j = 1, . . . , m
Where ; f (x) and gj (x) are the gradients of the functions f and
g respectively and B is the search direction proposed for the first
time by Wilson in 1963 and defines by B := 2
xx L(x, λ)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Quadratic Programming Sub-problem



(EQP) : min
d∈Rn
1
2
dT
Bk
d + f xk
d
S.t ad ≤ a ≤ au
bd ≤ b < bu
ρd < ρ < ρu
md ≤ m ≤ mu
σd ≤ σ ≤ σu
gj xk
d + gj xk
≥ j = 1, . . . , m
(19)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Active Set Method
In order to solve this problem, we consider the solution dk, λk T
and we move in this direction
xk+1
:= xk
+ αk
dk
respecting the restrictions
f xk
+ αk
dk
< f xk
and
α ≤ ˆαk
=



min
cj −aT
j xk
aT
j dk , if aT
j dk < 0 for some j /∈ Ik
a
+∞, if aT
j dk ≥ 0 for all j /∈ Ik
a
(20)
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
Active Set Method
ˆαk is positive because the index j does not belong to the active set
and the condition (20) means:
If aT
j dk ≥ 0 all step along dk will not violate the inactive
constraint j.
If aT
j dk < 0 there exist a step αj in which the activates
constraint j : cj − aT
j xk + αj dk = 0
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
References
[1] Bruno Dupire. Pricing with a smile. 1994.
[2] Emanuel Derman and Iraj Kani. Riding on a smile.Risk, 7, 01
1994.
[3] Nabil Kahale. An arbitrage-free interpolation of volatilities.Risk,
17, 04 2003.
[4] Wolfgang Karl Härdle, M Benko, Matthias Fengler, and Milos
Kopa. On extracting informa-tion implied in options.Computational
Statistics, 22:543–553, 02 2007.
[5] Matthias Fengler. Arbitrage-free smoothing of the implied
volatility surface.QuantitativeFinance, 9(4):417–428, June 2009.
[6] Jesper Andreasen and Brian Huge. Volatility interpolation.Risk
Magazine, 03 2010.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
References
[7] Judith A. Glaser and P. Heider. Arbitrage-free approximation of
call price surfaces and inputdata risk. 2012.
[8] Matthias Fengler and Lin-Yee Hin. Semi-nonparametric
estimation of the call price surfaceunder strike and time-to-expiry
no-arbitrage constraints. Economics Working Paper Series1136,
University of St. Gallen, School of Economics and Political Science,
September 2011.
[9] Jim Gatheral and Antoine Jacquier. Arbitrage-free SVI volatility
surfaces.arXiv e-prints,page arXiv:1204.0646, Apr 2012.
[10] Jim Gatheral. Stochastic volatility and local volatility.Merrill
Lynch, 2003.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
References
[11] Douglas T. Breeden and Robert H. Litzenberger. Prices of
state-contingent claims implicit inoption prices.The Journal of
Business, 51(4):621–651, 1978.
[12] Jim Gatheral. The volatility surface; a practitioner’s guide.
2006.
[13] Roger W. Lee. The moment formula for implied volatility at
extreme strikes. volume 14.3,pages 469–480, 2004.
[14] Patrick Hagan, Deep Kumar, Andrew Lesniewski, and Diana
E. Woodward. Managing smilerisk.Wilmott Magazine, 1:84–108, 01
2002.
[15] John C. Cox. The constant elasticity of variance option pricing
model.The Journal of PortfolioManagement, 23(5):15–17, 1996.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
References
[16] Patrick S. Hagan and Diana E. Woodward. Equivalent black
volatilities.Applied MathematicalFinance, 6(3):147–157, 1999.
[17] Jim Gatheral and Antoine Jacquier. Convergence of Heston to
SVI.arXiv e-prints, pagearXiv:1002.3633, Feb 2010.
[18] Zeliade White and Millard B. Stahle. Quasi-explicit calibration
of gatheral ’ s svi model. 2009.
[19] Gaoyue Guo, Antoine Jacquier, Claude Martini, and Leo
Neufcourt. Generalised arbitrage-freeSVI volatility surfaces.arXiv
e-prints, page arXiv:1210.7111, Oct 2012.
[20] Peter Carr and Dilip B. Madan. A note on sufficient
conditions for no arbitrage. 2005.
[21] Fabrice Douglas Rouah. Using the risk neutral density to verify
no arbitrage in impliedvolatility.http://www.frouah.com/
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
Overview
Objectives
Stochastic Volatility Inspired SVI
Characterisation of Static Arbitrage
SVI Calibration
Numerical Applications
Non-parametric Interpolation
References
[22] Abebe Geletu, Quadratic programming problems - a review on
algorithms and applications (Active-set and interior point methods),
Ilmenau University of Technology.
[23] Lykke Rasmussen, Computational Finance - on the search for
performance, PhD Thesis, School of The Faculty of Science,
University of Copenhagen, June 2016.
Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models

More Related Content

What's hot

Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法
Nagi Teramo
 
PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2
KunihiroTakeoka
 
Introduction to time series.pptx
Introduction to time series.pptxIntroduction to time series.pptx
Introduction to time series.pptx
HamidUllah50
 
2021 高三選修物理 CH9 電磁感應
2021 高三選修物理 CH9 電磁感應2021 高三選修物理 CH9 電磁感應
2021 高三選修物理 CH9 電磁感應
阿Samn的物理課本
 
4.ARCH and GARCH Models.pdf
4.ARCH and GARCH Models.pdf4.ARCH and GARCH Models.pdf
4.ARCH and GARCH Models.pdf
Sreenivasa Harish
 
Tokyo.R #46 Cox比例ハザードモデルとその周辺
Tokyo.R #46  Cox比例ハザードモデルとその周辺Tokyo.R #46  Cox比例ハザードモデルとその周辺
Tokyo.R #46 Cox比例ハザードモデルとその周辺
kikurage1001
 
Heteroskedasticity
HeteroskedasticityHeteroskedasticity
Heteroskedasticity
halimuth
 
3-2-動能與功能原理
3-2-動能與功能原理3-2-動能與功能原理
3-2-動能與功能原理
阿Samn的物理課本
 
コンジョイント分析の書き方 Slideshare
コンジョイント分析の書き方 Slideshareコンジョイント分析の書き方 Slideshare
コンジョイント分析の書き方 Slideshare
Sayuri Shimizu
 
Foot and Mouth Disese control strategies
Foot and Mouth Disese control strategiesFoot and Mouth Disese control strategies
Foot and Mouth Disese control strategies
ubio Biotechnology Systems Pvt Ltd
 
Chapter8
Chapter8Chapter8
Chapter8
Vu Vo
 
Veterinary Umbilical Hernia
Veterinary Umbilical Hernia Veterinary Umbilical Hernia
Veterinary Umbilical Hernia
DR AMEER HAMZA
 
高二基礎物理2B-CH4-牛頓運動定律-1
高二基礎物理2B-CH4-牛頓運動定律-1高二基礎物理2B-CH4-牛頓運動定律-1
高二基礎物理2B-CH4-牛頓運動定律-1
阿Samn的物理課本
 
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
阿Samn的物理課本
 
Vesicular stomatitis in Cattle, Horse and pigs
Vesicular stomatitis in Cattle, Horse and pigsVesicular stomatitis in Cattle, Horse and pigs
Vesicular stomatitis in Cattle, Horse and pigs
Rakshith K, DVM
 
Ch6 slides
Ch6 slidesCh6 slides
Ch6 slides
fentaw leykun
 
モデル予見制御に基づくペアトレード戦略
モデル予見制御に基づくペアトレード戦略モデル予見制御に基づくペアトレード戦略
モデル予見制御に基づくペアトレード戦略
Kei Nakagawa
 
Strength and weaknesses of fmd control programme going on in india dr. kale b...
Strength and weaknesses of fmd control programme going on in india dr. kale b...Strength and weaknesses of fmd control programme going on in india dr. kale b...
Strength and weaknesses of fmd control programme going on in india dr. kale b...
Bhoj Raj Singh
 
PRML読書会1スライド(公開用)
PRML読書会1スライド(公開用)PRML読書会1スライド(公開用)
PRML読書会1スライド(公開用)
tetsuro ito
 
Conventional method of oestrus synchronization in sheep
Conventional method of oestrus synchronization in sheepConventional method of oestrus synchronization in sheep
Conventional method of oestrus synchronization in sheep
ILRI
 

What's hot (20)

Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法Rで学ぶ逆変換(逆関数)法
Rで学ぶ逆変換(逆関数)法
 
PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2PRML 2.3.1-2.3.2
PRML 2.3.1-2.3.2
 
Introduction to time series.pptx
Introduction to time series.pptxIntroduction to time series.pptx
Introduction to time series.pptx
 
2021 高三選修物理 CH9 電磁感應
2021 高三選修物理 CH9 電磁感應2021 高三選修物理 CH9 電磁感應
2021 高三選修物理 CH9 電磁感應
 
4.ARCH and GARCH Models.pdf
4.ARCH and GARCH Models.pdf4.ARCH and GARCH Models.pdf
4.ARCH and GARCH Models.pdf
 
Tokyo.R #46 Cox比例ハザードモデルとその周辺
Tokyo.R #46  Cox比例ハザードモデルとその周辺Tokyo.R #46  Cox比例ハザードモデルとその周辺
Tokyo.R #46 Cox比例ハザードモデルとその周辺
 
Heteroskedasticity
HeteroskedasticityHeteroskedasticity
Heteroskedasticity
 
3-2-動能與功能原理
3-2-動能與功能原理3-2-動能與功能原理
3-2-動能與功能原理
 
コンジョイント分析の書き方 Slideshare
コンジョイント分析の書き方 Slideshareコンジョイント分析の書き方 Slideshare
コンジョイント分析の書き方 Slideshare
 
Foot and Mouth Disese control strategies
Foot and Mouth Disese control strategiesFoot and Mouth Disese control strategies
Foot and Mouth Disese control strategies
 
Chapter8
Chapter8Chapter8
Chapter8
 
Veterinary Umbilical Hernia
Veterinary Umbilical Hernia Veterinary Umbilical Hernia
Veterinary Umbilical Hernia
 
高二基礎物理2B-CH4-牛頓運動定律-1
高二基礎物理2B-CH4-牛頓運動定律-1高二基礎物理2B-CH4-牛頓運動定律-1
高二基礎物理2B-CH4-牛頓運動定律-1
 
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
選修物理1-CH5-牛頓運動定律-II-週期運動-素養版-V2-學生版.pdf
 
Vesicular stomatitis in Cattle, Horse and pigs
Vesicular stomatitis in Cattle, Horse and pigsVesicular stomatitis in Cattle, Horse and pigs
Vesicular stomatitis in Cattle, Horse and pigs
 
Ch6 slides
Ch6 slidesCh6 slides
Ch6 slides
 
モデル予見制御に基づくペアトレード戦略
モデル予見制御に基づくペアトレード戦略モデル予見制御に基づくペアトレード戦略
モデル予見制御に基づくペアトレード戦略
 
Strength and weaknesses of fmd control programme going on in india dr. kale b...
Strength and weaknesses of fmd control programme going on in india dr. kale b...Strength and weaknesses of fmd control programme going on in india dr. kale b...
Strength and weaknesses of fmd control programme going on in india dr. kale b...
 
PRML読書会1スライド(公開用)
PRML読書会1スライド(公開用)PRML読書会1スライド(公開用)
PRML読書会1スライド(公開用)
 
Conventional method of oestrus synchronization in sheep
Conventional method of oestrus synchronization in sheepConventional method of oestrus synchronization in sheep
Conventional method of oestrus synchronization in sheep
 

Recently uploaded

13 Jun 24 ILC Retirement Income Summit - slides.pptx
13 Jun 24 ILC Retirement Income Summit - slides.pptx13 Jun 24 ILC Retirement Income Summit - slides.pptx
13 Jun 24 ILC Retirement Income Summit - slides.pptx
ILC- UK
 
Ending stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across ScotlandEnding stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across Scotland
ResolutionFoundation
 
KYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
KYC Compliance: A Cornerstone of Global Crypto Regulatory FrameworksKYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
KYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
Any kyc Account
 
Importance of community participation in development projects.pdf
Importance of community participation in development projects.pdfImportance of community participation in development projects.pdf
Importance of community participation in development projects.pdf
krisretro1
 
Seven Camp April 2024 Cohort Booklet.pdf
Seven Camp April 2024 Cohort Booklet.pdfSeven Camp April 2024 Cohort Booklet.pdf
Seven Camp April 2024 Cohort Booklet.pdf
FinTech Belgium
 
Chapter 25: Economic Growth Summary from Samuelson and Nordhaus
Chapter 25: Economic Growth Summary from Samuelson and NordhausChapter 25: Economic Growth Summary from Samuelson and Nordhaus
Chapter 25: Economic Growth Summary from Samuelson and Nordhaus
iraangeles4
 
Accounting Information Systems (AIS).pptx
Accounting Information Systems (AIS).pptxAccounting Information Systems (AIS).pptx
Accounting Information Systems (AIS).pptx
TIZITAWMASRESHA
 
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
brunasordi905
 
Economic trends from a business point of view (May 2024)
Economic trends from a business point of view (May 2024)Economic trends from a business point of view (May 2024)
How to Identify the Best Crypto to Buy Now in 2024.pdf
How to Identify the Best Crypto to Buy Now in 2024.pdfHow to Identify the Best Crypto to Buy Now in 2024.pdf
How to Identify the Best Crypto to Buy Now in 2024.pdf
Kezex (KZX)
 
Understanding-Stocks-and-Real-Estate.pptx
Understanding-Stocks-and-Real-Estate.pptxUnderstanding-Stocks-and-Real-Estate.pptx
Understanding-Stocks-and-Real-Estate.pptx
cosmo-soil
 
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
vpqasyb
 
South Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma TranscriptSouth Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma Transcript
ynfqplhm
 
How to Invest in Cryptocurrency for Beginners: A Complete Guide
How to Invest in Cryptocurrency for Beginners: A Complete GuideHow to Invest in Cryptocurrency for Beginners: A Complete Guide
How to Invest in Cryptocurrency for Beginners: A Complete Guide
Daniel
 
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
Falcon Invoice Discounting
 
The various stages, after the initial invitation has been made to the public ...
The various stages, after the initial invitation has been made to the public ...The various stages, after the initial invitation has been made to the public ...
The various stages, after the initial invitation has been made to the public ...
Yashwanth Rm
 
The state of welfare Resolution Foundation Event
The state of welfare Resolution Foundation EventThe state of welfare Resolution Foundation Event
The state of welfare Resolution Foundation Event
ResolutionFoundation
 
What Lessons Can New Investors Learn from Newman Leech’s Success?
What Lessons Can New Investors Learn from Newman Leech’s Success?What Lessons Can New Investors Learn from Newman Leech’s Success?
What Lessons Can New Investors Learn from Newman Leech’s Success?
Newman Leech
 
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
Suomen Pankki
 
Dr. Alyce Su Cover Story - China's Investment Leader
Dr. Alyce Su Cover Story - China's Investment LeaderDr. Alyce Su Cover Story - China's Investment Leader
Dr. Alyce Su Cover Story - China's Investment Leader
msthrill
 

Recently uploaded (20)

13 Jun 24 ILC Retirement Income Summit - slides.pptx
13 Jun 24 ILC Retirement Income Summit - slides.pptx13 Jun 24 ILC Retirement Income Summit - slides.pptx
13 Jun 24 ILC Retirement Income Summit - slides.pptx
 
Ending stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across ScotlandEnding stagnation: How to boost prosperity across Scotland
Ending stagnation: How to boost prosperity across Scotland
 
KYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
KYC Compliance: A Cornerstone of Global Crypto Regulatory FrameworksKYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
KYC Compliance: A Cornerstone of Global Crypto Regulatory Frameworks
 
Importance of community participation in development projects.pdf
Importance of community participation in development projects.pdfImportance of community participation in development projects.pdf
Importance of community participation in development projects.pdf
 
Seven Camp April 2024 Cohort Booklet.pdf
Seven Camp April 2024 Cohort Booklet.pdfSeven Camp April 2024 Cohort Booklet.pdf
Seven Camp April 2024 Cohort Booklet.pdf
 
Chapter 25: Economic Growth Summary from Samuelson and Nordhaus
Chapter 25: Economic Growth Summary from Samuelson and NordhausChapter 25: Economic Growth Summary from Samuelson and Nordhaus
Chapter 25: Economic Growth Summary from Samuelson and Nordhaus
 
Accounting Information Systems (AIS).pptx
Accounting Information Systems (AIS).pptxAccounting Information Systems (AIS).pptx
Accounting Information Systems (AIS).pptx
 
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
欧洲杯投注-欧洲杯投注买球-欧洲杯投注买球网|【​网址​🎉ac22.net🎉​】
 
Economic trends from a business point of view (May 2024)
Economic trends from a business point of view (May 2024)Economic trends from a business point of view (May 2024)
Economic trends from a business point of view (May 2024)
 
How to Identify the Best Crypto to Buy Now in 2024.pdf
How to Identify the Best Crypto to Buy Now in 2024.pdfHow to Identify the Best Crypto to Buy Now in 2024.pdf
How to Identify the Best Crypto to Buy Now in 2024.pdf
 
Understanding-Stocks-and-Real-Estate.pptx
Understanding-Stocks-and-Real-Estate.pptxUnderstanding-Stocks-and-Real-Estate.pptx
Understanding-Stocks-and-Real-Estate.pptx
 
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
一比一原版宾夕法尼亚大学毕业证(UPenn毕业证书)学历如何办理
 
South Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma TranscriptSouth Dakota State University degree offer diploma Transcript
South Dakota State University degree offer diploma Transcript
 
How to Invest in Cryptocurrency for Beginners: A Complete Guide
How to Invest in Cryptocurrency for Beginners: A Complete GuideHow to Invest in Cryptocurrency for Beginners: A Complete Guide
How to Invest in Cryptocurrency for Beginners: A Complete Guide
 
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
falcon-invoice-discounting-a-premier-investment-platform-for-superior-returns...
 
The various stages, after the initial invitation has been made to the public ...
The various stages, after the initial invitation has been made to the public ...The various stages, after the initial invitation has been made to the public ...
The various stages, after the initial invitation has been made to the public ...
 
The state of welfare Resolution Foundation Event
The state of welfare Resolution Foundation EventThe state of welfare Resolution Foundation Event
The state of welfare Resolution Foundation Event
 
What Lessons Can New Investors Learn from Newman Leech’s Success?
What Lessons Can New Investors Learn from Newman Leech’s Success?What Lessons Can New Investors Learn from Newman Leech’s Success?
What Lessons Can New Investors Learn from Newman Leech’s Success?
 
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
Governor Olli Rehn: Inflation down and recovery supported by interest rate cu...
 
Dr. Alyce Su Cover Story - China's Investment Leader
Dr. Alyce Su Cover Story - China's Investment LeaderDr. Alyce Su Cover Story - China's Investment Leader
Dr. Alyce Su Cover Story - China's Investment Leader
 

Robust Calibration For SVI Model Arbitrage Free

  • 1. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Implied Volatility Models Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.com September 27, 2019 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 2. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Outline Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 3. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Overview Subject: study the interpolation and extrapolation methods for the implied volatility slice and multi-slices under arbitrage free conditions. Many authors in the past such as Shimko (1993), Kahalé (2004), Fengler (2009) Jäckel (2014) tried to model implied volatility. Two interpolation techniques: parametric interpolation models such as: SABR, Heston, and non-parametric interpolation like cubic spline, shape-preserving, natural smoothing splines...etc. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 4. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Figure: Implied volatility models overview Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 5. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Overview Kahalé (2004) interpolates the call price using piece-wise convex polynomials, then he calculates the implied volatility and he interpolates linearly the total implied variance. Jim Gatheral (2004) presented for the first time the Stochastic Volatility Inspired model (SVI) in Madrid. Benko et al.(2007)applied non-parametric smoothing methods to estimate the impliedvolatility (IV). Fengler (2009) uses the natural smoothing splines under suitable shape constraints. Andreasen-Huge (2010) presented a method based on one step implicit finite difference Euler scheme to local volatility. Fingler-Hin (2013) uses semi-nonparametric estimator for the entire call price surface basedon a tensor-product B-spline. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 6. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Select Model We choose Stochastic Volatility Inspired model (SVI) model presented by Gatheral & Jacquier (2014), Why ? It’s a parametric model that fits very well the input data (total implied variance) in the equity market. Model with closed formula. SVI is a good fit for the slice. Explicit formula to pass from implied volatility (slice) to multi-slices (surface). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 7. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Stochastic Volatility Inspired Model (SVI) A parametric model with parameters set χR = {a, b, ρ, m, σ}, the raw SVI parameterization of total implied variance is w (k; χR) = σ2 imp (k; χR) T = a + b{ρ(k − m) + (k − m)2 + σ2} Where a ∈ R, b ≥ 0, |ρ| < 1, m ∈ R, σ > 0 and the positivity condition a + bσ 1 − ρ2 ≥ 0 that ensure w (k, χR) ≥ 0 With k is the log forward moneyness k := log K FT Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 8. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Stochastic Volatility Inspired (SVI) Figure: Stochastic Volatility Inspired Model (SVI) with {a, b, ρ, m, σ} = (1, 0.3, −0.2, 0.001, 0.5) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 9. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Parameters Interpretation a: determines the overall level of variance: an increasing a increases the general level of variance, a vertical translation of the smile. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 10. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Parameters Interpretation b: controls the angle between the left and right asymptotes: Increasing b increases the slopes of both the put and call wings, tightening the smile. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 11. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Parameters Interpretation ρ: determines the orientation of the smile: increasing ρ decreases the slope of the left wing, and increases the slope of the right wing a counter-clockwise rotation of the smile. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 12. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Parameters Interpretation m: translates the graph: increasing m translates the smile to the right. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 13. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Parameters Interpretation σ: determines how smooth the vertex is: increasing σ reduces the at-the-money (ATM) curvature of the smile. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 14. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation w (k; χN) for Large Strikes The total implied variance w (k; χN) has the left and right asymptotes that respect the assumption of linear wings: w (k; χR) = a − b(1 − ρ)(k − m) k → −∞ (1) w (k; χR) = a + b(1 + ρ)(k − m) k → ∞ (2) SVI is consistent with the Roger Lee’s moment formula. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 15. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Convergence From Heston Model to SVI Gatheral and Jacquier (2010) show the large-time asymptotic convergence of the Heston implied volatility to SVI. We consider the Heston model where (St)t≥0 follow the process dSt = √ vtStdWt, S0 ∈ R∗ + dvt = κ (θ − vt) dt + η √ vtdZt, v0 ∈ R∗ + d W , Z t = ˜ρdt (3) With ˜ρ ∈ [−1, 1], κ, θ, η and v0 are strictly positive and 2κθ ≥ η2 (the Feller condition). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 16. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Convergence From Heston Model To SVI Proposition: If κ − ˜ρη > 0 then σ2 SVI (x) = σ2 ∞(x) for all x ∈ R and (T −→ ∞) The SVI parameters in function of the Heston parameters model are: ω1 := 4κθ η2 (1 − ˜ρ2) (2κ − ˜ρη)2 + η2 (1 − ˜ρ2) − (2κ − ˜ρη) , and ω2 := η κθ and we find the equivalent SVI parameters (a, b, ρ, m, σ); a = ω1 2 1 − ρ2 , b = ω1ω2 2T , ρ = ˜ρ m = − ρT ω2 , σ = 1 − ρ2T ω2 (4) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 17. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The SVI Jump-Wings (SVI-JW) In order to be more intuitive for traders, SVI-JW with parameters set χJ = {vt, ψt, pt, ct, vt} is defined from the raw SVI parameters by vt = a + b{−ρm + √ m2 + σ2} t ψt = 1 √ wt b 2 − m √ m2 + σ2 + ρ pt = 1 √ wt b(1 − ρ) ct = 1 √ wt b(1 + ρ) ˜vt = a + bσ 1 − ρ2 /t Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 18. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Interpretation of SVI-JW parameters The SVI-JW parameters have the following interpretations: Vt gives the ATM variance; ψt gives the ATM skew; Pt gives the slope of the left (put) wing; Ct gives the slope of the right (call) wing; vt is the minimum implied variance. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 19. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Characterisation of Static Arbitrage Definition: A volatility surface is free of static arbitrage if and only if the following conditions are satisfied: 1. It is free of calendar spread arbitrage; 2. Each time slice is free of butterfly arbitrage. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 20. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Calendar Spread Arbitrage (Expiry T axis) Definition: the volatility surface w is free of calendar spread arbitrage if and only if ∂tw(k, t) ≥ 0, for all k ∈ R and t > 0 There is no calendar spread arbitrage if there are no crossed lines on a total variance plot (fig. right). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 21. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Butterfly Arbitrage (strike k axis) Butterfly arbitrage is related to the convexity of the (call/put) price with respect to the strike k. We can find an equivalent condition to the (call/put) price convexity in terms of the total implied variance w(k). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 22. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Definition: A slice is said to be free of butterfly arbitrage if the corresponding density is non-negative. Breeden and Litzenberger, derive an expression of the discounted risk neutral density p(k) as function of the second derivative of the call price C(K) with respect to the strike K. p(k) = ∂2C(k) ∂K2 K=Ft ek = ∂2CBS(k, w(k)) ∂K2 K=Ft ek , k ∈ IR (5) p(k) = g(k) 2πw(k) exp − d−(k)2 2 (6) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 23. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Butterfly Arbitrage (Strike k axis) Where the function g : IR → IR g(k) := 1 − kw (k) 2w(k) 2 − w (k)2 4 1 w(k) + 1 4 + w (k) 2 (7) Lemma: A slice is free of butterfly arbitrage if and only if g(k) ≥ 0 for all k ∈ R. limK→+∞ CBS(T, k) = 0 ⇐⇒ limk→+∞ d+(k) = −∞ Problem: the nonlinear behavior of g(k) makes it difficult to find general conditions on the parameters that would eliminate butterfly arbitrage. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 24. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI’s Parameters Boundaries We determine Lower and Upper boundaries of each of the SVI parameters (a, b, ρ, m, σ). We have some restrictions on the parameters that follow from the parameterization of the model such as: b ≥ 0; | ρ |< 1; σ > 0. Parameter a and SVI Minimum wmin(k∗ ) = a + b σ 1 − ρ2 > 0 ⇐⇒ (a > 0) 0 < a ≤ max(wmarket ) Parameter b and left wing: for the right wing the slop is b(ρ + 1) and it should not exceed to 2 which is consistent with Roger Lee formula. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 25. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI’s Parameters Boundaries lim K→+∞ CBS(T, k) = 0 ⇐⇒ lim k→+∞ d+(k) = −∞ Is satisfied for a function w(k) if lim sup k→∞ w(k) 2k < 1. Or we have, lim sup k→∞ w(k) k = b(ρ + 1) Finally, we obtain b(ρ + 1) < 2, for | ρ |< 1 (8) The b boundaries are: 0 < b < 1 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 26. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI’s Parameters Boundaries Correlation Parameter ρ −1 < ρ < 1 We can summarize the obvious boundaries for the SVI raw parameters as following    0 < amin = 10−5 ≤ a ≤ max(wmarket ) 0 < bmin = 0.001 < b < 1 −1 < ρ < 1 2 min i ki ≤ m ≤ 2 max i ki 0 < σmin = 0.01 ≤ σ ≤ σmax = 1 (9) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 27. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Sequential Least-Squares Quadratic Programming (SLSQP) To calibrate the SVI, we apply a Sequential Quadratic Programming (SQP) algorithm which is a non-linearly constrained gradient-based optimization. SQP algorithm is proposed for the first time by Wilson in his PhD thesis (1963). Definition: we consider xk k∈N0 a sequence of iterates converging to x∗, the sequence is said to convergence quadratically, if there exist c > 0 and kmax ≥ 0 such that for all k ≥ kmax xk+1 − x∗ ≤ c xk − x∗ 2 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 28. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Some Classification of QP’s Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 29. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The Objective Function The least-Squares objective function to optimize is f (k; χR), where χR = {a, b, ρ, m, σ} is the set of the parameters model, for an expiry time fix T. f (k; χR) = n i=1 ωmodel SVI(i) − ωmarket Total(i) 2 f (k; χR) = n i=1 a + b ρ(k − m) + (k − m)2 + σ2 − ωmarket Total(i) 2 Where ki := log Ki FT Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 30. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The Non Linear Problem (NLP) We optimize the objective function subject to constraints then the problem is reduced to find the optimal parameters χR = (a∗, b∗, ρ∗, m∗, σ∗) s.t:    (NLP) : min x∈R5 f (k; χR) ad ≤ a ≤ au bd ≤ b < bu ρd < ρ < ρu md ≤ m ≤ mu σd ≤ σ ≤ σu g (k; χR) > = constant (10) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 31. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Lagrangian of the NLP The problem define in (10) is a Quadratic Problem with inequality and bound constraints. The Lagrange function of the (NLP) SVI optimization problem is L (k; χR) = f (k; χR) − m j=1 λj [gj (k; χR) − ] (11) Where λj is the Lagrange multiplier. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 32. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Sequential Quadratic Programming (SQP) in Brief Given a constrained optimization problem A rough scheme for the SQP algorithm: Step 0: start from x0 Step k: xk+1 = xk + αkdk where αk the step-length and dk is the search-direction. To find the search direction dk, we reformulate the original (NLP) problem to a Quadratic Programming Sub-problem by A quadratic approximation of the Lagrange function L (k; χR). A linear approximation of the constraints function gj (k; χR). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 33. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Sequential Quadratic Programming (SQP) in Brief The search-direction dk: is computed using a Quadratic Programming Sub-problem: (QP) : min d∈Rn 1 2 dT Bk d + f xk d Subject to gj xk d + gj xk ≥ , j = 1, . . . , m Where B := 2 xx L(x, λ) is the Hessian of the Lagrangian. The step-length αk: is determine by a 1D minimization of a merit function M xk + αdk a function that guarantees a sufficient decrease in the objective f (x) and satisfaction of constraints along dk with an appropriate step length αk Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 34. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Some Arbitrage Examples Example 01: Axel Vogt From Wilmott.com Using Sequential Least-Squares Quadratic Programming (SLSQP), we are able to tackle this problem and to calibrate the SVI with arbitrage free. We consider the following raw SVI parameters: (a, b, m, ρ, σ) = (−0.0410, 0.1331, 0.3586, 0.3060, 0.4153) With T = 1 Then the new SVI parameters arbitrage free are; (a, b, m, ρ, σ) = (10−5 , 0.08414, 0.24957, 0.16962, 0.1321) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 35. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Example 01 Axel Vogt Figure: Plots of the total variance (left) and the function g(k) (right), with and without arbitrage for g(k) > = 0.05 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 36. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Arbitrage Examples 02 Let’s consider the following example (a, b, m, ρ, σ) = (0.001, 0.6, −0.5, 0.07, 0.1) Some thing interesting in our example is that the SVI parameters even when they respect the boundaries conditions (14), we can have an arbitrage. Then the new SVI parameters with arbitrage free after calibration are (a, b, m, ρ, σ) = (10−5 , 0.5691, −0.4345, 0.1318, 0.1428) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 37. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Arbitrage Examples 02 Figure: Plots of the total variance (left) and the function g(k) (right), with and without arbitrage Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 38. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Equity Indexes Calibration After testing our algorithm in two arbitrage examples, we test the performance of our algorithm. The input data is the options prices (Call and Put) listed on 23 indexes (14 maturities each one) such as: EURO STOXX 50, CAC 40, NIKKEI 225, FTSE Mid 250 Index, SWISS MARKET IND, Hang Seng, NASDAQ 100, FTSE 100, MSCI world TR Index, Sao Paulo SE Bovespa Index,...etc Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 39. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Calibration for CAC40 Figure: SVI fits for the total implied variance CAC40 on April 05, 2019 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 40. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration We apply the Sequential Least-Squares Quadratic Programming (SLSQP) method to calibrate the SVI model in both axes: strikes andmaturities. This calibration will respect the SVI’s bounds and mostly both type of arbitrage: butterfly ( in the strikes axis) and calendar spread (in the maturity axis). The objective function f (k; χR) as previously, where χR = {a, b, ρ, m, σ} is the set of the model’s parameters, for an expiry time fix T. f (k; χR) = n i=1 ωmodel SVI(i) − ωmarket Total(i) 2 (12) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 41. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration    (NLP) : min x∈R5 f (k; χR) ad ≤ a ≤ au bd ≤ b < bu ρd < ρ < ρu md ≤ m ≤ mu σd ≤ σ ≤ σu g (k; χR) > = constant > 0 ∂T w(k, T) ≥ , ∀k ∈ IR, T > 0, > 0 (13) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 42. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration In practice, we start the calibration with SVI slice corresponding to the lowest maturity and more we move up to the next maturity more we add the constraint of non-crossing slices as bellow    w(k, T0) > 0, > 0 w(k, T1) > w(k, T0) ... w(k, Ti ) > w(k, Ti−1) 1 ≤ i ≤ n (14) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 43. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration The Lagrange function of the (NLP) SVI optimization problem is L (k; χR) = f (k; χR) − m j=1 λj [gj (k; χR) − ] − n i=1 m j=1 νj [wj (k, Ti ) − wj (k, Ti−1) − ] Applying the SLSQP algorithm for calibration allows to eliminate both arbitrages: calendar spread and butterfly during the calibration step. Our SVI’s parameters are arbitrage free. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 44. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration The Lagrange function of the (NLP) SVI optimization problem is L (k; χR) = f (k; χR) − m j=1 λj [gj (k; χR) − ] − n i=1 m j=1 νj [wj (k, Ti ) − wj (k, Ti−1) − ] The continues lines represent the fit of the SVI model, and we note that this lines are separated as following. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 45. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration Figure: SVI calibration arbitrage free (butterfly & calendar spread) for (SP ASX 200), dots (input data), continue line (SVI model) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 46. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Multi-Slices SVI Calibration Figure: SVI calibration for the index (DJ Stoxx 600 Utilities Rt Inde) (left) and (Swiss Market Ind) (right), with both butterfly & calendar spread arbitrage free. Dots (input data) and continue line is SVI model. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 47. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Calibration without Weights The SVI calibration fits all the input data points with the same weight which is one. Figure: SVI fits without weights for the TOPIX Stock Index Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 48. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Calibration with Weights In practice, the very important and liquid zone is At The Money zone (ATM), hence, giving more weights in this zone is very important comparing to the wings zone. The most appropriate method is to give weights to the loss function that gradually decreases from the ATM to the wings. f (k; χR) = n i=1 wi SVImodel (i) − SVImarket Total(i) 2 W = (..., wi−3, wi−2, wi−1, wATM, wi , wi+1, wi+2, ...) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 49. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation SVI Calibration with Weights Figure: SVI fits with weights for the TOPIX Stock Index Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 50. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Non-parametric Interpolation Arbitrage-Free Smoothing by Fengler Fengler presented an approach for smoothing implied volatility interpolation. Method: natural (cubic) splines to interpolate call price under suitable shape constraints. The input data: don’t need to be arbitrage free. These splines fit the input data backwards in time axis starting with the largest maturity. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 51. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Let’s consider yi is the call prices observed in the market with respect to strikes a = u0, u1, ..., un+1 = b. g is the natural cubic spline function (call price model) twice differentiable C2([a, b]) and defined on [a, b] by g(u) = n i=0 1 {[ui , ui+1)} si (u) (15) With; si (u) def = di (u − ui )3 + ci (u − ui )2 + bi (u − ui ) + ai For i = 0, . . . , n and given constants parameters ai , bi , ci , di . Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 52. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Problem Optimization We consider the optimization problem subject to a number of linear inequality constraints n i=1 {yi − g (ui )}2 + λ b a g (v) dv (16) The smoothness of g can be determined by varying the parameter λ > 0. The optimization problem in (16) can be written as the solution of the quadratic program. min x − y x + 1 2 x Bx subject to A x = 0 (17) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 53. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation No Arbitrage Constraints The convexity constraint of the call price g (ui ) = γi ≥ 0, γ1 = γn = 0 The monotonicity & positivity g2 − g1 ≥ −e−rt,τ τ (u2 − u1) gn−1 − gn ≥ 0 The no-arbitrage constraints on the call price e−δt,r τ St − e−rt,τ τ u1 ≤ g1 ≤ e−δt,τ τ St gn ≥ 0 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 54. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Conclusion In this thesis we studied the Stochastic Volatility Inspired model (SVI) as implied volatility model and we gave an overview for some non-parametric interpolation methods. We established the characterization of static arbitrage (calendar spread & butterfly). We provided the SVI’s parameters boundaries and the initial guess. The main result in this thesis is: a new robust calibration method for the SVI model using Sequential Quadratic Programming (SQP) optimization method that allows automatic elimination of arbitrage (butterfly and calendar spread) during the calibration. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 55. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Conclusion We illustrated the performance of our algorithm in two numerical examples with arbitrage, one of them is the famous Axel Vogt example. We applied the method to calibrate the implied volatility for 23 indexes with 14 maturities each (322 slices). We presented calibration with weights to give more importance to the ATM zone rather than the wings. The prospects results in the future: use the SVI calibration model in the FX market and also to price different interest rates derivatives such as: swaptions, cap and floor... Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 56. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Conclusion We plan to make an asymptotic study of the function g(k), and to find an analytic expression that guarantees the positivity of this function. We could also apply the same calibration method (SLSQP) to the SABR model which will could guarantee calibration arbitrage free and to fix the arbitrage problem in this model. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 57. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 58. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation ANNEX - Solution of The NLP There are two classes of algorithms: The active-set method (ASM) The interior point method (IPM). Active Set Method: the solution of the (NLP) problem is iteratively, we start with initial value of the parameter’s vector x0, and the (k+1) interation of xk+1 will be obtained from the previous one of xk. xk+1 := xk + αk dk (18) Where; dk is the search direction in the kth step. αth is the step length. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 59. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The search direction To find the search direction dk, we reformulate the original (NLP) problem to a Quadratic Programming Sub-problem by A quadratic approximation of the Lagrange function L (k; χR). A linear approximation of the constraints function gj (k; χR). Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 60. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The search direction The SQP algorithm replace the objective function by its local quadratic approximation, f (x) ≈ f xk + f xk x − xk + 1 2 x − xk T Hf xk x − xk and similarly the constraint function will be replaced by linear approximation, g(x) ≈ g xk + g xk x − xk We define, d(x) := x − xk , Bk := Hf xk Where H is the Hessian matrix. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 61. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation The search direction The formulation of the subproblem will be (QP) : min d∈Rn 1 2 dT Bk d + f xk d Subject to gj xk d + gj xk ≥ , j = 1, . . . , m Where ; f (x) and gj (x) are the gradients of the functions f and g respectively and B is the search direction proposed for the first time by Wilson in 1963 and defines by B := 2 xx L(x, λ) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 62. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Quadratic Programming Sub-problem    (EQP) : min d∈Rn 1 2 dT Bk d + f xk d S.t ad ≤ a ≤ au bd ≤ b < bu ρd < ρ < ρu md ≤ m ≤ mu σd ≤ σ ≤ σu gj xk d + gj xk ≥ j = 1, . . . , m (19) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 63. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Active Set Method In order to solve this problem, we consider the solution dk, λk T and we move in this direction xk+1 := xk + αk dk respecting the restrictions f xk + αk dk < f xk and α ≤ ˆαk =    min cj −aT j xk aT j dk , if aT j dk < 0 for some j /∈ Ik a +∞, if aT j dk ≥ 0 for all j /∈ Ik a (20) Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 64. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation Active Set Method ˆαk is positive because the index j does not belong to the active set and the condition (20) means: If aT j dk ≥ 0 all step along dk will not violate the inactive constraint j. If aT j dk < 0 there exist a step αj in which the activates constraint j : cj − aT j xk + αj dk = 0 Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 65. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation References [1] Bruno Dupire. Pricing with a smile. 1994. [2] Emanuel Derman and Iraj Kani. Riding on a smile.Risk, 7, 01 1994. [3] Nabil Kahale. An arbitrage-free interpolation of volatilities.Risk, 17, 04 2003. [4] Wolfgang Karl Härdle, M Benko, Matthias Fengler, and Milos Kopa. On extracting informa-tion implied in options.Computational Statistics, 22:543–553, 02 2007. [5] Matthias Fengler. Arbitrage-free smoothing of the implied volatility surface.QuantitativeFinance, 9(4):417–428, June 2009. [6] Jesper Andreasen and Brian Huge. Volatility interpolation.Risk Magazine, 03 2010. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 66. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation References [7] Judith A. Glaser and P. Heider. Arbitrage-free approximation of call price surfaces and inputdata risk. 2012. [8] Matthias Fengler and Lin-Yee Hin. Semi-nonparametric estimation of the call price surfaceunder strike and time-to-expiry no-arbitrage constraints. Economics Working Paper Series1136, University of St. Gallen, School of Economics and Political Science, September 2011. [9] Jim Gatheral and Antoine Jacquier. Arbitrage-free SVI volatility surfaces.arXiv e-prints,page arXiv:1204.0646, Apr 2012. [10] Jim Gatheral. Stochastic volatility and local volatility.Merrill Lynch, 2003. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 67. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation References [11] Douglas T. Breeden and Robert H. Litzenberger. Prices of state-contingent claims implicit inoption prices.The Journal of Business, 51(4):621–651, 1978. [12] Jim Gatheral. The volatility surface; a practitioner’s guide. 2006. [13] Roger W. Lee. The moment formula for implied volatility at extreme strikes. volume 14.3,pages 469–480, 2004. [14] Patrick Hagan, Deep Kumar, Andrew Lesniewski, and Diana E. Woodward. Managing smilerisk.Wilmott Magazine, 1:84–108, 01 2002. [15] John C. Cox. The constant elasticity of variance option pricing model.The Journal of PortfolioManagement, 23(5):15–17, 1996. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 68. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation References [16] Patrick S. Hagan and Diana E. Woodward. Equivalent black volatilities.Applied MathematicalFinance, 6(3):147–157, 1999. [17] Jim Gatheral and Antoine Jacquier. Convergence of Heston to SVI.arXiv e-prints, pagearXiv:1002.3633, Feb 2010. [18] Zeliade White and Millard B. Stahle. Quasi-explicit calibration of gatheral ’ s svi model. 2009. [19] Gaoyue Guo, Antoine Jacquier, Claude Martini, and Leo Neufcourt. Generalised arbitrage-freeSVI volatility surfaces.arXiv e-prints, page arXiv:1210.7111, Oct 2012. [20] Peter Carr and Dilip B. Madan. A note on sufficient conditions for no arbitrage. 2005. [21] Fabrice Douglas Rouah. Using the risk neutral density to verify no arbitrage in impliedvolatility.http://www.frouah.com/ Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models
  • 69. Overview Objectives Stochastic Volatility Inspired SVI Characterisation of Static Arbitrage SVI Calibration Numerical Applications Non-parametric Interpolation References [22] Abebe Geletu, Quadratic programming problems - a review on algorithms and applications (Active-set and interior point methods), Ilmenau University of Technology. [23] Lykke Rasmussen, Computational Finance - on the search for performance, PhD Thesis, School of The Faculty of Science, University of Copenhagen, June 2016. Tahar FERHATI MSc Probability and Finance Sorbonne Université, École polytechnique X tahar.ferhati@gmail.comImplied Volatility Models