SlideShare a Scribd company logo
-SEÑALAR Y CALCULAR LAS REACCIONES PRODUCIDAS EN C/U DE LOS APOYOS. 
-CALCULAR LOS DIAGRAMAS DE CORTE Y MOMENTO. 
EJERCICIO #1 
Equilibrio Estático son 3 condiciones 
Ah = 0 
– (1599 Kg/m * 2 m) – (1299 Kg/m * 3 m) – (1099Kg/m * 2,5 m) + (Av) + (Bv) = 0 
– 3198 Kg – 3897 Kg – 2747,5 Kg + Av + Bv = 0 
– 9842,5 Kg + Av + Bv = 0 
Av + Bv = 9842,5 Kg 
(3198 Kg * 1m) + (3897 Kg * 4,5m) + (2747,5 Kg * 8,25 m) – (Bv * 9,5m) = 0 
3198 Kg*m + 17536,5 Kg*m + 22666,875 Kg*m – 9,5mBv = 0 
43401,375 Kg*m – 9,5mBv = 0 
– 9,5mBv = – 43401,375 Kg*m 
Bv = – 43401,375 Kg*m = 347211 kg = 4568,57 
– 9,5m 76 
(De la formula) Av + Bv = 9842,5 Kg Se Despeja Av 
Av = 9842,5 Kg – Bv 
Av = 9842,5 Kg – 347211 kg = 400819 kg = 5273,93 
76 76 
Av = 400819 kg = 5273,93 
76
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + (400819/76 kg) = (400819/76 Kg) = 5273,93 Kg 
V (0-2) = (400819/76 Kg) – (1599 Kg/m * 2m) = (157771/76 Kg) = 2075,93 Kg 
V (2-3) = (157771/76 Kg) + 0 = (157771/76 Kg) = 2075,93 Kg 
V (3-6) = (157771/76 Kg) – (1299 Kg/m * 3m) = - (138401/76 Kg) = - 1821,07 Kg 
V (6-7) = - (138401/76 Kg) + 0 = - (138401/76 Kg) = - 1821,07 Kg 
V (7-9,5) = - (138401/76 Kg) – (1099 Kg/m * 2,5m) = (347211/76 Kg) = - 4568,57 Kg 
V (9,5) = - (138401/76 Kg) + (138401/76 Kg) = 0 
Se Grafican y se calculan las áreas = 
CALCULO DE LAS ÁREAS 
Para hallar las distancias de los triángulos que se Forman al cortar el eje X se procede a 
una relación de triangulo 
(1299 Kg/m * 3m) (157771 / 76 Kg) 
3m X1 = 1,598101779 m 
(1299 Kg/m * 3m) (138401 / 76)) 
3m X2 = 1,401898221 m 
A1 = 
퐻푀+ 퐻푚 
2 
∗ 퐵 = 
400819 
76 
157771 
+ 
76 
2 
∗ 2 = (279295 / 38) = 7349,87 
A2 = 퐵 ∗ 퐻 = 1 ∗ 
157771 
76 
= (157771 / 76) = 2075,93 
A3 = 
퐻∗퐵 
2 
= 
1,598101779 ∗ (157771 / 76) 
2 
= 1658,777077 
A4 = 
퐻∗퐵 
2 
= 
138401 
1,401898221 ∗ 
76 
2 
= 1276,474446 
A5 = 퐵 ∗ 퐻 = 1 ∗ 138401 / 76 = (138401 / 76) = 1821,07 
A6 = 
퐻푀+ 퐻푚 
2 
∗ 퐵 = 
( 
347211 
76 
) + ( 
138401 
76 
) 
2 
∗ 2,5 = (607015 / 76) = 7987,04
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 0 = 0 
M(0-2) = 0 + (279295 / 38) = (279295 / 38) = 7349,87 
M(2-3) = (279295 / 38) + (157771 / 76) = (716361 / 76) = 9425,80 
M(3-4,59) = (716361 / 76) + 1658,777077 = 11084,57971 
M(4,59-6) = 11084,57971 − 1276,474446 = 9808,105263 
(76) 607015 
M(6-7) = 9808,105263 − 138401/= 
76 
= 7987,04 
607015 
M(7-9,5) = ( 
76 
607015 
) – ( 
76 
) = 0 
Se grafica los momentos
EJERCICIO #2 
Equilibrio Estático son 3 condiciones 
Ah = 0 
– (799 Kg) – (699 Kg) – (599 Kg) + (Av) + (Bv) = 0 
– (2087 Kg) + Av + Bv = 0 
Av + Bv = 2097 Kg 
(699 Kg * 4m) + (599 Kg * 9m) – (Bv * 9m) = 0
2796 Kg*m + 5391 Kg*m – 9mBv = 0 
8187 Kg*m – 9mBv = 0 
– 9mBv = – 8187 Kg*m 
Bv = – 8187 Kg*m = 2729 kg = 909,67 
– 9m 3 
(De la formula) Av + Bv = 2097 Kg Se Despeja Av 
Av = 2097 Kg – Bv 
Av = 2097 Kg – 2729 kg = 3562 kg = 1187,33 
3 3 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = (3562 / 3 Kg) - (799 Kg) = (1165 / 3 Kg) = 388,33 Kg 
V (0-4) = (1165 / 3 Kg) + 0 = (1165 / 3 Kg) = 388,33 Kg 
V (4) = (1165 / 3 Kg) – 699 Kg = - (932 / 3 Kg) = -310,67 Kg 
V (4-9) = - (932 / 3 Kg) + 0 = - (932 / 3 Kg) = -310,67 Kg 
V (9) = - (932 / 3 Kg) – 599 Kg + (2729/3 Kg ) = 0 
CALCULO DE LAS ÁREAS 
A1 = 퐵 ∗ 퐻 = 4 ∗ (1165 / 3 ) = (4660 / 3) = 1553,33 
A2 = 퐵 ∗ 퐻 = 5 ∗ (932 / 3 ) = (4660 / 3) = 1553,33 
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 0 = 0 
M(0-4) = 0 + (4660 / 3) = (4660 / 3) = 1553,33 
M(2-3) = (4660 / 3) - (4660 / 3) = 0 
Se grafica los momentos
EJERCICIO #3 
Las fuerzas y los momentos vendrán dados por el peso propio de la viga (Wv) 
Equilibrio Estático son 3 condiciones 
Ah = 0 
Av + Wv = 0 
Av = Wv 
Ma = - (Wv*2m)
EJERCICIO #4 
Equilibrio Estático son 3 condiciones 
Bh = 0 
– ((4099 Kg/m * 3,5 m)/2) – (599 Kg)+ (Av) + (Bv) = 0 
– 7173,25 Kg – 599 Kg + Av + Bv = 0 
– 7772,25 Kg + Av + Bv = 0 
Av + Bv = 7772,25 Kg 
– (599 Kg*3m) – (((4099 Kg/m * 3,5m)/2) * ((2/3*3,5) + 3)m) + (Av * 6,5m) = 0 
– (1797 Kg*m) – ((7173,25 Kg) * (7/3 + 3)m) + (Av * 6,5m) = 0 
– (1797 Kg*m) – ((7173,25 Kg) * (16/3 m)) + (Av * 6,5m) = 0 
– (1797 Kg*m) – (114772/3 Kg*m) + (Av * 6,5m) = 0 
– (120163/3 Kg*m) + (Av * 6,5m) = 0 
(Av * 6,5m) = 120163/3 Kg*m 
Av = 120163/3 Kg*m = 240326 kg = 6162,21 kg 
6,5m 39 
(De la formula) Av + Bv = 7772,25 Kg Se Despeja Bv 
Bv = 7772,25 Kg – Av 
Bv = 6574,25 Kg – 240326 kg = 251167 kg = 1610,05 
39 156
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + (240326/39 Kg) = (240326/39 Kg) = 6162,21 Kg 
V (0-3,5) = (240326/39 Kg) - ((4099 Kg/m * 3,5m)/2) = - (157723/156 Kg) = -1011,04 Kg 
V (3,5) = - (157723/156 Kg) – 599 Kg = - (251167 / 156 Kg) = -1610,04 Kg 
V (3,5-6,5) = - (251167 / 156 Kg) + 0 = - (251167 / 156 Kg) = -1610,04 Kg 
V (9) = - (251167 / 156 Kg) + (251167 / 156 Kg) = 0 
CALCULO DE LOS MOMENTOS FLECTORES 
Se Seccionan Tramos Para Conseguir Los Momentos actuantes 
– (7173,25 Kg* 2/3*3,5m) + (6162,21 Kg* 3,5m) + (Ma-a) = 0 
– (7173,25 Kg* 7/3m) + (6162,21 Kg* 3,5m) + (Ma-a) = 0 
– (16737,58 Kg*m) + (21567,74 Kg*m) + (Ma-a) = 0 
– (4830,16 Kg*m) + (Ma-a) = 0 
(Ma-a) = (4830,16 Kg*m)
Se grafica los momentos 
EJERCICIO #5 
Y = Sen(30) * 599 kg = 299,50kg 
X = Cos(30) * 599 kg = 518,7492169 
Equilibrio Estático son 3 condiciones 
Ah = 518,75 Kg
– (299,5 Kg) + (Av) = 0 
Av = 299,5 Kg 
(299,50 Kg * 2,5m) + Ma = 0 
(748,75 Kg*m) + Ma = 0 
- Ma = (748,75 Kg*m) 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + 299,5 Kg = 299,5 Kg 
V (0-2,5) = 299,5 Kg + 0 = 299,5 Kg 
V (2,5) = 299,5 Kg – 299,5 Kg = 0 
V (2,5-5) = 0 + 0 = 0 
CALCULO DE LAS ÁREAS 
A1 = 퐵 ∗ 퐻 = 2,5 ∗ 299,5 kg = 748,45 
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + -748,75 Kg = -748,75 Kg 
M(0-2,5) = -748,75 Kg + 748,75 Kg = 0 
M(2,5 - 5) = 0 + 0 = 0
Se grafica los momentos 
EJERCICIO #6 
Y1 = Sen(45) * 1599 kg = 1130,663743 Kg 
X1 = Cos(45) * 1599 kg = 1130,663743 Kg 
Y2 = Sen(25) * 6599 kg = 2788,857909 Kg 
X2 = Cos(25) * 6599 kg = 5980,725087 Kg 
Y3 = Sen(30) * 799 kg = 399,50 Kg 
X3 = Cos(30) * 799 kg = 691,9542976 Kg 
Equilibrio Estático son 3 condiciones 
–1130,663743 Kg - 5980,725087 Kg - 691,9542976 Kg + Bh = 0 
–7803,343128 Kg + Bh = 0 
Bh = 7803,343128 Kg
– 1130,663743 Kg – 2788,857909 Kg – 399,50 Kg + Av + Bv = 0 
– 4319,021652 Kg + Av + Bv = 0 
Av + Bv = 4319,021652 Kg 
+ (1130,663743 Kg * 0m) – (2788,857909 Kg * 3,2m) – (399,50 Kg * 7,2m) + (Av * 7,20m) = 0 
+ 0 – 8924,345309 Kg*m – 2876,40 Kg*m + (Av * 7,20m) = 0 
– 11800,74531 Kg*m + (Av * 7,20m) = 0 
Av = 11800,74531 Kg*m = 1638,992404 Kg 
7,20m 
Se despeja b 
Av + Bv = 4319,021652 Kg 
Bv = 4319,021652 Kg - 1638,992404 Kg 
Bv = 2680,029248 Kg 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + 1638,992404 - 399,50 Kg = 1239,492404 Kg 
V (0-4) = 1239,492404 Kg + 0 = 1239,492404 Kg 
V (4) = 1239,492404 Kg – 2788,85709 Kg = - 1549,365505 Kg 
V (4- 7,2) = -1549,365505 Kg + 2680,029248 Kg - 1130,663743 Kg = 0 
CALCULO DE LAS ÁREAS 
A1 = 퐵 ∗ 퐻 = 4,0 ∗ 1239,492404 = 4957,969616 
A2 = 퐵 ∗ 퐻 = 3,2 ∗ 1549,365505 = 4957,969616 
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 0 = 0 
M(0- 4) = 0 + 4957,969616 = 4957,969616 
M(4-7,2) = 4957,969616 - 4957,969616 = 0 
Se grafica los momentos
EJERCICIO #7 
Equilibrio Estático son 3 condiciones 
Ah = 0 
– ((2799 Kg/m*3,5m)/2) – ((5599 Kg/m *4m)/2) + Av + Bv = 0 
– (4898,25 Kg) – (11198 Kg) + Av + Bv = 0 
– (16096,25 Kg) + Av + Bv = 0 
Av + Bv = 16096,25 Kg*m
+ (4898,25 Kg * (1/3*3,5m)) + (11198 Kg* ((2/3*4m)+3,5m)) - 7,5m *Bv = 0 
+ (4898,25 Kg * (3,5/3m)) + (11198 Kg* ((8/3m)+3,5m)) - 7,5m *Bv = 0 
+ (4898,25 Kg * 7/6m) + (11198 Kg*37/6m) - 7,5m *Bv = 0 
+ (5714,625 Kg*m) + (69054,33333 Kg*m) - 7,5m *Bv = 0 
+ (74768,95833 Kg*m) - 7,5m *Bv = 0 
Bv = 74768,95833 Kg*m = 9969,194444 Kg 
7,5m 
Se despeja a 
Av + Bv = 16096,25 Kg*m 
Av = 16096,25 Kg*m - 9969,194444 Kg 
Av = 6127,05556 Kg 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + 6127,05556 = 6127,05556 
V (0-3,5) = 6127,05556 – (2799*3,5)/2 = 1228,805556 
V (3,5-7,5) = 1228,805556 – (5599*4)/2 = - 9969,194444 
V (7,5) = - 9969,194444 + 9969,194444 = 0 
CALCULO DE LOS MOMENTOS FLECTORES 
Se Seccionan Tramos Para Conseguir Los Momentos actuantes
– (4898,25 Kg* 2/3*3,5m) + (6127,06 Kg* 3,5m) + (Ma-a) = 0 
– (4898,25 Kg * 7/3m) + (6127,06 Kg* 3,5m) + (Ma-a) = 0 
– (11429,25 Kg*m) + (21444,71 Kg*m) + (Ma-a) = 0 
– (10015,46 Kg*m) + (Ma-a) = 0 
(Ma-a) = 10015,46 Kg*m 
Se grafica los momentos 
EJERCICIO #8 
Equilibrio Estático son 3 condiciones 
Bh = 0
– (2099 Kg*5,6m) – (1099 Kg*3m) + Av + Bv = 0 
– 11754,4 Kg – 3297 Kg + Av + Bv = 0 
– 15051,4 Kg + Av + Bv = 0 
Av + Bv = 15051,4 Kg 
- (11754,4 Kg * (5,6/2 m)) - (3297 Kg * (3/2 m)) + 5,6m *Av = 0 
- (11754,4 Kg * 2,8m) - (3297 Kg * 1,5 m) + 5,6m *Av = 0 
- (32912,32 Kg*m) - (4945,50 Kg*m) + 5,6m *Av = 0 
- (37857,82 Kg*m) + 5,6m *Av = 0 
Av = 37857,82 Kg*m = 6760,325 Kg 
5,6m 
Se despeja b 
Av + Bv = 15051,4 Kg 
Bv = 15051,4 Kg - 6760,325 Kg 
Bv = 8291,075 Kg. 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 + 6760,325 = 6760,325 
V (0-2,6) = 6760,325 – (2099 * 2,6) = 1302,925 
V (2,6- 5,6) = 1302,925 – (2099*3) – (1099*3) = -8291,075 
V (5,6) = -8291,075 + 8291,075 = 0 
CALCULO DE LAS ÁREAS 
Para hallar las distancias de los triángulos que se Forman al cortar el eje X se procede a una 
relación de triangulo 
(3198 Kg/m * 2,6m) (1302,925 Kg) 
2,6m X1 = 0,4074186992m 
(3198 Kg/m * 2,6m) (8291,075 Kg) 
2,6m X2 = 2,59258130 m 
A1 = ((퐻푀 + 퐻푚)/2) ∗ 퐵) = ( 
6760,325+1302,925 
2 
) ∗ 2,6 = 10482,225 
A2 = ((퐻 ∗ 퐵)/2) = ( 
0,4074186992 ∗ 1302,925 
2 
) = 265,4180043 
A3 = ( 
퐻∗퐵 
2 
) = ( 
2,59258130 ∗ 8291,075 
2 
) = 10747,643
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 0 = 0 
M(0-2,6) = 0 + 10482,225 = 10482,225 
M(2,6-3,01) = 10482,225 - 265,4180043 = 10747,643 
M(3,01-5,6) = 10747,643- 10747,643 = 0 
Se grafica los momentos 
EJERCICIO #9 
Equilibrio Estático son 3 condiciones 
Ah = 0 
– (2099 Kg) + Av + Bv = 0 
Av + Bv = 2099 Kg
(47199 Kg*m) + (2099 Kg * 12m) + 12m *Bv = 0 
(72387 Kg*m) + 12m *Bv = 0 
Bv = 72387 Kg*m = 6032,25 Kg 
12m 
Se despeja A 
Av + Bv = 2099 Kg 
Av = 2099 Kg - 6032,25 Kg 
Av = -3933,25 Kg 
El sentido asumido de A lo cambio a negativo 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 - 3933,25 = -3933,25 
V (0-12) = - 3933,25 + 0 = - 3933,25 
V (12) = -3933,25 –2099 +6032,25 = 0 
CALCULO DE LAS ÁREAS 
A1 = (퐵 ∗ 퐻) = (5 ∗ 3933,25) = 19666,26 
A2 = (퐵 ∗ 퐻) = (7 ∗ 3933,25) = 27535,75 
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 0 = 0 
M(0-5) = 0 - 19666,26 = -19666,26 
M(5) = - 19666,26 + 47199 = 27535,75 
M(5-12) = 27535,75 - 27535,75 = 0 
Se grafica los momentos
EJERCICIO # 10 
Equilibrio Estático son 3 condiciones 
Ah = 0 
Av = 0 
- (14099 Kg*m) + Ma = 0 
Ma = 14099 Kg*m 
CÁLCULOS DE LOS MOMENTOS CORTANTES 
Vsig = Vanterior ± Área de la Puntual. 
V (0) = 0 
V (0-5,2) = 0 
V (5,2) = 0
CALCULO DE LOS MOMENTOS FLECTORES 
Msig = Manterior ± Área de la carga 
M(0) = 0 + 14099 = 14099 
M(0-5,2) = 14099 + 0 = 14099 
M(5,2) = 14099 – 14099 = 0 
Se grafica los momentos

More Related Content

What's hot

Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
Caleb Rangel
 
Anschp19
Anschp19Anschp19
Anschp19
FnC Music
 
Shear Force Diagram and its exampls
Shear Force Diagram and its examplsShear Force Diagram and its exampls
Shear Force Diagram and its exampls
Jaydrath Sindhav
 
Mas ejercicios de hidrostatica
Mas ejercicios de hidrostaticaMas ejercicios de hidrostatica
Mas ejercicios de hidrostatica
Yarit Lopez Gutierrez
 
6. diseño de puente compuesto2
6. diseño de puente compuesto26. diseño de puente compuesto2
6. diseño de puente compuesto2
ing_eliali4748
 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2
Bruno Reyes A.
 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]
Charles Jumbo
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamica
jasson silva
 
Structural engineering ii
Structural engineering iiStructural engineering ii
Structural engineering ii
Shekh Muhsen Uddin Ahmed
 
Lenguaje algebraico
Lenguaje algebraicoLenguaje algebraico
Lenguaje algebraico
Tata Diaz
 
Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
Yuri Milachay
 
Mecánica de materiales beer, johnston - 5edicion
Mecánica de materiales   beer, johnston - 5edicionMecánica de materiales   beer, johnston - 5edicion
Mecánica de materiales beer, johnston - 5edicion
Yoshua Portugal Altamirano
 
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moranSolution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
Anarose704977
 
Fuerza cortante y momento flector – problema
Fuerza cortante y momento flector – problemaFuerza cortante y momento flector – problema
Fuerza cortante y momento flector – problema
Elias Josue Huapaya Mendoza
 
SFD & BMD
SFD & BMDSFD & BMD
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
University Malaysia Pahang
 
Practica 3 Armaduras (1).pptx
Practica 3 Armaduras (1).pptxPractica 3 Armaduras (1).pptx
Practica 3 Armaduras (1).pptx
oscarmamani36
 
Ejercicios fluidos
Ejercicios fluidosEjercicios fluidos
Ejercicios fluidos
Braulio Cazares
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
JudithLandrys
 
Momentos de inercia
Momentos de inerciaMomentos de inercia
Momentos de inercia
Ricardo Alberto Robles Remolina
 

What's hot (20)

Hibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionarioHibbeler engineering mechanics_dynamics_12th_solucionario
Hibbeler engineering mechanics_dynamics_12th_solucionario
 
Anschp19
Anschp19Anschp19
Anschp19
 
Shear Force Diagram and its exampls
Shear Force Diagram and its examplsShear Force Diagram and its exampls
Shear Force Diagram and its exampls
 
Mas ejercicios de hidrostatica
Mas ejercicios de hidrostaticaMas ejercicios de hidrostatica
Mas ejercicios de hidrostatica
 
6. diseño de puente compuesto2
6. diseño de puente compuesto26. diseño de puente compuesto2
6. diseño de puente compuesto2
 
Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2Ejerciciosresueltosdinamicadefluidos2
Ejerciciosresueltosdinamicadefluidos2
 
01 01 chapgere[1]
01 01 chapgere[1]01 01 chapgere[1]
01 01 chapgere[1]
 
capitulo 16 de dinamica
capitulo 16 de dinamicacapitulo 16 de dinamica
capitulo 16 de dinamica
 
Structural engineering ii
Structural engineering iiStructural engineering ii
Structural engineering ii
 
Lenguaje algebraico
Lenguaje algebraicoLenguaje algebraico
Lenguaje algebraico
 
Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
 
Mecánica de materiales beer, johnston - 5edicion
Mecánica de materiales   beer, johnston - 5edicionMecánica de materiales   beer, johnston - 5edicion
Mecánica de materiales beer, johnston - 5edicion
 
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moranSolution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
Solution manual-fundamentals-of-engineering-thermodynamics-8th-edition-by-moran
 
Fuerza cortante y momento flector – problema
Fuerza cortante y momento flector – problemaFuerza cortante y momento flector – problema
Fuerza cortante y momento flector – problema
 
SFD & BMD
SFD & BMDSFD & BMD
SFD & BMD
 
Chapter 07 in som
Chapter 07 in som Chapter 07 in som
Chapter 07 in som
 
Practica 3 Armaduras (1).pptx
Practica 3 Armaduras (1).pptxPractica 3 Armaduras (1).pptx
Practica 3 Armaduras (1).pptx
 
Ejercicios fluidos
Ejercicios fluidosEjercicios fluidos
Ejercicios fluidos
 
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
Mathematics for the Trades A Guided Approach Canadian 2nd Edition Carman Test...
 
Momentos de inercia
Momentos de inerciaMomentos de inercia
Momentos de inercia
 

Similar to Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de corte y momento flector)

Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
Diego Rodriguez
 
Muro voladizo gian
Muro voladizo gianMuro voladizo gian
Muro voladizo gian
rodrigo caritas morales
 
Metrado de una_vivienda
Metrado de una_viviendaMetrado de una_vivienda
Metrado de una_vivienda
ErikaFerro2
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
Mira Pemayun
 
Diseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDiseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigas
David Chavez Huerto
 
Calculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentranCalculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentran
CNEL
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligerada
Antonio Zr
 
Calculation template
Calculation templateCalculation template
Calculation template
Yekian Ian
 
Concreto armado
Concreto armadoConcreto armado
Concreto armado
Leonidas Gil Arroyo
 
MOVIMIENTO_alonso_acosta.pdf
MOVIMIENTO_alonso_acosta.pdfMOVIMIENTO_alonso_acosta.pdf
MOVIMIENTO_alonso_acosta.pdf
Widmar Aguilar Gonzalez
 
Baja - Batang Aksial Lentur
Baja - Batang Aksial Lentur Baja - Batang Aksial Lentur
Baja - Batang Aksial Lentur
Yasmin Rosyad
 
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdfMOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
Widmar Aguilar Gonzalez
 
Building structures final
Building structures finalBuilding structures final
Building structures final
Jamie Lee
 
Momentum Pres
Momentum PresMomentum Pres
Momentum Pres
kitcoffeen
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Report
douglasloon
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow report
ChengWei Chia
 
ESAUnit2.ppt
ESAUnit2.pptESAUnit2.ppt
ESAUnit2.ppt
UC Berkeley Extension
 
Laporan prancangan struktur
Laporan prancangan strukturLaporan prancangan struktur
Laporan prancangan struktur
Komang Satriawan
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
Malika khalil
 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
Hamza Waheed
 

Similar to Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de corte y momento flector) (20)

Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
 
Muro voladizo gian
Muro voladizo gianMuro voladizo gian
Muro voladizo gian
 
Metrado de una_vivienda
Metrado de una_viviendaMetrado de una_vivienda
Metrado de una_vivienda
 
MERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANGMERENCANAKAN BALOK BETON PRATEGANG
MERENCANAKAN BALOK BETON PRATEGANG
 
Diseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigasDiseño y calculo de un puente de placa y vigas
Diseño y calculo de un puente de placa y vigas
 
Calculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentranCalculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentran
 
Calculo de losa aligerada
Calculo de losa aligeradaCalculo de losa aligerada
Calculo de losa aligerada
 
Calculation template
Calculation templateCalculation template
Calculation template
 
Concreto armado
Concreto armadoConcreto armado
Concreto armado
 
MOVIMIENTO_alonso_acosta.pdf
MOVIMIENTO_alonso_acosta.pdfMOVIMIENTO_alonso_acosta.pdf
MOVIMIENTO_alonso_acosta.pdf
 
Baja - Batang Aksial Lentur
Baja - Batang Aksial Lentur Baja - Batang Aksial Lentur
Baja - Batang Aksial Lentur
 
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdfMOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
MOVIMIENTO_COMPUESTO_CIRCULAR+MAIZTEGUI_SABATO.pdf
 
Building structures final
Building structures finalBuilding structures final
Building structures final
 
Momentum Pres
Momentum PresMomentum Pres
Momentum Pres
 
Structural Analysis of a Bungalow Report
Structural Analysis of a Bungalow ReportStructural Analysis of a Bungalow Report
Structural Analysis of a Bungalow Report
 
Structural analysis of a bungalow report
Structural analysis of a bungalow reportStructural analysis of a bungalow report
Structural analysis of a bungalow report
 
ESAUnit2.ppt
ESAUnit2.pptESAUnit2.ppt
ESAUnit2.ppt
 
Laporan prancangan struktur
Laporan prancangan strukturLaporan prancangan struktur
Laporan prancangan struktur
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
 

Recently uploaded

International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
gerogepatton
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
sachin chaurasia
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
abbyasa1014
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
IJECEIAES
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
kandramariana6
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
SUTEJAS
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
co23btech11018
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
KrishnaveniKrishnara1
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
Aditya Rajan Patra
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
zubairahmad848137
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
MIGUELANGEL966976
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
HODECEDSIET
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
bijceesjournal
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
Victor Morales
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
Las Vegas Warehouse
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
insn4465
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
IJNSA Journal
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
mamunhossenbd75
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
nooriasukmaningtyas
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Sinan KOZAK
 

Recently uploaded (20)

International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...International Conference on NLP, Artificial Intelligence, Machine Learning an...
International Conference on NLP, Artificial Intelligence, Machine Learning an...
 
The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.The Python for beginners. This is an advance computer language.
The Python for beginners. This is an advance computer language.
 
Engineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdfEngineering Drawings Lecture Detail Drawings 2014.pdf
Engineering Drawings Lecture Detail Drawings 2014.pdf
 
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
Electric vehicle and photovoltaic advanced roles in enhancing the financial p...
 
132/33KV substation case study Presentation
132/33KV substation case study Presentation132/33KV substation case study Presentation
132/33KV substation case study Presentation
 
Understanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine LearningUnderstanding Inductive Bias in Machine Learning
Understanding Inductive Bias in Machine Learning
 
Computational Engineering IITH Presentation
Computational Engineering IITH PresentationComputational Engineering IITH Presentation
Computational Engineering IITH Presentation
 
22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt22CYT12-Unit-V-E Waste and its Management.ppt
22CYT12-Unit-V-E Waste and its Management.ppt
 
Recycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part IIRecycled Concrete Aggregate in Construction Part II
Recycled Concrete Aggregate in Construction Part II
 
Casting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdfCasting-Defect-inSlab continuous casting.pdf
Casting-Defect-inSlab continuous casting.pdf
 
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdfBPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
BPV-GUI-01-Guide-for-ASME-Review-Teams-(General)-10-10-2023.pdf
 
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEMTIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
TIME DIVISION MULTIPLEXING TECHNIQUE FOR COMMUNICATION SYSTEM
 
Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...Comparative analysis between traditional aquaponics and reconstructed aquapon...
Comparative analysis between traditional aquaponics and reconstructed aquapon...
 
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressionsKuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
KuberTENes Birthday Bash Guadalajara - K8sGPT first impressions
 
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have oneISPM 15 Heat Treated Wood Stamps and why your shipping must have one
ISPM 15 Heat Treated Wood Stamps and why your shipping must have one
 
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
哪里办理(csu毕业证书)查尔斯特大学毕业证硕士学历原版一模一样
 
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMSA SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
A SYSTEMATIC RISK ASSESSMENT APPROACH FOR SECURING THE SMART IRRIGATION SYSTEMS
 
Heat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation pptHeat Resistant Concrete Presentation ppt
Heat Resistant Concrete Presentation ppt
 
A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...A review on techniques and modelling methodologies used for checking electrom...
A review on techniques and modelling methodologies used for checking electrom...
 
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
Optimizing Gradle Builds - Gradle DPE Tour Berlin 2024
 

Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de corte y momento flector)

  • 1. -SEÑALAR Y CALCULAR LAS REACCIONES PRODUCIDAS EN C/U DE LOS APOYOS. -CALCULAR LOS DIAGRAMAS DE CORTE Y MOMENTO. EJERCICIO #1 Equilibrio Estático son 3 condiciones Ah = 0 – (1599 Kg/m * 2 m) – (1299 Kg/m * 3 m) – (1099Kg/m * 2,5 m) + (Av) + (Bv) = 0 – 3198 Kg – 3897 Kg – 2747,5 Kg + Av + Bv = 0 – 9842,5 Kg + Av + Bv = 0 Av + Bv = 9842,5 Kg (3198 Kg * 1m) + (3897 Kg * 4,5m) + (2747,5 Kg * 8,25 m) – (Bv * 9,5m) = 0 3198 Kg*m + 17536,5 Kg*m + 22666,875 Kg*m – 9,5mBv = 0 43401,375 Kg*m – 9,5mBv = 0 – 9,5mBv = – 43401,375 Kg*m Bv = – 43401,375 Kg*m = 347211 kg = 4568,57 – 9,5m 76 (De la formula) Av + Bv = 9842,5 Kg Se Despeja Av Av = 9842,5 Kg – Bv Av = 9842,5 Kg – 347211 kg = 400819 kg = 5273,93 76 76 Av = 400819 kg = 5273,93 76
  • 2. CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + (400819/76 kg) = (400819/76 Kg) = 5273,93 Kg V (0-2) = (400819/76 Kg) – (1599 Kg/m * 2m) = (157771/76 Kg) = 2075,93 Kg V (2-3) = (157771/76 Kg) + 0 = (157771/76 Kg) = 2075,93 Kg V (3-6) = (157771/76 Kg) – (1299 Kg/m * 3m) = - (138401/76 Kg) = - 1821,07 Kg V (6-7) = - (138401/76 Kg) + 0 = - (138401/76 Kg) = - 1821,07 Kg V (7-9,5) = - (138401/76 Kg) – (1099 Kg/m * 2,5m) = (347211/76 Kg) = - 4568,57 Kg V (9,5) = - (138401/76 Kg) + (138401/76 Kg) = 0 Se Grafican y se calculan las áreas = CALCULO DE LAS ÁREAS Para hallar las distancias de los triángulos que se Forman al cortar el eje X se procede a una relación de triangulo (1299 Kg/m * 3m) (157771 / 76 Kg) 3m X1 = 1,598101779 m (1299 Kg/m * 3m) (138401 / 76)) 3m X2 = 1,401898221 m A1 = 퐻푀+ 퐻푚 2 ∗ 퐵 = 400819 76 157771 + 76 2 ∗ 2 = (279295 / 38) = 7349,87 A2 = 퐵 ∗ 퐻 = 1 ∗ 157771 76 = (157771 / 76) = 2075,93 A3 = 퐻∗퐵 2 = 1,598101779 ∗ (157771 / 76) 2 = 1658,777077 A4 = 퐻∗퐵 2 = 138401 1,401898221 ∗ 76 2 = 1276,474446 A5 = 퐵 ∗ 퐻 = 1 ∗ 138401 / 76 = (138401 / 76) = 1821,07 A6 = 퐻푀+ 퐻푚 2 ∗ 퐵 = ( 347211 76 ) + ( 138401 76 ) 2 ∗ 2,5 = (607015 / 76) = 7987,04
  • 3. CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 0 = 0 M(0-2) = 0 + (279295 / 38) = (279295 / 38) = 7349,87 M(2-3) = (279295 / 38) + (157771 / 76) = (716361 / 76) = 9425,80 M(3-4,59) = (716361 / 76) + 1658,777077 = 11084,57971 M(4,59-6) = 11084,57971 − 1276,474446 = 9808,105263 (76) 607015 M(6-7) = 9808,105263 − 138401/= 76 = 7987,04 607015 M(7-9,5) = ( 76 607015 ) – ( 76 ) = 0 Se grafica los momentos
  • 4. EJERCICIO #2 Equilibrio Estático son 3 condiciones Ah = 0 – (799 Kg) – (699 Kg) – (599 Kg) + (Av) + (Bv) = 0 – (2087 Kg) + Av + Bv = 0 Av + Bv = 2097 Kg (699 Kg * 4m) + (599 Kg * 9m) – (Bv * 9m) = 0
  • 5. 2796 Kg*m + 5391 Kg*m – 9mBv = 0 8187 Kg*m – 9mBv = 0 – 9mBv = – 8187 Kg*m Bv = – 8187 Kg*m = 2729 kg = 909,67 – 9m 3 (De la formula) Av + Bv = 2097 Kg Se Despeja Av Av = 2097 Kg – Bv Av = 2097 Kg – 2729 kg = 3562 kg = 1187,33 3 3 CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = (3562 / 3 Kg) - (799 Kg) = (1165 / 3 Kg) = 388,33 Kg V (0-4) = (1165 / 3 Kg) + 0 = (1165 / 3 Kg) = 388,33 Kg V (4) = (1165 / 3 Kg) – 699 Kg = - (932 / 3 Kg) = -310,67 Kg V (4-9) = - (932 / 3 Kg) + 0 = - (932 / 3 Kg) = -310,67 Kg V (9) = - (932 / 3 Kg) – 599 Kg + (2729/3 Kg ) = 0 CALCULO DE LAS ÁREAS A1 = 퐵 ∗ 퐻 = 4 ∗ (1165 / 3 ) = (4660 / 3) = 1553,33 A2 = 퐵 ∗ 퐻 = 5 ∗ (932 / 3 ) = (4660 / 3) = 1553,33 CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 0 = 0 M(0-4) = 0 + (4660 / 3) = (4660 / 3) = 1553,33 M(2-3) = (4660 / 3) - (4660 / 3) = 0 Se grafica los momentos
  • 6. EJERCICIO #3 Las fuerzas y los momentos vendrán dados por el peso propio de la viga (Wv) Equilibrio Estático son 3 condiciones Ah = 0 Av + Wv = 0 Av = Wv Ma = - (Wv*2m)
  • 7. EJERCICIO #4 Equilibrio Estático son 3 condiciones Bh = 0 – ((4099 Kg/m * 3,5 m)/2) – (599 Kg)+ (Av) + (Bv) = 0 – 7173,25 Kg – 599 Kg + Av + Bv = 0 – 7772,25 Kg + Av + Bv = 0 Av + Bv = 7772,25 Kg – (599 Kg*3m) – (((4099 Kg/m * 3,5m)/2) * ((2/3*3,5) + 3)m) + (Av * 6,5m) = 0 – (1797 Kg*m) – ((7173,25 Kg) * (7/3 + 3)m) + (Av * 6,5m) = 0 – (1797 Kg*m) – ((7173,25 Kg) * (16/3 m)) + (Av * 6,5m) = 0 – (1797 Kg*m) – (114772/3 Kg*m) + (Av * 6,5m) = 0 – (120163/3 Kg*m) + (Av * 6,5m) = 0 (Av * 6,5m) = 120163/3 Kg*m Av = 120163/3 Kg*m = 240326 kg = 6162,21 kg 6,5m 39 (De la formula) Av + Bv = 7772,25 Kg Se Despeja Bv Bv = 7772,25 Kg – Av Bv = 6574,25 Kg – 240326 kg = 251167 kg = 1610,05 39 156
  • 8. CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + (240326/39 Kg) = (240326/39 Kg) = 6162,21 Kg V (0-3,5) = (240326/39 Kg) - ((4099 Kg/m * 3,5m)/2) = - (157723/156 Kg) = -1011,04 Kg V (3,5) = - (157723/156 Kg) – 599 Kg = - (251167 / 156 Kg) = -1610,04 Kg V (3,5-6,5) = - (251167 / 156 Kg) + 0 = - (251167 / 156 Kg) = -1610,04 Kg V (9) = - (251167 / 156 Kg) + (251167 / 156 Kg) = 0 CALCULO DE LOS MOMENTOS FLECTORES Se Seccionan Tramos Para Conseguir Los Momentos actuantes – (7173,25 Kg* 2/3*3,5m) + (6162,21 Kg* 3,5m) + (Ma-a) = 0 – (7173,25 Kg* 7/3m) + (6162,21 Kg* 3,5m) + (Ma-a) = 0 – (16737,58 Kg*m) + (21567,74 Kg*m) + (Ma-a) = 0 – (4830,16 Kg*m) + (Ma-a) = 0 (Ma-a) = (4830,16 Kg*m)
  • 9. Se grafica los momentos EJERCICIO #5 Y = Sen(30) * 599 kg = 299,50kg X = Cos(30) * 599 kg = 518,7492169 Equilibrio Estático son 3 condiciones Ah = 518,75 Kg
  • 10. – (299,5 Kg) + (Av) = 0 Av = 299,5 Kg (299,50 Kg * 2,5m) + Ma = 0 (748,75 Kg*m) + Ma = 0 - Ma = (748,75 Kg*m) CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + 299,5 Kg = 299,5 Kg V (0-2,5) = 299,5 Kg + 0 = 299,5 Kg V (2,5) = 299,5 Kg – 299,5 Kg = 0 V (2,5-5) = 0 + 0 = 0 CALCULO DE LAS ÁREAS A1 = 퐵 ∗ 퐻 = 2,5 ∗ 299,5 kg = 748,45 CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + -748,75 Kg = -748,75 Kg M(0-2,5) = -748,75 Kg + 748,75 Kg = 0 M(2,5 - 5) = 0 + 0 = 0
  • 11. Se grafica los momentos EJERCICIO #6 Y1 = Sen(45) * 1599 kg = 1130,663743 Kg X1 = Cos(45) * 1599 kg = 1130,663743 Kg Y2 = Sen(25) * 6599 kg = 2788,857909 Kg X2 = Cos(25) * 6599 kg = 5980,725087 Kg Y3 = Sen(30) * 799 kg = 399,50 Kg X3 = Cos(30) * 799 kg = 691,9542976 Kg Equilibrio Estático son 3 condiciones –1130,663743 Kg - 5980,725087 Kg - 691,9542976 Kg + Bh = 0 –7803,343128 Kg + Bh = 0 Bh = 7803,343128 Kg
  • 12. – 1130,663743 Kg – 2788,857909 Kg – 399,50 Kg + Av + Bv = 0 – 4319,021652 Kg + Av + Bv = 0 Av + Bv = 4319,021652 Kg + (1130,663743 Kg * 0m) – (2788,857909 Kg * 3,2m) – (399,50 Kg * 7,2m) + (Av * 7,20m) = 0 + 0 – 8924,345309 Kg*m – 2876,40 Kg*m + (Av * 7,20m) = 0 – 11800,74531 Kg*m + (Av * 7,20m) = 0 Av = 11800,74531 Kg*m = 1638,992404 Kg 7,20m Se despeja b Av + Bv = 4319,021652 Kg Bv = 4319,021652 Kg - 1638,992404 Kg Bv = 2680,029248 Kg CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + 1638,992404 - 399,50 Kg = 1239,492404 Kg V (0-4) = 1239,492404 Kg + 0 = 1239,492404 Kg V (4) = 1239,492404 Kg – 2788,85709 Kg = - 1549,365505 Kg V (4- 7,2) = -1549,365505 Kg + 2680,029248 Kg - 1130,663743 Kg = 0 CALCULO DE LAS ÁREAS A1 = 퐵 ∗ 퐻 = 4,0 ∗ 1239,492404 = 4957,969616 A2 = 퐵 ∗ 퐻 = 3,2 ∗ 1549,365505 = 4957,969616 CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 0 = 0 M(0- 4) = 0 + 4957,969616 = 4957,969616 M(4-7,2) = 4957,969616 - 4957,969616 = 0 Se grafica los momentos
  • 13. EJERCICIO #7 Equilibrio Estático son 3 condiciones Ah = 0 – ((2799 Kg/m*3,5m)/2) – ((5599 Kg/m *4m)/2) + Av + Bv = 0 – (4898,25 Kg) – (11198 Kg) + Av + Bv = 0 – (16096,25 Kg) + Av + Bv = 0 Av + Bv = 16096,25 Kg*m
  • 14. + (4898,25 Kg * (1/3*3,5m)) + (11198 Kg* ((2/3*4m)+3,5m)) - 7,5m *Bv = 0 + (4898,25 Kg * (3,5/3m)) + (11198 Kg* ((8/3m)+3,5m)) - 7,5m *Bv = 0 + (4898,25 Kg * 7/6m) + (11198 Kg*37/6m) - 7,5m *Bv = 0 + (5714,625 Kg*m) + (69054,33333 Kg*m) - 7,5m *Bv = 0 + (74768,95833 Kg*m) - 7,5m *Bv = 0 Bv = 74768,95833 Kg*m = 9969,194444 Kg 7,5m Se despeja a Av + Bv = 16096,25 Kg*m Av = 16096,25 Kg*m - 9969,194444 Kg Av = 6127,05556 Kg CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + 6127,05556 = 6127,05556 V (0-3,5) = 6127,05556 – (2799*3,5)/2 = 1228,805556 V (3,5-7,5) = 1228,805556 – (5599*4)/2 = - 9969,194444 V (7,5) = - 9969,194444 + 9969,194444 = 0 CALCULO DE LOS MOMENTOS FLECTORES Se Seccionan Tramos Para Conseguir Los Momentos actuantes
  • 15. – (4898,25 Kg* 2/3*3,5m) + (6127,06 Kg* 3,5m) + (Ma-a) = 0 – (4898,25 Kg * 7/3m) + (6127,06 Kg* 3,5m) + (Ma-a) = 0 – (11429,25 Kg*m) + (21444,71 Kg*m) + (Ma-a) = 0 – (10015,46 Kg*m) + (Ma-a) = 0 (Ma-a) = 10015,46 Kg*m Se grafica los momentos EJERCICIO #8 Equilibrio Estático son 3 condiciones Bh = 0
  • 16. – (2099 Kg*5,6m) – (1099 Kg*3m) + Av + Bv = 0 – 11754,4 Kg – 3297 Kg + Av + Bv = 0 – 15051,4 Kg + Av + Bv = 0 Av + Bv = 15051,4 Kg - (11754,4 Kg * (5,6/2 m)) - (3297 Kg * (3/2 m)) + 5,6m *Av = 0 - (11754,4 Kg * 2,8m) - (3297 Kg * 1,5 m) + 5,6m *Av = 0 - (32912,32 Kg*m) - (4945,50 Kg*m) + 5,6m *Av = 0 - (37857,82 Kg*m) + 5,6m *Av = 0 Av = 37857,82 Kg*m = 6760,325 Kg 5,6m Se despeja b Av + Bv = 15051,4 Kg Bv = 15051,4 Kg - 6760,325 Kg Bv = 8291,075 Kg. CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 + 6760,325 = 6760,325 V (0-2,6) = 6760,325 – (2099 * 2,6) = 1302,925 V (2,6- 5,6) = 1302,925 – (2099*3) – (1099*3) = -8291,075 V (5,6) = -8291,075 + 8291,075 = 0 CALCULO DE LAS ÁREAS Para hallar las distancias de los triángulos que se Forman al cortar el eje X se procede a una relación de triangulo (3198 Kg/m * 2,6m) (1302,925 Kg) 2,6m X1 = 0,4074186992m (3198 Kg/m * 2,6m) (8291,075 Kg) 2,6m X2 = 2,59258130 m A1 = ((퐻푀 + 퐻푚)/2) ∗ 퐵) = ( 6760,325+1302,925 2 ) ∗ 2,6 = 10482,225 A2 = ((퐻 ∗ 퐵)/2) = ( 0,4074186992 ∗ 1302,925 2 ) = 265,4180043 A3 = ( 퐻∗퐵 2 ) = ( 2,59258130 ∗ 8291,075 2 ) = 10747,643
  • 17. CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 0 = 0 M(0-2,6) = 0 + 10482,225 = 10482,225 M(2,6-3,01) = 10482,225 - 265,4180043 = 10747,643 M(3,01-5,6) = 10747,643- 10747,643 = 0 Se grafica los momentos EJERCICIO #9 Equilibrio Estático son 3 condiciones Ah = 0 – (2099 Kg) + Av + Bv = 0 Av + Bv = 2099 Kg
  • 18. (47199 Kg*m) + (2099 Kg * 12m) + 12m *Bv = 0 (72387 Kg*m) + 12m *Bv = 0 Bv = 72387 Kg*m = 6032,25 Kg 12m Se despeja A Av + Bv = 2099 Kg Av = 2099 Kg - 6032,25 Kg Av = -3933,25 Kg El sentido asumido de A lo cambio a negativo CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 - 3933,25 = -3933,25 V (0-12) = - 3933,25 + 0 = - 3933,25 V (12) = -3933,25 –2099 +6032,25 = 0 CALCULO DE LAS ÁREAS A1 = (퐵 ∗ 퐻) = (5 ∗ 3933,25) = 19666,26 A2 = (퐵 ∗ 퐻) = (7 ∗ 3933,25) = 27535,75 CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 0 = 0 M(0-5) = 0 - 19666,26 = -19666,26 M(5) = - 19666,26 + 47199 = 27535,75 M(5-12) = 27535,75 - 27535,75 = 0 Se grafica los momentos
  • 19. EJERCICIO # 10 Equilibrio Estático son 3 condiciones Ah = 0 Av = 0 - (14099 Kg*m) + Ma = 0 Ma = 14099 Kg*m CÁLCULOS DE LOS MOMENTOS CORTANTES Vsig = Vanterior ± Área de la Puntual. V (0) = 0 V (0-5,2) = 0 V (5,2) = 0
  • 20. CALCULO DE LOS MOMENTOS FLECTORES Msig = Manterior ± Área de la carga M(0) = 0 + 14099 = 14099 M(0-5,2) = 14099 + 0 = 14099 M(5,2) = 14099 – 14099 = 0 Se grafica los momentos