SlideShare a Scribd company logo
GROUND EXCITED SYSTEMS Prof. A. Meher Prasad Department of Civil Engineering Indian Institute of Technology Madras email: prasadam@iitm.ac.in
Dynamic Equations of Motion Force excited system Ground excited system where   is the relative displacement of the  structure w.r.t  ground. Non-moving reference Ground Acceleration vector where, are the ground accelerations in x,y,z  directions respectively. are null vectors except that those elements are equal to 1, which corresponds to x,y,z translational DOF.
Let  System equations reduce to following uncoupled equations where  participation factors, Note: a j  = b j  = 0 since initial conditions are zero  i.e Modal Superposition applied to GES
Solution  to uncoupled equation of motion can be expressed as,  In general , for design the response quantities of interest are: R = maximum values of (u , f s ,  Δ, V, M) Equivalent lateral loads Storey shears Storey Moments Storey drifts Relative displacements
[object Object],[object Object],max deformation of spring Modal Frequency Response Analysis Damping m k
Ground Excited MDOF System =  relative displacement of the  structure w r t ground  = Ground acceleration vector : where, are ground accelerations in x, y & z directions respectively Reference base x y z
1)  SRSS 2)  CQC 3)  Double Sum 4)  Grouping Serious errors for closely spaced frequencies and for 3-D structures ,which include torsional contribution. SRSS   : Square Root of Sum of Squares .It gives most probable maximum response. Modal combination rules ** Since the maximum response in each mode would not necessarily occur at the same instant of time, over conservative to add separate modal maximum responses.
CQC : Complete Quadratic Combination Rule (Wilson, Der Kiureghion & Baya 1981). It is based on random vibration theory. Note: All cross modal terms included very good agreement with full modal superposition extra computation minimal.
[object Object],[object Object],Finite Element Method In Structural Dynamics ,[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Time Domain Methods
[object Object],[object Object],[object Object],[object Object],[object Object],Desirable attributes:
[object Object],[object Object],[object Object],[object Object],Time Domain Methods
[object Object],Frequency Domain Methods ,[object Object],[object Object],[object Object],Direct Frequency Response Analysis
Multiple support Excitation Super structure free Dof Support Dof
Decompose {u f } into pseudo static and dynamic parts {u f }= {u s } + {u d }  Considering only static response ( i.e. stiffness matrix alone) Influence matrix Describes influence of support displacement on structural displacement j th  column of [ i ]=structural displacements due to unit support displacement u rl  only ( l  th  base displacement)
(By definition ) and i.e.
If assume light damping Uncoupled equations of motion are,
A big mass (much bigger than the total mass of the structure ( ~10 6  total mass ) is added to each degree of freedom at moving bases. As more big masses are applied, more low frequency modes have to be extracted.
The desired base motion is obtained by applying a point force to each degree of freedom at moving bases by Where  M big =big mass and  is the applied acceleration prescribed for degree of freedom N associated with moving supports The combined equation of motion is  with Where  is the diagonal matrix containing the big masses for moving base ‘i’ and  is the base motion applied to this base
The mass matrix [M] now contains the mass of the structure as well as the big masses associated with the secondary base. The modal equations with
1.000 1.000 6.7662 52.2836 0.0 4.7876 5.2909 10 8 0.9999 1.000 6.7661 52.2836 0.0 4.7876 5.2909 10 6 0.9995 1.0003 6.7641 52.2823 10 -10 4.7871 5.2910 10 4 0.9524 1.0335 6.5531 52.0552 10 -9 4.8011 5.3025 10 2 Response peaks (m/s 2 ) X 1  max  X 2  max  X 3  max  X 4  max Natural frequency Ratio of large mass to structure

More Related Content

What's hot

Response spectra
Response spectraResponse spectra
Response spectra321nilesh
 
Modelling and Simulations Minor Project
Modelling and Simulations Minor ProjectModelling and Simulations Minor Project
Modelling and Simulations Minor ProjectMinjie Lu
 
Seismic Analysis of Structures - II
Seismic Analysis of Structures - IISeismic Analysis of Structures - II
Seismic Analysis of Structures - IItushardatta
 
Basic concepts on structural dynamics
Basic concepts on structural dynamicsBasic concepts on structural dynamics
Basic concepts on structural dynamicsPrasad Raju
 
Structural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringStructural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringBharat Khadka
 
Dynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsDynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsUniversity of Glasgow
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Methodaapx
 
[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusionHancheol Choi
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - IIItushardatta
 
205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek tiAri Indrajaya
 
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...IJRES Journal
 

What's hot (19)

Response spectra
Response spectraResponse spectra
Response spectra
 
Modelling and Simulations Minor Project
Modelling and Simulations Minor ProjectModelling and Simulations Minor Project
Modelling and Simulations Minor Project
 
Seismic Analysis of Structures - II
Seismic Analysis of Structures - IISeismic Analysis of Structures - II
Seismic Analysis of Structures - II
 
Multi degree of freedom systems
Multi degree of freedom systemsMulti degree of freedom systems
Multi degree of freedom systems
 
Basic concepts on structural dynamics
Basic concepts on structural dynamicsBasic concepts on structural dynamics
Basic concepts on structural dynamics
 
Structural dynamics and earthquake engineering
Structural dynamics and earthquake engineeringStructural dynamics and earthquake engineering
Structural dynamics and earthquake engineering
 
Dynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsDynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systems
 
PART I.2 - Physical Mathematics
PART I.2 - Physical MathematicsPART I.2 - Physical Mathematics
PART I.2 - Physical Mathematics
 
Lecture7 (37)
Lecture7 (37)Lecture7 (37)
Lecture7 (37)
 
Lecture 5 (46)
Lecture 5 (46)Lecture 5 (46)
Lecture 5 (46)
 
PART I.3 - Physical Mathematics
PART I.3 - Physical MathematicsPART I.3 - Physical Mathematics
PART I.3 - Physical Mathematics
 
Castigliano’s Method
Castigliano’s MethodCastigliano’s Method
Castigliano’s Method
 
Module 8
Module 8 Module 8
Module 8
 
[Review] contact model fusion
[Review] contact model fusion[Review] contact model fusion
[Review] contact model fusion
 
Seismic Analysis of Structures - III
Seismic Analysis of Structures - IIISeismic Analysis of Structures - III
Seismic Analysis of Structures - III
 
Lecture 2(57)
Lecture 2(57)Lecture 2(57)
Lecture 2(57)
 
PART I.4 - Physical Mathematics
PART I.4 - Physical MathematicsPART I.4 - Physical Mathematics
PART I.4 - Physical Mathematics
 
205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti205 wikarta-kuliah i mektek ti
205 wikarta-kuliah i mektek ti
 
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
A High Order Continuation Based On Time Power Series Expansion And Time Ratio...
 

Similar to Ground Excited Systems

Structural Dynamics
Structural DynamicsStructural Dynamics
Structural DynamicsAbdul Majid
 
Dynamic Response Of A Vibrating Structure To Sinusoidal Excitation
Dynamic Response Of A Vibrating Structure To Sinusoidal ExcitationDynamic Response Of A Vibrating Structure To Sinusoidal Excitation
Dynamic Response Of A Vibrating Structure To Sinusoidal Excitationtapoore
 
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdfDOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdfahmedelsharkawy98
 
Straus r7-Software Dynamics Analysis
Straus r7-Software Dynamics AnalysisStraus r7-Software Dynamics Analysis
Straus r7-Software Dynamics Analysisgulilero
 
4 forced vibration of damped
4 forced vibration of damped4 forced vibration of damped
4 forced vibration of dampedJayesh Chopade
 
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical SystemsLecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical SystemsNaushad Ahamed
 
Suppressing undesired vibration of 3 r robot arms using impact dampers
Suppressing undesired vibration of 3 r robot arms using impact dampersSuppressing undesired vibration of 3 r robot arms using impact dampers
Suppressing undesired vibration of 3 r robot arms using impact dampersijmech
 
somnath roy roll 26301320047.pdf
somnath roy roll 26301320047.pdfsomnath roy roll 26301320047.pdf
somnath roy roll 26301320047.pdfSanuBiswas9102
 
Ravi jabi harsh
Ravi jabi harshRavi jabi harsh
Ravi jabi harshjabi khan
 
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...IOSR Journals
 
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.ppt
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.pptDesignGyan2324148026Response-Spectrum-Method-Of-Analysis.ppt
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.pptAryyakaSarkar
 
Modelling of flexible link manipulator dynamics using rigid link theory with
Modelling of flexible link manipulator dynamics using rigid link theory withModelling of flexible link manipulator dynamics using rigid link theory with
Modelling of flexible link manipulator dynamics using rigid link theory withIAEME Publication
 
Identification of coulomb, viscous and particle damping parameters from the r...
Identification of coulomb, viscous and particle damping parameters from the r...Identification of coulomb, viscous and particle damping parameters from the r...
Identification of coulomb, viscous and particle damping parameters from the r...ijiert bestjournal
 
Chapter 2 lecture 1 mechanical vibration
Chapter 2  lecture 1 mechanical vibrationChapter 2  lecture 1 mechanical vibration
Chapter 2 lecture 1 mechanical vibrationBahr Alyafei
 

Similar to Ground Excited Systems (20)

Structural Dynamics
Structural DynamicsStructural Dynamics
Structural Dynamics
 
Dynamic Response Of A Vibrating Structure To Sinusoidal Excitation
Dynamic Response Of A Vibrating Structure To Sinusoidal ExcitationDynamic Response Of A Vibrating Structure To Sinusoidal Excitation
Dynamic Response Of A Vibrating Structure To Sinusoidal Excitation
 
Mode shap
Mode shapMode shap
Mode shap
 
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdfDOMV No 4  PHYSICAL DYNAMIC MODEL TYPES (1).pdf
DOMV No 4 PHYSICAL DYNAMIC MODEL TYPES (1).pdf
 
Straus r7-Software Dynamics Analysis
Straus r7-Software Dynamics AnalysisStraus r7-Software Dynamics Analysis
Straus r7-Software Dynamics Analysis
 
Linear non linear
Linear non linearLinear non linear
Linear non linear
 
4 forced vibration of damped
4 forced vibration of damped4 forced vibration of damped
4 forced vibration of damped
 
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical SystemsLecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
Lecture1 NPTEL for Basics of Vibrations for Simple Mechanical Systems
 
Suppressing undesired vibration of 3 r robot arms using impact dampers
Suppressing undesired vibration of 3 r robot arms using impact dampersSuppressing undesired vibration of 3 r robot arms using impact dampers
Suppressing undesired vibration of 3 r robot arms using impact dampers
 
somnath roy roll 26301320047.pdf
somnath roy roll 26301320047.pdfsomnath roy roll 26301320047.pdf
somnath roy roll 26301320047.pdf
 
Ravi jabi harsh
Ravi jabi harshRavi jabi harsh
Ravi jabi harsh
 
C012131116
C012131116C012131116
C012131116
 
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...
A Modal Pushover Analysis on Multi-Span Bridge to Estimate Inelastic Seismic ...
 
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.ppt
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.pptDesignGyan2324148026Response-Spectrum-Method-Of-Analysis.ppt
DesignGyan2324148026Response-Spectrum-Method-Of-Analysis.ppt
 
Modelling of flexible link manipulator dynamics using rigid link theory with
Modelling of flexible link manipulator dynamics using rigid link theory withModelling of flexible link manipulator dynamics using rigid link theory with
Modelling of flexible link manipulator dynamics using rigid link theory with
 
M0746274
M0746274M0746274
M0746274
 
Identification of coulomb, viscous and particle damping parameters from the r...
Identification of coulomb, viscous and particle damping parameters from the r...Identification of coulomb, viscous and particle damping parameters from the r...
Identification of coulomb, viscous and particle damping parameters from the r...
 
Chapter 2 lecture 1 mechanical vibration
Chapter 2  lecture 1 mechanical vibrationChapter 2  lecture 1 mechanical vibration
Chapter 2 lecture 1 mechanical vibration
 
Respose surface methods
Respose surface methodsRespose surface methods
Respose surface methods
 
12 l1-harmonic methodology
12 l1-harmonic methodology12 l1-harmonic methodology
12 l1-harmonic methodology
 

More from Teja Ande

Numerical Methods
Numerical MethodsNumerical Methods
Numerical MethodsTeja Ande
 
Response Spectrum
Response SpectrumResponse Spectrum
Response SpectrumTeja Ande
 
Lesson14 Exmpl
Lesson14 ExmplLesson14 Exmpl
Lesson14 ExmplTeja Ande
 
Lesson9 2nd Part
Lesson9 2nd PartLesson9 2nd Part
Lesson9 2nd PartTeja Ande
 
Lecture 13 Building Populations
Lecture 13 Building PopulationsLecture 13 Building Populations
Lecture 13 Building PopulationsTeja Ande
 
Lecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationLecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationTeja Ande
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsTeja Ande
 
Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Teja Ande
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsTeja Ande
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessTeja Ande
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsTeja Ande
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessTeja Ande
 

More from Teja Ande (20)

Numerical Methods
Numerical MethodsNumerical Methods
Numerical Methods
 
Sdof
SdofSdof
Sdof
 
Response Spectrum
Response SpectrumResponse Spectrum
Response Spectrum
 
Sam Session
Sam SessionSam Session
Sam Session
 
Lesson14 Exmpl
Lesson14 ExmplLesson14 Exmpl
Lesson14 Exmpl
 
Lesson14
Lesson14Lesson14
Lesson14
 
Lesson10
Lesson10Lesson10
Lesson10
 
Lesson9 2nd Part
Lesson9 2nd PartLesson9 2nd Part
Lesson9 2nd Part
 
Lesson8
Lesson8Lesson8
Lesson8
 
Lesson9
Lesson9Lesson9
Lesson9
 
Lecture 13 Building Populations
Lecture 13 Building PopulationsLecture 13 Building Populations
Lecture 13 Building Populations
 
Lesson1
Lesson1Lesson1
Lesson1
 
Lecture 11 Performance Based Evaluation
Lecture 11 Performance Based EvaluationLecture 11 Performance Based Evaluation
Lecture 11 Performance Based Evaluation
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2Lecture 10 Urm Out Of Plane Walls Part 2
Lecture 10 Urm Out Of Plane Walls Part 2
 
Lecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear WallsLecture 6 7 Rm Shear Walls
Lecture 6 7 Rm Shear Walls
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition Assess
 
Lecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear WallsLecture 4 5 Urm Shear Walls
Lecture 4 5 Urm Shear Walls
 
Lecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition AssessLecture 2 3 Compression, Condition Assess
Lecture 2 3 Compression, Condition Assess
 

Recently uploaded

IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxAbida Shariff
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Jeffrey Haguewood
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsStefano
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfalexjohnson7307
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...Product School
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...Product School
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsPaul Groth
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyJohn Staveley
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024Stephanie Beckett
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaRTTS
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2DianaGray10
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupCatarinaPereira64715
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Alison B. Lowndes
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...CzechDreamin
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Product School
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIES VE
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityScyllaDB
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...Product School
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfCheryl Hung
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomCzechDreamin
 

Recently uploaded (20)

IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptxIOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
IOS-PENTESTING-BEGINNERS-PRACTICAL-GUIDE-.pptx
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
PLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. StartupsPLAI - Acceleration Program for Generative A.I. Startups
PLAI - Acceleration Program for Generative A.I. Startups
 
The architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdfThe architecture of Generative AI for enterprises.pdf
The architecture of Generative AI for enterprises.pdf
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
From Siloed Products to Connected Ecosystem: Building a Sustainable and Scala...
 
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
Demystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John StaveleyDemystifying gRPC in .Net by John Staveley
Demystifying gRPC in .Net by John Staveley
 
What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024What's New in Teams Calling, Meetings and Devices April 2024
What's New in Teams Calling, Meetings and Devices April 2024
 
JMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and GrafanaJMeter webinar - integration with InfluxDB and Grafana
JMeter webinar - integration with InfluxDB and Grafana
 
UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2UiPath Test Automation using UiPath Test Suite series, part 2
UiPath Test Automation using UiPath Test Suite series, part 2
 
ODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User GroupODC, Data Fabric and Architecture User Group
ODC, Data Fabric and Architecture User Group
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
Behind the Scenes From the Manager's Chair: Decoding the Secrets of Successfu...
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
IESVE for Early Stage Design and Planning
IESVE for Early Stage Design and PlanningIESVE for Early Stage Design and Planning
IESVE for Early Stage Design and Planning
 
Optimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through ObservabilityOptimizing NoSQL Performance Through Observability
Optimizing NoSQL Performance Through Observability
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone KomSalesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
Salesforce Adoption – Metrics, Methods, and Motivation, Antone Kom
 

Ground Excited Systems

  • 1. GROUND EXCITED SYSTEMS Prof. A. Meher Prasad Department of Civil Engineering Indian Institute of Technology Madras email: prasadam@iitm.ac.in
  • 2. Dynamic Equations of Motion Force excited system Ground excited system where is the relative displacement of the structure w.r.t ground. Non-moving reference Ground Acceleration vector where, are the ground accelerations in x,y,z directions respectively. are null vectors except that those elements are equal to 1, which corresponds to x,y,z translational DOF.
  • 3. Let System equations reduce to following uncoupled equations where participation factors, Note: a j = b j = 0 since initial conditions are zero i.e Modal Superposition applied to GES
  • 4. Solution to uncoupled equation of motion can be expressed as, In general , for design the response quantities of interest are: R = maximum values of (u , f s , Δ, V, M) Equivalent lateral loads Storey shears Storey Moments Storey drifts Relative displacements
  • 5.
  • 6. Ground Excited MDOF System = relative displacement of the structure w r t ground = Ground acceleration vector : where, are ground accelerations in x, y & z directions respectively Reference base x y z
  • 7. 1) SRSS 2) CQC 3) Double Sum 4) Grouping Serious errors for closely spaced frequencies and for 3-D structures ,which include torsional contribution. SRSS : Square Root of Sum of Squares .It gives most probable maximum response. Modal combination rules ** Since the maximum response in each mode would not necessarily occur at the same instant of time, over conservative to add separate modal maximum responses.
  • 8. CQC : Complete Quadratic Combination Rule (Wilson, Der Kiureghion & Baya 1981). It is based on random vibration theory. Note: All cross modal terms included very good agreement with full modal superposition extra computation minimal.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14. Multiple support Excitation Super structure free Dof Support Dof
  • 15. Decompose {u f } into pseudo static and dynamic parts {u f }= {u s } + {u d } Considering only static response ( i.e. stiffness matrix alone) Influence matrix Describes influence of support displacement on structural displacement j th column of [ i ]=structural displacements due to unit support displacement u rl only ( l th base displacement)
  • 16. (By definition ) and i.e.
  • 17. If assume light damping Uncoupled equations of motion are,
  • 18. A big mass (much bigger than the total mass of the structure ( ~10 6  total mass ) is added to each degree of freedom at moving bases. As more big masses are applied, more low frequency modes have to be extracted.
  • 19. The desired base motion is obtained by applying a point force to each degree of freedom at moving bases by Where M big =big mass and is the applied acceleration prescribed for degree of freedom N associated with moving supports The combined equation of motion is with Where is the diagonal matrix containing the big masses for moving base ‘i’ and is the base motion applied to this base
  • 20. The mass matrix [M] now contains the mass of the structure as well as the big masses associated with the secondary base. The modal equations with
  • 21. 1.000 1.000 6.7662 52.2836 0.0 4.7876 5.2909 10 8 0.9999 1.000 6.7661 52.2836 0.0 4.7876 5.2909 10 6 0.9995 1.0003 6.7641 52.2823 10 -10 4.7871 5.2910 10 4 0.9524 1.0335 6.5531 52.0552 10 -9 4.8011 5.3025 10 2 Response peaks (m/s 2 ) X 1 max X 2 max X 3 max X 4 max Natural frequency Ratio of large mass to structure