SlideShare a Scribd company logo
1 of 36
Download to read offline
Reservoir Fluid Properties Course (2nd Ed.)
1. empirical correlations for calculating z-factors
2. Gas Properties:
A. isothermal gas compressibility (Cg)
B. gas formation volume factor (Bg) and
gas expansion factor (Eg)
C. Gas Viscosity correlations
1. Crude Oil Properties:
A. Density (rho), Gravity (gamma, API)
B. Gas Solubility (Solution gas) (Rs)
C. Bubble-point pressure (Pb)
Properties of Crude Oil Systems
Petroleum (an equivalent term is crude oil) is a complex
mixture consisting
predominantly of hydrocarbons and containing
sulfur, nitrogen, oxygen, and helium as minor constituents

The physical and chemical properties of crude oils
vary considerably and are dependent on
the concentration of the various types of
hydrocarbons and minor constituents present.

An accurate description of physical properties of crude
oils is of a considerable importance in the fields of both
applied and theoretical science and
especially
in the solution of petroleum reservoir engineering problems
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

5
Physical Properties of Petroleum
Main physical properties: Data on most of these
fluid properties are usually
Fluid gravity
determined by
Specific gravity of the
solution gas
laboratory experiments
performed on samples of
Gas solubility
actual reservoir fluids.
Bubble-point pressure
Oil formation volume factor In the absence of
experimentally measured
Isothermal compressibility
coefficient of
properties of crude oils,
undersaturated crude oils
it is necessary for the
Oil density
petroleum engineer to
determine the properties
Total formation volume
from
factor
empirically derived
Crude oil viscosity
correlations.
Surface tension

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

6
Crude Oil density and
Crude Oil specific Gravity
The crude oil density (ρo)
is defined as the mass of a unit volume of the crude
𝑚
at a specified pressure and temperature.
𝜌𝑜 =
is usually expressed in pounds per cubic foot.
𝑉

The specific gravity of a crude oil (γo)
is defined as the ratio of the density of the oil
to that of water.
Both densities are measured
at 60°F and atmospheric pressure:

the liquid specific gravity is dimensionless, but
traditionally is given the units 60°/60°
to emphasize the fact that both densities
are measured at standard conditions.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

7
Crude Oil Gravity
 Although the density and specific gravity are used
extensively in the petroleum industry,
the API gravity is the preferred gravity scale.

API gravity
This gravity scale is precisely related to the specific
gravity by:

The API gravities of crude oils usually range
from 47° API for the lighter crude oils to
10° API for the heavier asphaltic crude oils.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

8
Specific Gravity of the Solution Gas
γg is described by
weighted average of (based on separator gas-oil ratio)
the specific gravities of the separated gas
from each separator.
Where
n = number of separators,
Rsep = separator gas-oil ratio, scf/STB,
γsep = separator gas gravity,
Rst = gas-oil ratio from the stock tank, scf/ STB,
γst = gas gravity from the stock tank

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

9
Gas Solubility definition
The gas solubility Rs is defined as
the number of standard cubic feet of gas
that will dissolve in one stock-tank barrel of crude oil
at certain pressure and temperature.

The solubility of a natural gas
in a crude oil is a strong function of
the pressure,
temperature,
API gravity, and
gas gravity.

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

11
Gas Solubility variation with pressure
For
a particular gas and
crude oil to exist
at a constant temperature,
the solubility increases with pressure
until the saturation pressure is reached.

At the saturation pressure (bubble-point pressure)
all the available gases are dissolved in the oil and
the gas solubility reaches its maximum value.

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

12
Gas Solubility measurement
with pressure
Rather than measuring the amount of gas
that will dissolve in a given stock-tank crude oil
as the pressure is increased,
it is customary to determine the amount of gas that will come
out of a sample of reservoir crude oil as pressure decreases.

As the pressure is reduced from the initial reservoir
pressure pi, to the bubble-point pressure Pb,
no gas evolves from the oil and consequently
gas solubility remains constant at its maximum value of Rsb.

Below the bubble-point pressure,
solution gas is liberated and Rs decreases with pressure
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

13
Gas-Solubility Pressure Diagram
A typical gas
solubility
curve,
as a function
of
pressure

for an
undersaturate
d crude oil

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

14
Empirical Correlations for
Estimating the Rs
The following five empirical correlations for
estimating the gas solubility are given below:
Standing’s correlation
The Vasquez-Beggs correlation
Glaso’s correlation
Marhoun’s correlation
The Petrosky-Farshad correlation

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

16
Standing (1947) Correlation
Standing (1947) proposed
a graphical correlation
for determining the gas solubility as a function of
pressure, gas specific gravity, API gravity, and system
temperature.

The correlation was developed
from a total of 105 experimentally
determined data points on 22 hydrocarbon mixtures
from California crude oils and natural gases.

The proposed correlation
has an average error of 4.8%.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

17
Rs: Standing’s Correlation
Standing (1981) expressed
his proposed graphical correlation
in more convenient mathematical form of:

where
T = temperature, °R,
p = system pressure, psia γg = solution gas specific gravity

Standing’s equation is valid for applications
at and below the bubble-point pressure of the crude oil.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

18
Rs:
The Vasquez- Beggs (1980) Correlation
They presented an improved empirical correlation
The correlation was obtained by regression analysis
using 5,008 measured gas solubility data points.
predicting Rs with an average absolute error of 12.7%
Based on oil gravity, the measured data were divided
into two groups. (at a value of oil gravity of 30°API)

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

19
gas gravity at the reference separator
pressure (Vasquez-Beggs Correlation)
the value of the specific gravity of the gas depends on
 the conditions under which it is separated from the oil,

So the value of the gas specific gravity as obtained
 from a separator pressure of 100 psig must be used

This reference pressure was chosen because
 it represents the average field separator conditions.

Adjustment relationship for the gas gravity γg to the
reference separator pressure:
 γgs = gas gravity at the reference separator pressure
 γg = gas gravity at the actual separator conditions of psep and Tsep
 psep (Tsep)= actual separator pressure (Temperature), psia (°R)
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

20
Rs: Glaso’s Correlation
Glaso (1980) proposed a correlation for estimating
the gas solubility
as a function of
API gravity, pressure, temperature, gas specific gravity.
from studying 45 North Sea crude oil samples.
an average error of 1.28%, a standard deviation of 6.98%

p*b is a correlating number

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

21
Rs: Marhoun’s Correlation
Marhoun (1988)
developed an expression
for estimating
the saturation pressure of
the Middle Eastern crude
where
oil systems.
γg = gas specific gravity
The correlation originates
γo = stock-tank oil gravity
from 160 experimental
T = temperature, °R
saturation pressure data.
a = 185.843208
The proposed correlation
b = 1.877840
can be rearranged and
c = −3.1437
solved
d = −1.32657
for the gas solubility:
e = 1.398441
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

22
Rs: The Petrosky-Farshad Correlation
Petrosky and Farshad (1993)
used a nonlinear multiple regression software
to develop a gas solubility correlation.

The authors constructed a PVT database
from 81 laboratory analyses
from the Gulf of Mexico crude oil system.

p = pressure, psia, T = temperature, °R
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

23
Rs: gas solubility calculation from the
experimental measured PVT data
The gas solubility can also be calculated rigorously
from the experimental measured PVT data
at the specified pressure and temperature.

The expression relates the gas solubility Rs to ρo, Bo,
γo, γg
ρo = oil density, lb/ft3
Bo = oil formation volume factor, bbl/STB
γo = specific gravity of the stock-tank oil
γg = specific gravity of the solution gas
the weight average of
separator and stock-tank gas specific gravities should be used

The error in calculating Rs by using the equation will
depend only on the accuracy of the available PVT data.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

24
Bubble-Point Pressure
The bubble-point pressure Pb
of a hydrocarbon system
is defined as the highest pressure at which
a bubble of gas is first liberated from the oil.
can be measured experimentally for a crude oil system
by conducting a constant-composition expansion test.

In the absence of the experimentally measured
bubble-point pressure, it is necessary
to make an estimate of this crude oil property
from the readily available
measured producing parameters
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

27
Pb Correlations
Several graphical and
Several ways of combining
mathematical correlations the above parameters in a
for determining Pb have
graphical form or a
been proposed during the mathematical expression
last four decades.
are proposed by numerous
authors, including:
They are essentially based
on the assumption that
the bubble-point pressure
is a strong function of
gas solubility Rs, gas gravity
γg, oil gravity API, and
temperature T, or:
Pb = f (RS, γg, API, T)
Fall 13 H. AlamiNia

Standing
Vasquez and Beggs
Glaso
Marhoun
Petrosky and Farshad

Reservoir Fluid Properties Course:

28
Pb: Standing’s Correlation
Standing (1947) graphical correlation
Based on 105 experimentally measured Pb
on 22 hydrocarbon systems from California oil fields,
The correlating parameters are Rs, γg, API, and system T
The reported average error is 4.8%

Standing (1981) mathematical correlation

pb = bubble-point pressure, psia, T = system temperature, °R

Standing’s correlation should be used with caution
if nonhydrocarbon components are known
to be present in the system.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

29
Pb: The Vasquez-Beggs Correlation
Vasquez and Beggs’ gas solubility
correlation can be solved for the pb

The coefficients C1, C2, and C3
have the following values:

Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

30
Pb: Glaso’s Correlation
Glaso (1980) used 45 oil samples,
mostly from the North Sea hydrocarbon system,
to develop an accurate correlation for Pb
Glaso proposed the following expression:
p*b is a correlating number and defined by:
Rs = gas solubility, scf/STB, t = system temperature, °F,
γg = average specific gravity of the total surface gases,
a = 0.816, b = 0.172, c = −0.989
• For volatile oils, the temperature exponent b, be 0.130.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

31
Pb: Marhoun’s Correlation
Marhoun (1988) correlation for estimating pb
used 160 experimentally determined bubble-point pressures
from PVT analysis of 69 Middle Eastern hydrocarbon mixtures
The correlating parameters are Rs, γg, γo, and T
average absolute relative error of 3.66%
when compared with the experimental data
used to develop the correlation.

T = temperature, °R
γo = stock-tank oil specific gravity
γg = gas specific gravity
a=5.3809×10−3, b=0.71508, c=−1.8778, d=3.144, e=1.3266
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

32
Pb: The Petrosky-Farshad Correlation
The Petrosky and Farshad
gas solubility equation,
can be solved for the Pb to give:

where the correlating parameter x
is previously defined by.
the correlation predicts measured bubble point
pressures with an average absolute error of 3.28%.
Fall 13 H. AlamiNia

Reservoir Fluid Properties Course:

33
1. Ahmed, T. (2010). Reservoir engineering
handbook (Gulf Professional Publishing).
Chapter 2
Q921 rfp lec6 v1
Q921 rfp lec6 v1

More Related Content

What's hot

Q913 re1 w2 lec 5
Q913 re1 w2 lec 5Q913 re1 w2 lec 5
Q913 re1 w2 lec 5AFATous
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14AFATous
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17AFATous
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12AFATous
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1AFATous
 
Eclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseEclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseMohammad Massah
 
Fundamentals of Petroleum Engineering Module 3
Fundamentals of Petroleum Engineering Module 3Fundamentals of Petroleum Engineering Module 3
Fundamentals of Petroleum Engineering Module 3Aijaz Ali Mooro
 
gas formation volume factor derivation
gas formation volume factor derivationgas formation volume factor derivation
gas formation volume factor derivationSYED NAWAZ
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsSohil Shah
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir EngineeringMikeEllingham
 
4 1 reservoir-drive_mechanisms
4 1 reservoir-drive_mechanisms4 1 reservoir-drive_mechanisms
4 1 reservoir-drive_mechanismsAtils
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir engmohamad1286
 
Q913 re1 w2 lec 6
Q913 re1 w2 lec 6Q913 re1 w2 lec 6
Q913 re1 w2 lec 6AFATous
 
Estimation of skin factor by using pressure transient
Estimation of skin factor by using pressure transientEstimation of skin factor by using pressure transient
Estimation of skin factor by using pressure transientMuhamad Kurdy
 
Analyzing Multi-zone completion using multilayer by IPR (PROSPER)
Analyzing Multi-zone completion using multilayer by IPR (PROSPER)  Analyzing Multi-zone completion using multilayer by IPR (PROSPER)
Analyzing Multi-zone completion using multilayer by IPR (PROSPER) Arez Luqman
 

What's hot (20)

Q913 re1 w2 lec 5
Q913 re1 w2 lec 5Q913 re1 w2 lec 5
Q913 re1 w2 lec 5
 
Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
 
Reservoir rock & fluid
Reservoir rock & fluidReservoir rock & fluid
Reservoir rock & fluid
 
Reservoir Simulation
Reservoir SimulationReservoir Simulation
Reservoir Simulation
 
Q913 re1 w5 lec 17
Q913 re1 w5 lec 17Q913 re1 w5 lec 17
Q913 re1 w5 lec 17
 
Decline curve
Decline curveDecline curve
Decline curve
 
Q913 re1 w3 lec 12
Q913 re1 w3 lec 12Q913 re1 w3 lec 12
Q913 re1 w3 lec 12
 
Q921 re1 lec11 v1
Q921 re1 lec11 v1Q921 re1 lec11 v1
Q921 re1 lec11 v1
 
Eclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation courseEclipse 100 - Petroleum reservoir simulation course
Eclipse 100 - Petroleum reservoir simulation course
 
Fundamentals of Petroleum Engineering Module 3
Fundamentals of Petroleum Engineering Module 3Fundamentals of Petroleum Engineering Module 3
Fundamentals of Petroleum Engineering Module 3
 
gas formation volume factor derivation
gas formation volume factor derivationgas formation volume factor derivation
gas formation volume factor derivation
 
Well Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal WellsWell Test Analysis in Horizontal Wells
Well Test Analysis in Horizontal Wells
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir Engineering
 
Oil Properties
Oil PropertiesOil Properties
Oil Properties
 
4 1 reservoir-drive_mechanisms
4 1 reservoir-drive_mechanisms4 1 reservoir-drive_mechanisms
4 1 reservoir-drive_mechanisms
 
Applied reservoir eng
Applied reservoir engApplied reservoir eng
Applied reservoir eng
 
Q913 re1 w2 lec 6
Q913 re1 w2 lec 6Q913 re1 w2 lec 6
Q913 re1 w2 lec 6
 
Estimation of skin factor by using pressure transient
Estimation of skin factor by using pressure transientEstimation of skin factor by using pressure transient
Estimation of skin factor by using pressure transient
 
Nodal analysis
Nodal analysisNodal analysis
Nodal analysis
 
Analyzing Multi-zone completion using multilayer by IPR (PROSPER)
Analyzing Multi-zone completion using multilayer by IPR (PROSPER)  Analyzing Multi-zone completion using multilayer by IPR (PROSPER)
Analyzing Multi-zone completion using multilayer by IPR (PROSPER)
 

Viewers also liked

Q922+rfp+l10 v1
Q922+rfp+l10 v1Q922+rfp+l10 v1
Q922+rfp+l10 v1AFATous
 
Q913 rfp w2 lec 5
Q913 rfp w2 lec 5Q913 rfp w2 lec 5
Q913 rfp w2 lec 5AFATous
 
Q913 rfp w1 lec 1
Q913 rfp w1 lec 1Q913 rfp w1 lec 1
Q913 rfp w1 lec 1AFATous
 
Q913 rfp w1 lec 4
Q913 rfp w1 lec 4Q913 rfp w1 lec 4
Q913 rfp w1 lec 4AFATous
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6AFATous
 
Q913 rfp w1 lec 3
Q913 rfp w1 lec 3Q913 rfp w1 lec 3
Q913 rfp w1 lec 3AFATous
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7AFATous
 
Q922+rfp+l05 v1
Q922+rfp+l05 v1Q922+rfp+l05 v1
Q922+rfp+l05 v1AFATous
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1AFATous
 
Q922+rfp+l07 v1
Q922+rfp+l07 v1Q922+rfp+l07 v1
Q922+rfp+l07 v1AFATous
 
Q922+rfp+l09 v1
Q922+rfp+l09 v1Q922+rfp+l09 v1
Q922+rfp+l09 v1AFATous
 
Q921 re1 lec4 v1
Q921 re1 lec4 v1Q921 re1 lec4 v1
Q921 re1 lec4 v1AFATous
 
Q913 re1 w1 lec 4
Q913 re1 w1 lec 4Q913 re1 w1 lec 4
Q913 re1 w1 lec 4AFATous
 
Q921 rfp lec4
Q921 rfp lec4Q921 rfp lec4
Q921 rfp lec4AFATous
 
Q921 rfp lec2 v1
Q921 rfp lec2 v1Q921 rfp lec2 v1
Q921 rfp lec2 v1AFATous
 
Q921 rfp lec5
Q921 rfp lec5Q921 rfp lec5
Q921 rfp lec5AFATous
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1AFATous
 
Q913 rfp w1 lec 2
Q913 rfp w1 lec 2Q913 rfp w1 lec 2
Q913 rfp w1 lec 2AFATous
 
Q913 rfp w3 lec 10
Q913 rfp w3 lec 10Q913 rfp w3 lec 10
Q913 rfp w3 lec 10AFATous
 
Q913 rfp w2 lec 8
Q913 rfp w2 lec 8Q913 rfp w2 lec 8
Q913 rfp w2 lec 8AFATous
 

Viewers also liked (20)

Q922+rfp+l10 v1
Q922+rfp+l10 v1Q922+rfp+l10 v1
Q922+rfp+l10 v1
 
Q913 rfp w2 lec 5
Q913 rfp w2 lec 5Q913 rfp w2 lec 5
Q913 rfp w2 lec 5
 
Q913 rfp w1 lec 1
Q913 rfp w1 lec 1Q913 rfp w1 lec 1
Q913 rfp w1 lec 1
 
Q913 rfp w1 lec 4
Q913 rfp w1 lec 4Q913 rfp w1 lec 4
Q913 rfp w1 lec 4
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6
 
Q913 rfp w1 lec 3
Q913 rfp w1 lec 3Q913 rfp w1 lec 3
Q913 rfp w1 lec 3
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7
 
Q922+rfp+l05 v1
Q922+rfp+l05 v1Q922+rfp+l05 v1
Q922+rfp+l05 v1
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1
 
Q922+rfp+l07 v1
Q922+rfp+l07 v1Q922+rfp+l07 v1
Q922+rfp+l07 v1
 
Q922+rfp+l09 v1
Q922+rfp+l09 v1Q922+rfp+l09 v1
Q922+rfp+l09 v1
 
Q921 re1 lec4 v1
Q921 re1 lec4 v1Q921 re1 lec4 v1
Q921 re1 lec4 v1
 
Q913 re1 w1 lec 4
Q913 re1 w1 lec 4Q913 re1 w1 lec 4
Q913 re1 w1 lec 4
 
Q921 rfp lec4
Q921 rfp lec4Q921 rfp lec4
Q921 rfp lec4
 
Q921 rfp lec2 v1
Q921 rfp lec2 v1Q921 rfp lec2 v1
Q921 rfp lec2 v1
 
Q921 rfp lec5
Q921 rfp lec5Q921 rfp lec5
Q921 rfp lec5
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1
 
Q913 rfp w1 lec 2
Q913 rfp w1 lec 2Q913 rfp w1 lec 2
Q913 rfp w1 lec 2
 
Q913 rfp w3 lec 10
Q913 rfp w3 lec 10Q913 rfp w3 lec 10
Q913 rfp w3 lec 10
 
Q913 rfp w2 lec 8
Q913 rfp w2 lec 8Q913 rfp w2 lec 8
Q913 rfp w2 lec 8
 

Similar to Q921 rfp lec6 v1

Q921 rfp lec7 v1
Q921 rfp lec7 v1Q921 rfp lec7 v1
Q921 rfp lec7 v1AFATous
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1AFATous
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1AFATous
 
Q922+rfp+l03 v1
Q922+rfp+l03 v1Q922+rfp+l03 v1
Q922+rfp+l03 v1AFATous
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1AFATous
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1AFATous
 
RE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfRE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfJaisonRoy3
 
Q921 rfp lec9 v1
Q921 rfp lec9 v1Q921 rfp lec9 v1
Q921 rfp lec9 v1AFATous
 
Q921 rfp lec10 v1
Q921 rfp lec10 v1Q921 rfp lec10 v1
Q921 rfp lec10 v1AFATous
 
Q913 re1 w1 lec 2
Q913 re1 w1 lec 2Q913 re1 w1 lec 2
Q913 re1 w1 lec 2AFATous
 
1. efecto de los NO hidrocaburos en GN.pdf
1. efecto de los NO hidrocaburos en GN.pdf1. efecto de los NO hidrocaburos en GN.pdf
1. efecto de los NO hidrocaburos en GN.pdfcristhiancharcaquisp
 
464634994-SLIDE7-Gas-Condst-Res-ppt.pdf
464634994-SLIDE7-Gas-Condst-Res-ppt.pdf464634994-SLIDE7-Gas-Condst-Res-ppt.pdf
464634994-SLIDE7-Gas-Condst-Res-ppt.pdfMohanadHussien2
 
Q913 rfp w3 lec 12, Separators and Phase envelope calculations
Q913 rfp w3 lec 12, Separators and Phase envelope calculationsQ913 rfp w3 lec 12, Separators and Phase envelope calculations
Q913 rfp w3 lec 12, Separators and Phase envelope calculationsAFATous
 
Q913 rfp w3 lec 11
Q913 rfp w3 lec 11Q913 rfp w3 lec 11
Q913 rfp w3 lec 11AFATous
 
Behavior of Gases
Behavior of GasesBehavior of Gases
Behavior of GasesM.T.H Group
 
Chapter 2 basic single phase-flow equation
Chapter 2 basic single phase-flow equationChapter 2 basic single phase-flow equation
Chapter 2 basic single phase-flow equationMichaelDang47
 
Q913 rfp w3 lec 9
Q913 rfp w3 lec 9Q913 rfp w3 lec 9
Q913 rfp w3 lec 9AFATous
 

Similar to Q921 rfp lec6 v1 (20)

Q921 rfp lec7 v1
Q921 rfp lec7 v1Q921 rfp lec7 v1
Q921 rfp lec7 v1
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1
 
Q922+rfp+l03 v1
Q922+rfp+l03 v1Q922+rfp+l03 v1
Q922+rfp+l03 v1
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1
 
mezcla de gases
mezcla de gases mezcla de gases
mezcla de gases
 
RE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfRE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdf
 
Q921 rfp lec9 v1
Q921 rfp lec9 v1Q921 rfp lec9 v1
Q921 rfp lec9 v1
 
Q921 rfp lec10 v1
Q921 rfp lec10 v1Q921 rfp lec10 v1
Q921 rfp lec10 v1
 
Q913 re1 w1 lec 2
Q913 re1 w1 lec 2Q913 re1 w1 lec 2
Q913 re1 w1 lec 2
 
1. efecto de los NO hidrocaburos en GN.pdf
1. efecto de los NO hidrocaburos en GN.pdf1. efecto de los NO hidrocaburos en GN.pdf
1. efecto de los NO hidrocaburos en GN.pdf
 
464634994-SLIDE7-Gas-Condst-Res-ppt.pdf
464634994-SLIDE7-Gas-Condst-Res-ppt.pdf464634994-SLIDE7-Gas-Condst-Res-ppt.pdf
464634994-SLIDE7-Gas-Condst-Res-ppt.pdf
 
Q913 rfp w3 lec 12, Separators and Phase envelope calculations
Q913 rfp w3 lec 12, Separators and Phase envelope calculationsQ913 rfp w3 lec 12, Separators and Phase envelope calculations
Q913 rfp w3 lec 12, Separators and Phase envelope calculations
 
RESERVOIR-FLUID Lucture 2.ppt
RESERVOIR-FLUID Lucture 2.pptRESERVOIR-FLUID Lucture 2.ppt
RESERVOIR-FLUID Lucture 2.ppt
 
Q913 rfp w3 lec 11
Q913 rfp w3 lec 11Q913 rfp w3 lec 11
Q913 rfp w3 lec 11
 
reid vapor pressure
reid vapor pressurereid vapor pressure
reid vapor pressure
 
Behavior of Gases
Behavior of GasesBehavior of Gases
Behavior of Gases
 
Chapter 2 basic single phase-flow equation
Chapter 2 basic single phase-flow equationChapter 2 basic single phase-flow equation
Chapter 2 basic single phase-flow equation
 
Q913 rfp w3 lec 9
Q913 rfp w3 lec 9Q913 rfp w3 lec 9
Q913 rfp w3 lec 9
 

More from AFATous

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم AFATous
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم AFATous
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومAFATous
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمAFATous
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومAFATous
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lecAFATous
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1AFATous
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lecAFATous
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lecAFATous
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1AFATous
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lecAFATous
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1AFATous
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1AFATous
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lecAFATous
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lecAFATous
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lecAFATous
 

More from AFATous (20)

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششم
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lec
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lec
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lec
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lec
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lec
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lec
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lec
 

Recently uploaded

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptxPoojaSen20
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 

Recently uploaded (20)

How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
PSYCHIATRIC History collection FORMAT.pptx
PSYCHIATRIC   History collection FORMAT.pptxPSYCHIATRIC   History collection FORMAT.pptx
PSYCHIATRIC History collection FORMAT.pptx
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 

Q921 rfp lec6 v1

  • 1. Reservoir Fluid Properties Course (2nd Ed.)
  • 2. 1. empirical correlations for calculating z-factors 2. Gas Properties: A. isothermal gas compressibility (Cg) B. gas formation volume factor (Bg) and gas expansion factor (Eg) C. Gas Viscosity correlations
  • 3. 1. Crude Oil Properties: A. Density (rho), Gravity (gamma, API) B. Gas Solubility (Solution gas) (Rs) C. Bubble-point pressure (Pb)
  • 4.
  • 5. Properties of Crude Oil Systems Petroleum (an equivalent term is crude oil) is a complex mixture consisting predominantly of hydrocarbons and containing sulfur, nitrogen, oxygen, and helium as minor constituents The physical and chemical properties of crude oils vary considerably and are dependent on the concentration of the various types of hydrocarbons and minor constituents present. An accurate description of physical properties of crude oils is of a considerable importance in the fields of both applied and theoretical science and especially in the solution of petroleum reservoir engineering problems Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 5
  • 6. Physical Properties of Petroleum Main physical properties: Data on most of these fluid properties are usually Fluid gravity determined by Specific gravity of the solution gas laboratory experiments performed on samples of Gas solubility actual reservoir fluids. Bubble-point pressure Oil formation volume factor In the absence of experimentally measured Isothermal compressibility coefficient of properties of crude oils, undersaturated crude oils it is necessary for the Oil density petroleum engineer to determine the properties Total formation volume from factor empirically derived Crude oil viscosity correlations. Surface tension Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 6
  • 7. Crude Oil density and Crude Oil specific Gravity The crude oil density (ρo) is defined as the mass of a unit volume of the crude 𝑚 at a specified pressure and temperature. 𝜌𝑜 = is usually expressed in pounds per cubic foot. 𝑉 The specific gravity of a crude oil (γo) is defined as the ratio of the density of the oil to that of water. Both densities are measured at 60°F and atmospheric pressure: the liquid specific gravity is dimensionless, but traditionally is given the units 60°/60° to emphasize the fact that both densities are measured at standard conditions. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 7
  • 8. Crude Oil Gravity  Although the density and specific gravity are used extensively in the petroleum industry, the API gravity is the preferred gravity scale. API gravity This gravity scale is precisely related to the specific gravity by: The API gravities of crude oils usually range from 47° API for the lighter crude oils to 10° API for the heavier asphaltic crude oils. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 8
  • 9. Specific Gravity of the Solution Gas γg is described by weighted average of (based on separator gas-oil ratio) the specific gravities of the separated gas from each separator. Where n = number of separators, Rsep = separator gas-oil ratio, scf/STB, γsep = separator gas gravity, Rst = gas-oil ratio from the stock tank, scf/ STB, γst = gas gravity from the stock tank Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 9
  • 10.
  • 11. Gas Solubility definition The gas solubility Rs is defined as the number of standard cubic feet of gas that will dissolve in one stock-tank barrel of crude oil at certain pressure and temperature. The solubility of a natural gas in a crude oil is a strong function of the pressure, temperature, API gravity, and gas gravity. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 11
  • 12. Gas Solubility variation with pressure For a particular gas and crude oil to exist at a constant temperature, the solubility increases with pressure until the saturation pressure is reached. At the saturation pressure (bubble-point pressure) all the available gases are dissolved in the oil and the gas solubility reaches its maximum value. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 12
  • 13. Gas Solubility measurement with pressure Rather than measuring the amount of gas that will dissolve in a given stock-tank crude oil as the pressure is increased, it is customary to determine the amount of gas that will come out of a sample of reservoir crude oil as pressure decreases. As the pressure is reduced from the initial reservoir pressure pi, to the bubble-point pressure Pb, no gas evolves from the oil and consequently gas solubility remains constant at its maximum value of Rsb. Below the bubble-point pressure, solution gas is liberated and Rs decreases with pressure Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 13
  • 14. Gas-Solubility Pressure Diagram A typical gas solubility curve, as a function of pressure for an undersaturate d crude oil Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 14
  • 15.
  • 16. Empirical Correlations for Estimating the Rs The following five empirical correlations for estimating the gas solubility are given below: Standing’s correlation The Vasquez-Beggs correlation Glaso’s correlation Marhoun’s correlation The Petrosky-Farshad correlation Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 16
  • 17. Standing (1947) Correlation Standing (1947) proposed a graphical correlation for determining the gas solubility as a function of pressure, gas specific gravity, API gravity, and system temperature. The correlation was developed from a total of 105 experimentally determined data points on 22 hydrocarbon mixtures from California crude oils and natural gases. The proposed correlation has an average error of 4.8%. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 17
  • 18. Rs: Standing’s Correlation Standing (1981) expressed his proposed graphical correlation in more convenient mathematical form of: where T = temperature, °R, p = system pressure, psia γg = solution gas specific gravity Standing’s equation is valid for applications at and below the bubble-point pressure of the crude oil. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 18
  • 19. Rs: The Vasquez- Beggs (1980) Correlation They presented an improved empirical correlation The correlation was obtained by regression analysis using 5,008 measured gas solubility data points. predicting Rs with an average absolute error of 12.7% Based on oil gravity, the measured data were divided into two groups. (at a value of oil gravity of 30°API) Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 19
  • 20. gas gravity at the reference separator pressure (Vasquez-Beggs Correlation) the value of the specific gravity of the gas depends on  the conditions under which it is separated from the oil, So the value of the gas specific gravity as obtained  from a separator pressure of 100 psig must be used This reference pressure was chosen because  it represents the average field separator conditions. Adjustment relationship for the gas gravity γg to the reference separator pressure:  γgs = gas gravity at the reference separator pressure  γg = gas gravity at the actual separator conditions of psep and Tsep  psep (Tsep)= actual separator pressure (Temperature), psia (°R) Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 20
  • 21. Rs: Glaso’s Correlation Glaso (1980) proposed a correlation for estimating the gas solubility as a function of API gravity, pressure, temperature, gas specific gravity. from studying 45 North Sea crude oil samples. an average error of 1.28%, a standard deviation of 6.98% p*b is a correlating number Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 21
  • 22. Rs: Marhoun’s Correlation Marhoun (1988) developed an expression for estimating the saturation pressure of the Middle Eastern crude where oil systems. γg = gas specific gravity The correlation originates γo = stock-tank oil gravity from 160 experimental T = temperature, °R saturation pressure data. a = 185.843208 The proposed correlation b = 1.877840 can be rearranged and c = −3.1437 solved d = −1.32657 for the gas solubility: e = 1.398441 Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 22
  • 23. Rs: The Petrosky-Farshad Correlation Petrosky and Farshad (1993) used a nonlinear multiple regression software to develop a gas solubility correlation. The authors constructed a PVT database from 81 laboratory analyses from the Gulf of Mexico crude oil system. p = pressure, psia, T = temperature, °R Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 23
  • 24. Rs: gas solubility calculation from the experimental measured PVT data The gas solubility can also be calculated rigorously from the experimental measured PVT data at the specified pressure and temperature. The expression relates the gas solubility Rs to ρo, Bo, γo, γg ρo = oil density, lb/ft3 Bo = oil formation volume factor, bbl/STB γo = specific gravity of the stock-tank oil γg = specific gravity of the solution gas the weight average of separator and stock-tank gas specific gravities should be used The error in calculating Rs by using the equation will depend only on the accuracy of the available PVT data. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 24
  • 25.
  • 26.
  • 27. Bubble-Point Pressure The bubble-point pressure Pb of a hydrocarbon system is defined as the highest pressure at which a bubble of gas is first liberated from the oil. can be measured experimentally for a crude oil system by conducting a constant-composition expansion test. In the absence of the experimentally measured bubble-point pressure, it is necessary to make an estimate of this crude oil property from the readily available measured producing parameters Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 27
  • 28. Pb Correlations Several graphical and Several ways of combining mathematical correlations the above parameters in a for determining Pb have graphical form or a been proposed during the mathematical expression last four decades. are proposed by numerous authors, including: They are essentially based on the assumption that the bubble-point pressure is a strong function of gas solubility Rs, gas gravity γg, oil gravity API, and temperature T, or: Pb = f (RS, γg, API, T) Fall 13 H. AlamiNia Standing Vasquez and Beggs Glaso Marhoun Petrosky and Farshad Reservoir Fluid Properties Course: 28
  • 29. Pb: Standing’s Correlation Standing (1947) graphical correlation Based on 105 experimentally measured Pb on 22 hydrocarbon systems from California oil fields, The correlating parameters are Rs, γg, API, and system T The reported average error is 4.8% Standing (1981) mathematical correlation pb = bubble-point pressure, psia, T = system temperature, °R Standing’s correlation should be used with caution if nonhydrocarbon components are known to be present in the system. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 29
  • 30. Pb: The Vasquez-Beggs Correlation Vasquez and Beggs’ gas solubility correlation can be solved for the pb The coefficients C1, C2, and C3 have the following values: Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 30
  • 31. Pb: Glaso’s Correlation Glaso (1980) used 45 oil samples, mostly from the North Sea hydrocarbon system, to develop an accurate correlation for Pb Glaso proposed the following expression: p*b is a correlating number and defined by: Rs = gas solubility, scf/STB, t = system temperature, °F, γg = average specific gravity of the total surface gases, a = 0.816, b = 0.172, c = −0.989 • For volatile oils, the temperature exponent b, be 0.130. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 31
  • 32. Pb: Marhoun’s Correlation Marhoun (1988) correlation for estimating pb used 160 experimentally determined bubble-point pressures from PVT analysis of 69 Middle Eastern hydrocarbon mixtures The correlating parameters are Rs, γg, γo, and T average absolute relative error of 3.66% when compared with the experimental data used to develop the correlation. T = temperature, °R γo = stock-tank oil specific gravity γg = gas specific gravity a=5.3809×10−3, b=0.71508, c=−1.8778, d=3.144, e=1.3266 Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 32
  • 33. Pb: The Petrosky-Farshad Correlation The Petrosky and Farshad gas solubility equation, can be solved for the Pb to give: where the correlating parameter x is previously defined by. the correlation predicts measured bubble point pressures with an average absolute error of 3.28%. Fall 13 H. AlamiNia Reservoir Fluid Properties Course: 33
  • 34. 1. Ahmed, T. (2010). Reservoir engineering handbook (Gulf Professional Publishing). Chapter 2