SlideShare a Scribd company logo
1 of 36
Download to read offline
Reservoir Fluid Properties Course (3rd Ed.)
1. Crude Oil Properties:
A. Density (ρo), Gravity (γo, API)
B. Gas Solubility (Solution gas) (Rs)
C. Bubble-point pressure (Pb)
1. Crude Oil Properties:
A. Formation volume factor for P=<Pb (Bo)
B. Isothermal compressibility coefficient (Co)
C. Formation volume factor for P>Pb (Bo)
D. Density
The oil formation volume factor, Bo
Bo, is defined as the ratio of
the volume of oil (plus the gas in solution)
at the prevailing reservoir temperature and pressure
to the volume of oil at standard conditions.
Bo is always greater than or equal to unity.
Bo = oil formation volume factor, bbl/STB
(Vo)p,T = volume of oil under reservoir p and T, bbl
(Vo)sc = volume of oil is measured
under standard conditions, STB
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 5
Oil Formation Volume Factor vs. Pressure
A typical
oil formation
factor curve,
as a function of
pressure
for an
undersaturated
crude oil
(pi > Pb)
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 6
Bo Behavior with pressure
As the pressure is reduced
below the initial reservoir pressure pi,
the oil volume increases due to the oil expansion and
results in an increase in the oil formation volume factor and
will continue until the bubble-point pressure is reached.
At Pb,
the oil reaches its maximum expansion and
consequently attains a maximum value of Bob
for the oil formation volume factor.
As the pressure is reduced below Pb,
volume of oil and Bo are decreased as solution gas liberates
When the pressure is reduced to atmospheric pressure
and the temperature to 60°F,
the value of Bo is equal to one.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 7
Bo Correlations
Most of the empirical Bo correlations utilize the
generalized relationship of: Bo = f (Rs, γg, γo, T)
Standing’s correlation
The Vasquez-Beggs correlation
Glaso’s correlation
Marhoun’s correlation
The Petrosky-Farshad correlation
Other correlations
All the correlations could be used for any pressure
equal to or below the bubble-point pressure.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 8
Standing’s Correlation for Bo
Standing (1947) graphical correlation for Bo
the correlating parameters: Rs, γg, γo, and reservoir T
from examining a total of 105 experimental data points
on 22 different California hydrocarbon systems
An average error of 1.2%
Standing (1981) mathematical form of Bo:
T=temperature, °R , γg=specific gravity of solution gas,
γo = specific gravity of the stock-tank oil
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 9
The Vasquez-Beggs Correlation
Vasquez and Beggs (1980) relationship for Bo
as a function of Rs, γo, γg, and T.
based on 6,000 measurements of Bo at various P
an average error of 4.7%
Using the regression analysis technique,
to reproduce the measured data:
R = gas solubility, scf/STB
T = temperature, °R
γgs = gas specific gravity as previous
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 10
Glaso’s Correlation
Glaso (1980) expressions for calculating Bo:
from studying PVT data on 45 oil samples.
The average error of −0.43%
with a standard deviation of 2.18%.
B*ob is a correlating number:
T = temperature, °R
γo = specific gravity of the stock-tank oil
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 11
oil formation volume factor
correlations comparison
Sutton and Farshad (1984) concluded that
Glaso’s correlation offers the best accuracy
when compared with
the Standing and Vasquez-Beggs correlations.
In general,
Glaso’s correlation underpredicts Bo
Standing’s expression tends to overpredict Bo
oil formation volume factors greater than 1.2 bbl/STB
The Vasquez-Beggs correlation typically overpredicts Bo
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 12
Marhoun’s Correlation
Marhoun (1988) correlation for determining Bo
a function of the Rs, stock-tank oil gravity, γg, and T
by use of the nonlinear multiple regression analysis
on 160 experimental data points.
experimental data from 69 Middle Eastern oil reserves.
with the correlating parameter F
a = 0.742390, b = 0.323294, c = −1.202040
T is the system temperature in °R.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 13
The Petrosky-Farshad Correlation
Petrosky and Farshad (1993) expression for Bo
similar to the equation developed by Standing;
however, the equation introduces
three additional fitting parameters
in order to increase the accuracy of the correlation
a nonlinear regression model
to match experimental crude oil
from the Gulf of Mexico hydrocarbon system.
T = temperature, °R, γo = specific gravity of the stock-tank oil
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 14
Bo Calculation from
Material Balance Equation
Following the definition of Bo as expressed
mathematically,
ρo = density of the oil at the specified P and T, lb/ft3. ,
The error in calculating Bo in this method will
depend only
on the accuracy of the input variables (Rs, γg, and γo)
and the method of calculating ρo.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 15
Isothermal Compressibility Coefficient
of Crude Oil
Isothermal compressibility coefficients are required
in solving many reservoir engineering problems,
including transient fluid flow problems,
And also in the determination of
the physical properties of the undersaturated crude oil.
By definition,
the isothermal compressibility of a substance
is defined mathematically by:
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 18
Isothermal Compressibility Coefficient
of the Oil
For a crude oil system,
the isothermal compressibility coefficient
of the oil phase co is defined
for pressures above the bubble-point
by one of the following equivalent expressions:
Co = − (1/V) (∂V/∂p) T
Co = − (1/Bo) (∂Bo/∂p) T
Co = (1/ρo) (∂ρo/∂p) T
At pressures below the bubble-point pressure,
Bg = gas formation volume factor, bbl/scf
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 19
Co Correlations
There are several correlations that are developed
to estimate the oil compressibility at pressures
above the bubble-point pressure, i.e.,
undersaturated crude oil system.
The Vasquez-Beggs correlation
The Petrosky-Farshad correlation
McCain’s correlation
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 20
Co: The Vasquez-Beggs Correlation
Vasquez and Beggs (1980) correlated
the isothermal oil compressibility coefficients
From a total of 4,036 experimental data points
used in a linear regression model,
with Rs, T, °API, γg, and p.
T = temperature, °R
p = pressure above the bubble-point pressure, psia
Rsb = gas solubility at the bubble-point pressure
γgs = corrected gas gravity as previously by:
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 21
Co: The Petrosky-Farshad Correlation
Petrosky and Farshad (1993) proposed a
relationship for determining the oil compressibility
for undersaturated hydrocarbon systems.
The equation has the following form:
T = temperature, °R
Rsb = gas solubility at the bubble-point pressure, scf/STB
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 22
Co: McCain and coauthors (1988)
McCain and coauthors (1988)
Below the bubble-point pressure,
correlated the oil compressibility with pressure ρ, the oil API
gravity, gas solubility at the bubble-point Rsb, and the
temperature T in °R.
co = exp (A)
the correlating parameter A is:
A= −7.633 − 1.497 ln (p) + 1.115 ln(T) + 0.533 ln (API) + 0.184
ln(Rsp)
the accuracy of the correlating parameter can be
substantially improved if the bubble-point pressure is known.
A= −7.573 − 1.45 ln (p) − 0.383 ln (Pb)
+ 1.402 ln (T) + 0.256 ln (API) + 0.449 ln (Rsb)
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 23
Co: Standing’s Analytical solution
Analytically, Standing’s correlations for Rs and Bo can be differentiated
with respect to the pressure p and substituted into Co formula At P< Pb:
 Bo = oil formation volume factor at p, bbl/STB
 Bg = gas formation volume factor at pressure p, bbl/scf,
 p = pressure, psia, T = temperature, °R; Rs = gas solubility at pressure p, scf/STB
 γo = specific gravity of the stock-tank oil, γg = specific gravity of the solution gas
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 24
The PVT consistency
when it is necessary to establish PVT relationships
for the hydrocarbon system
through correlations or by extrapolation,
care should be exercised
to see that the PVT functions are consistent.
This consistency is assured if the increase in oil volume with
increasing pressure is less than the decrease in volume
associated with the gas going into solution.
Since the co must be positive, that leads to the following
consistency criteria:
The PVT consistency errors most frequently occur
at higher pressures where Bg, assumes relatively small values.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 25
Oil Formation Volume Factor for
Undersaturated Oils
With increasing pressures
above the bubble-point pressure,
the oil formation volume factor
decreases due to the compression of the oil.
To account for the effects of oil compression on Bo,
the oil formation volume factor at the bubble-point
is first calculated
by using any of the methods previously described.
The calculated Bo is then adjusted
to account for the effect
if increasing the pressure above
the bubble-point pressure.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 27
Bo Adjustment for
Undersaturated Oils
This adjustment step is accomplished
by using the isothermal compressibility coefficient
The above relationship can be rearranged and integrated
to produce
Evaluating co
at the arithmetic average pressure [pavg=(p1+p2)/2] and
concluding the integration procedure to give:
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 28
Bo for Undersaturated Oils using co
(Vasquez-Beggs and Petrosky-Farshad)
Replacing co with the Vasquez-Beggs,
and integrating the resulting equation:
Replacing co with the Petrosky-Farshad expression
and integrating:
T = temperature, °R, p = pressure, psia
Rsb = gas solubility at the bubble-point pressure
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 29
Crude Oil Density
The crude oil density
is defined as the mass of a unit volume of the crude
at a specified pressure and temperature.
is usually expressed in pounds per cubic foot.
Several empirical correlations for calculating the
density of liquids of unknown compositional analysis
have been proposed.
The correlations employ limited PVT data such as gas gravity,
oil gravity, and gas solubility as correlating parameters to
estimate liquid density at the prevailing reservoir pressure
and temperature.
The Equation may be used to calculate the density of the oil
at pressure below or equal to the bubble-point pressure.
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 31
Calculating the Crude Oil Density
Standing (1981) proposed an empirical correlation
for estimating the Bo as a function of Rs, γo, γg, T.
By coupling the mathematical definition of the oil
formation volume factor with Standing’s
correlation,
the density of a crude oil at a specified pressure and
temperature can be calculated from :
T = system temperature, °R
γo = specific gravity of the stock-tank oil
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 32
Oil density correlations
Density of the oil
at pressures above Pb can be calculated with:
Vasquez-Beggs’ co correlation and the Petrosky-
Farshad co expression can be incorporated
For the Vasquez-Beggs co equation:
For the Petrosky-Farshad co expression:
Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 33
1. Ahmed, T. (2010). Reservoir engineering
handbook (Gulf Professional Publishing).
Chapter 2
1. Crude Oil Properties:
A. Total formation volume factor (Bt)
B. Viscosity (μo)
a. Dead-Oil Viscosity
b. Saturated(bubble-point)-Oil Viscosity
c. Undersaturated-Oil Viscosity
C. Surface Tension (σ)
2. Water Properties
A. Water Formation Volume Factor (Bw)
B. water viscosity (μw)
C. Gas Solubility in Water (Rsw)
D. Water Isothermal Compressibility (Cw)
Q922+rfp+l06 v1

More Related Content

What's hot

Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14AFATous
 
Q922+re2+l09 v1
Q922+re2+l09 v1Q922+re2+l09 v1
Q922+re2+l09 v1AFATous
 
Q922+rfp+l05 v1
Q922+rfp+l05 v1Q922+rfp+l05 v1
Q922+rfp+l05 v1AFATous
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)NghiaHuynh47
 
Productivity index
Productivity indexProductivity index
Productivity indexNabeelshykh
 
Classification of reservoirs
Classification of reservoirsClassification of reservoirs
Classification of reservoirsFertiglobe
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1AFATous
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testingRupam_Sarmah
 
Rock Compressibility
Rock CompressibilityRock Compressibility
Rock CompressibilityM.T.H Group
 
Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1AFATous
 
Q922+re2+l06 v1
Q922+re2+l06 v1Q922+re2+l06 v1
Q922+re2+l06 v1AFATous
 
Q922+rfp+l03 v1
Q922+rfp+l03 v1Q922+rfp+l03 v1
Q922+rfp+l03 v1AFATous
 
Q922+re2+l04 v1
Q922+re2+l04 v1Q922+re2+l04 v1
Q922+re2+l04 v1AFATous
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1AFATous
 
Hydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourHydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourM.T.H Group
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir EngineeringMikeEllingham
 
Ipr skin damage economides
Ipr skin damage economidesIpr skin damage economides
Ipr skin damage economidesjosepazv
 
Reservoir fluid flow types
Reservoir fluid flow typesReservoir fluid flow types
Reservoir fluid flow typesNouh Almandhari
 

What's hot (20)

Q913 re1 w4 lec 14
Q913 re1 w4 lec 14Q913 re1 w4 lec 14
Q913 re1 w4 lec 14
 
Q922+re2+l09 v1
Q922+re2+l09 v1Q922+re2+l09 v1
Q922+re2+l09 v1
 
Q922+rfp+l05 v1
Q922+rfp+l05 v1Q922+rfp+l05 v1
Q922+rfp+l05 v1
 
Reservoir simulation (april 2017)
Reservoir simulation (april 2017)Reservoir simulation (april 2017)
Reservoir simulation (april 2017)
 
Productivity index
Productivity indexProductivity index
Productivity index
 
Classification of reservoirs
Classification of reservoirsClassification of reservoirs
Classification of reservoirs
 
Q921 re1 lec10 v1
Q921 re1 lec10 v1Q921 re1 lec10 v1
Q921 re1 lec10 v1
 
Seminar on water influx and well testing
Seminar on water influx and well testingSeminar on water influx and well testing
Seminar on water influx and well testing
 
Rock Compressibility
Rock CompressibilityRock Compressibility
Rock Compressibility
 
Q922+re2+l03 v1
Q922+re2+l03 v1Q922+re2+l03 v1
Q922+re2+l03 v1
 
Q922+re2+l06 v1
Q922+re2+l06 v1Q922+re2+l06 v1
Q922+re2+l06 v1
 
Decline curve
Decline curveDecline curve
Decline curve
 
Q922+rfp+l03 v1
Q922+rfp+l03 v1Q922+rfp+l03 v1
Q922+rfp+l03 v1
 
Q922+re2+l04 v1
Q922+re2+l04 v1Q922+re2+l04 v1
Q922+re2+l04 v1
 
Q921 re1 lec7 v1
Q921 re1 lec7 v1Q921 re1 lec7 v1
Q921 re1 lec7 v1
 
Hydrocarbon Phase Behaviour
Hydrocarbon Phase BehaviourHydrocarbon Phase Behaviour
Hydrocarbon Phase Behaviour
 
Introduction to Reservoir Engineering
Introduction to Reservoir EngineeringIntroduction to Reservoir Engineering
Introduction to Reservoir Engineering
 
Ipr skin damage economides
Ipr skin damage economidesIpr skin damage economides
Ipr skin damage economides
 
Sp log - Well logging
Sp log - Well loggingSp log - Well logging
Sp log - Well logging
 
Reservoir fluid flow types
Reservoir fluid flow typesReservoir fluid flow types
Reservoir fluid flow types
 

Viewers also liked

Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1AFATous
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1AFATous
 
Q922+rfp+l09 v1
Q922+rfp+l09 v1Q922+rfp+l09 v1
Q922+rfp+l09 v1AFATous
 
Q922+log+l08 v1
Q922+log+l08 v1Q922+log+l08 v1
Q922+log+l08 v1AFATous
 
Q922+rfp+l10 v1
Q922+rfp+l10 v1Q922+rfp+l10 v1
Q922+rfp+l10 v1AFATous
 
Q922+re2+l10 v1
Q922+re2+l10 v1Q922+re2+l10 v1
Q922+re2+l10 v1AFATous
 
Q922+log+l06 v1
Q922+log+l06 v1Q922+log+l06 v1
Q922+log+l06 v1AFATous
 
Q922+de2+l09 v1
Q922+de2+l09 v1Q922+de2+l09 v1
Q922+de2+l09 v1AFATous
 
Q922+de2+l08 v1
Q922+de2+l08 v1Q922+de2+l08 v1
Q922+de2+l08 v1AFATous
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1AFATous
 
Q922+de1+l09 v1
Q922+de1+l09 v1Q922+de1+l09 v1
Q922+de1+l09 v1AFATous
 
Q922+log+l07 v1
Q922+log+l07 v1Q922+log+l07 v1
Q922+log+l07 v1AFATous
 
Q922+rfp+l07 v1
Q922+rfp+l07 v1Q922+rfp+l07 v1
Q922+rfp+l07 v1AFATous
 
Q922+de2+l10 v1
Q922+de2+l10 v1Q922+de2+l10 v1
Q922+de2+l10 v1AFATous
 
Q922+de1+l10 v1
Q922+de1+l10 v1Q922+de1+l10 v1
Q922+de1+l10 v1AFATous
 
Q922+de2+l10 v1
Q922+de2+l10 v1Q922+de2+l10 v1
Q922+de2+l10 v1AFATous
 
Q922+log+l05 v1
Q922+log+l05 v1Q922+log+l05 v1
Q922+log+l05 v1AFATous
 

Viewers also liked (17)

Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1
 
Q922+rfp+l08 v1
Q922+rfp+l08 v1Q922+rfp+l08 v1
Q922+rfp+l08 v1
 
Q922+rfp+l09 v1
Q922+rfp+l09 v1Q922+rfp+l09 v1
Q922+rfp+l09 v1
 
Q922+log+l08 v1
Q922+log+l08 v1Q922+log+l08 v1
Q922+log+l08 v1
 
Q922+rfp+l10 v1
Q922+rfp+l10 v1Q922+rfp+l10 v1
Q922+rfp+l10 v1
 
Q922+re2+l10 v1
Q922+re2+l10 v1Q922+re2+l10 v1
Q922+re2+l10 v1
 
Q922+log+l06 v1
Q922+log+l06 v1Q922+log+l06 v1
Q922+log+l06 v1
 
Q922+de2+l09 v1
Q922+de2+l09 v1Q922+de2+l09 v1
Q922+de2+l09 v1
 
Q922+de2+l08 v1
Q922+de2+l08 v1Q922+de2+l08 v1
Q922+de2+l08 v1
 
Q922+rfp+l04 v1
Q922+rfp+l04 v1Q922+rfp+l04 v1
Q922+rfp+l04 v1
 
Q922+de1+l09 v1
Q922+de1+l09 v1Q922+de1+l09 v1
Q922+de1+l09 v1
 
Q922+log+l07 v1
Q922+log+l07 v1Q922+log+l07 v1
Q922+log+l07 v1
 
Q922+rfp+l07 v1
Q922+rfp+l07 v1Q922+rfp+l07 v1
Q922+rfp+l07 v1
 
Q922+de2+l10 v1
Q922+de2+l10 v1Q922+de2+l10 v1
Q922+de2+l10 v1
 
Q922+de1+l10 v1
Q922+de1+l10 v1Q922+de1+l10 v1
Q922+de1+l10 v1
 
Q922+de2+l10 v1
Q922+de2+l10 v1Q922+de2+l10 v1
Q922+de2+l10 v1
 
Q922+log+l05 v1
Q922+log+l05 v1Q922+log+l05 v1
Q922+log+l05 v1
 

Similar to Q922+rfp+l06 v1

Q921 rfp lec7 v1
Q921 rfp lec7 v1Q921 rfp lec7 v1
Q921 rfp lec7 v1AFATous
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1AFATous
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1AFATous
 
Q913 rfp w2 lec 5
Q913 rfp w2 lec 5Q913 rfp w2 lec 5
Q913 rfp w2 lec 5AFATous
 
RE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfRE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfJaisonRoy3
 
Q921 rfp lec9 v1
Q921 rfp lec9 v1Q921 rfp lec9 v1
Q921 rfp lec9 v1AFATous
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7AFATous
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1AFATous
 
Q913 rfp w1 lec 4
Q913 rfp w1 lec 4Q913 rfp w1 lec 4
Q913 rfp w1 lec 4AFATous
 
Q921 rfp lec10 v1
Q921 rfp lec10 v1Q921 rfp lec10 v1
Q921 rfp lec10 v1AFATous
 
Equations for Black Oil Properties from Flash, Differential an.docx
Equations for Black Oil Properties from Flash, Differential an.docxEquations for Black Oil Properties from Flash, Differential an.docx
Equations for Black Oil Properties from Flash, Differential an.docxYASHU40
 
Q913 re1 w1 lec 4
Q913 re1 w1 lec 4Q913 re1 w1 lec 4
Q913 re1 w1 lec 4AFATous
 
Q913 rfp w3 lec 11
Q913 rfp w3 lec 11Q913 rfp w3 lec 11
Q913 rfp w3 lec 11AFATous
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6AFATous
 
Q921 rfp lec4
Q921 rfp lec4Q921 rfp lec4
Q921 rfp lec4AFATous
 
A density correction for the peng robinson equation
A density correction for the peng robinson equationA density correction for the peng robinson equation
A density correction for the peng robinson equationLuis Follegatti
 
Q921 rfp lec5
Q921 rfp lec5Q921 rfp lec5
Q921 rfp lec5AFATous
 

Similar to Q922+rfp+l06 v1 (20)

Q921 rfp lec7 v1
Q921 rfp lec7 v1Q921 rfp lec7 v1
Q921 rfp lec7 v1
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1
 
Q921 rfp lec8 v1
Q921 rfp lec8 v1Q921 rfp lec8 v1
Q921 rfp lec8 v1
 
Q913 rfp w2 lec 5
Q913 rfp w2 lec 5Q913 rfp w2 lec 5
Q913 rfp w2 lec 5
 
RE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdfRE Chap6-LiquidsOV2.pdf
RE Chap6-LiquidsOV2.pdf
 
Q921 rfp lec9 v1
Q921 rfp lec9 v1Q921 rfp lec9 v1
Q921 rfp lec9 v1
 
Q913 rfp w2 lec 7
Q913 rfp w2 lec 7Q913 rfp w2 lec 7
Q913 rfp w2 lec 7
 
Q922+rfp+l02 v1
Q922+rfp+l02 v1Q922+rfp+l02 v1
Q922+rfp+l02 v1
 
Q913 rfp w1 lec 4
Q913 rfp w1 lec 4Q913 rfp w1 lec 4
Q913 rfp w1 lec 4
 
Q921 rfp lec10 v1
Q921 rfp lec10 v1Q921 rfp lec10 v1
Q921 rfp lec10 v1
 
Equations for Black Oil Properties from Flash, Differential an.docx
Equations for Black Oil Properties from Flash, Differential an.docxEquations for Black Oil Properties from Flash, Differential an.docx
Equations for Black Oil Properties from Flash, Differential an.docx
 
Q913 re1 w1 lec 4
Q913 re1 w1 lec 4Q913 re1 w1 lec 4
Q913 re1 w1 lec 4
 
Q913 rfp w3 lec 11
Q913 rfp w3 lec 11Q913 rfp w3 lec 11
Q913 rfp w3 lec 11
 
Oil Properties
Oil PropertiesOil Properties
Oil Properties
 
Q913 rfp w2 lec 6
Q913 rfp w2 lec 6Q913 rfp w2 lec 6
Q913 rfp w2 lec 6
 
Q921 rfp lec4
Q921 rfp lec4Q921 rfp lec4
Q921 rfp lec4
 
RESERVOIR-FLUID Lucture 2.ppt
RESERVOIR-FLUID Lucture 2.pptRESERVOIR-FLUID Lucture 2.ppt
RESERVOIR-FLUID Lucture 2.ppt
 
mezcla de gases
mezcla de gases mezcla de gases
mezcla de gases
 
A density correction for the peng robinson equation
A density correction for the peng robinson equationA density correction for the peng robinson equation
A density correction for the peng robinson equation
 
Q921 rfp lec5
Q921 rfp lec5Q921 rfp lec5
Q921 rfp lec5
 

More from AFATous

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم AFATous
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم AFATous
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومAFATous
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمAFATous
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومAFATous
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lecAFATous
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1AFATous
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lecAFATous
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1AFATous
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lecAFATous
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1AFATous
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lecAFATous
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1AFATous
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1AFATous
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lecAFATous
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lecAFATous
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1AFATous
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lecAFATous
 

More from AFATous (20)

جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم جزوه درس نمودارگیری از چاه، ویرایش ششم
جزوه درس نمودارگیری از چاه، ویرایش ششم
 
جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم جزوه درس مهندسی حفاری دو، ویرایش ششم
جزوه درس مهندسی حفاری دو، ویرایش ششم
 
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دومجزوه درس مهندسی بهره برداری دو، ویرایش دوم
جزوه درس مهندسی بهره برداری دو، ویرایش دوم
 
جزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششمجزوه درس مهندسی حفاری یک،ویرایش ششم
جزوه درس مهندسی حفاری یک،ویرایش ششم
 
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دومجزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
جزوه درس انگیزش چاه (اسیدکاری)، ویرایش دوم
 
Q933+log reference fa lec
Q933+log reference fa lecQ933+log reference fa lec
Q933+log reference fa lec
 
Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1Q933+log reference fa lec 4x1
Q933+log reference fa lec 4x1
 
Q933+po2 reference fa lec
Q933+po2 reference fa lecQ933+po2 reference fa lec
Q933+po2 reference fa lec
 
Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1Q933+po2 reference fa lec 4x1
Q933+po2 reference fa lec 4x1
 
Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1Q933+de2 reference fa lec 4x1
Q933+de2 reference fa lec 4x1
 
Q933+de2 reference fa lec
Q933+de2 reference fa lecQ933+de2 reference fa lec
Q933+de2 reference fa lec
 
Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1Q933+de1 reference fa lec 4x1
Q933+de1 reference fa lec 4x1
 
Q933+de1 reference fa lec
Q933+de1 reference fa lecQ933+de1 reference fa lec
Q933+de1 reference fa lec
 
Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1Q932+log reference fa lec 4 x1
Q932+log reference fa lec 4 x1
 
Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1Q932+stm reference fa lec 4x1
Q932+stm reference fa lec 4x1
 
Q932+rrl reference fa lec
Q932+rrl reference fa lecQ932+rrl reference fa lec
Q932+rrl reference fa lec
 
Q932+stm reference fa lec
Q932+stm reference fa lecQ932+stm reference fa lec
Q932+stm reference fa lec
 
Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1Q932+rrl reference fa lec 4x1
Q932+rrl reference fa lec 4x1
 
Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1Q932+sgo reference fa lec 4x1
Q932+sgo reference fa lec 4x1
 
Q932+sgo reference fa lec
Q932+sgo reference fa lecQ932+sgo reference fa lec
Q932+sgo reference fa lec
 

Recently uploaded

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,Virag Sontakke
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 

Recently uploaded (20)

Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,भारत-रोम व्यापार.pptx, Indo-Roman Trade,
भारत-रोम व्यापार.pptx, Indo-Roman Trade,
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 

Q922+rfp+l06 v1

  • 1. Reservoir Fluid Properties Course (3rd Ed.)
  • 2. 1. Crude Oil Properties: A. Density (ρo), Gravity (γo, API) B. Gas Solubility (Solution gas) (Rs) C. Bubble-point pressure (Pb)
  • 3. 1. Crude Oil Properties: A. Formation volume factor for P=<Pb (Bo) B. Isothermal compressibility coefficient (Co) C. Formation volume factor for P>Pb (Bo) D. Density
  • 4.
  • 5. The oil formation volume factor, Bo Bo, is defined as the ratio of the volume of oil (plus the gas in solution) at the prevailing reservoir temperature and pressure to the volume of oil at standard conditions. Bo is always greater than or equal to unity. Bo = oil formation volume factor, bbl/STB (Vo)p,T = volume of oil under reservoir p and T, bbl (Vo)sc = volume of oil is measured under standard conditions, STB Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 5
  • 6. Oil Formation Volume Factor vs. Pressure A typical oil formation factor curve, as a function of pressure for an undersaturated crude oil (pi > Pb) Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 6
  • 7. Bo Behavior with pressure As the pressure is reduced below the initial reservoir pressure pi, the oil volume increases due to the oil expansion and results in an increase in the oil formation volume factor and will continue until the bubble-point pressure is reached. At Pb, the oil reaches its maximum expansion and consequently attains a maximum value of Bob for the oil formation volume factor. As the pressure is reduced below Pb, volume of oil and Bo are decreased as solution gas liberates When the pressure is reduced to atmospheric pressure and the temperature to 60°F, the value of Bo is equal to one. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 7
  • 8. Bo Correlations Most of the empirical Bo correlations utilize the generalized relationship of: Bo = f (Rs, γg, γo, T) Standing’s correlation The Vasquez-Beggs correlation Glaso’s correlation Marhoun’s correlation The Petrosky-Farshad correlation Other correlations All the correlations could be used for any pressure equal to or below the bubble-point pressure. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 8
  • 9. Standing’s Correlation for Bo Standing (1947) graphical correlation for Bo the correlating parameters: Rs, γg, γo, and reservoir T from examining a total of 105 experimental data points on 22 different California hydrocarbon systems An average error of 1.2% Standing (1981) mathematical form of Bo: T=temperature, °R , γg=specific gravity of solution gas, γo = specific gravity of the stock-tank oil Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 9
  • 10. The Vasquez-Beggs Correlation Vasquez and Beggs (1980) relationship for Bo as a function of Rs, γo, γg, and T. based on 6,000 measurements of Bo at various P an average error of 4.7% Using the regression analysis technique, to reproduce the measured data: R = gas solubility, scf/STB T = temperature, °R γgs = gas specific gravity as previous Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 10
  • 11. Glaso’s Correlation Glaso (1980) expressions for calculating Bo: from studying PVT data on 45 oil samples. The average error of −0.43% with a standard deviation of 2.18%. B*ob is a correlating number: T = temperature, °R γo = specific gravity of the stock-tank oil Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 11
  • 12. oil formation volume factor correlations comparison Sutton and Farshad (1984) concluded that Glaso’s correlation offers the best accuracy when compared with the Standing and Vasquez-Beggs correlations. In general, Glaso’s correlation underpredicts Bo Standing’s expression tends to overpredict Bo oil formation volume factors greater than 1.2 bbl/STB The Vasquez-Beggs correlation typically overpredicts Bo Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 12
  • 13. Marhoun’s Correlation Marhoun (1988) correlation for determining Bo a function of the Rs, stock-tank oil gravity, γg, and T by use of the nonlinear multiple regression analysis on 160 experimental data points. experimental data from 69 Middle Eastern oil reserves. with the correlating parameter F a = 0.742390, b = 0.323294, c = −1.202040 T is the system temperature in °R. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 13
  • 14. The Petrosky-Farshad Correlation Petrosky and Farshad (1993) expression for Bo similar to the equation developed by Standing; however, the equation introduces three additional fitting parameters in order to increase the accuracy of the correlation a nonlinear regression model to match experimental crude oil from the Gulf of Mexico hydrocarbon system. T = temperature, °R, γo = specific gravity of the stock-tank oil Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 14
  • 15. Bo Calculation from Material Balance Equation Following the definition of Bo as expressed mathematically, ρo = density of the oil at the specified P and T, lb/ft3. , The error in calculating Bo in this method will depend only on the accuracy of the input variables (Rs, γg, and γo) and the method of calculating ρo. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 15
  • 16.
  • 17.
  • 18. Isothermal Compressibility Coefficient of Crude Oil Isothermal compressibility coefficients are required in solving many reservoir engineering problems, including transient fluid flow problems, And also in the determination of the physical properties of the undersaturated crude oil. By definition, the isothermal compressibility of a substance is defined mathematically by: Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 18
  • 19. Isothermal Compressibility Coefficient of the Oil For a crude oil system, the isothermal compressibility coefficient of the oil phase co is defined for pressures above the bubble-point by one of the following equivalent expressions: Co = − (1/V) (∂V/∂p) T Co = − (1/Bo) (∂Bo/∂p) T Co = (1/ρo) (∂ρo/∂p) T At pressures below the bubble-point pressure, Bg = gas formation volume factor, bbl/scf Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 19
  • 20. Co Correlations There are several correlations that are developed to estimate the oil compressibility at pressures above the bubble-point pressure, i.e., undersaturated crude oil system. The Vasquez-Beggs correlation The Petrosky-Farshad correlation McCain’s correlation Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 20
  • 21. Co: The Vasquez-Beggs Correlation Vasquez and Beggs (1980) correlated the isothermal oil compressibility coefficients From a total of 4,036 experimental data points used in a linear regression model, with Rs, T, °API, γg, and p. T = temperature, °R p = pressure above the bubble-point pressure, psia Rsb = gas solubility at the bubble-point pressure γgs = corrected gas gravity as previously by: Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 21
  • 22. Co: The Petrosky-Farshad Correlation Petrosky and Farshad (1993) proposed a relationship for determining the oil compressibility for undersaturated hydrocarbon systems. The equation has the following form: T = temperature, °R Rsb = gas solubility at the bubble-point pressure, scf/STB Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 22
  • 23. Co: McCain and coauthors (1988) McCain and coauthors (1988) Below the bubble-point pressure, correlated the oil compressibility with pressure ρ, the oil API gravity, gas solubility at the bubble-point Rsb, and the temperature T in °R. co = exp (A) the correlating parameter A is: A= −7.633 − 1.497 ln (p) + 1.115 ln(T) + 0.533 ln (API) + 0.184 ln(Rsp) the accuracy of the correlating parameter can be substantially improved if the bubble-point pressure is known. A= −7.573 − 1.45 ln (p) − 0.383 ln (Pb) + 1.402 ln (T) + 0.256 ln (API) + 0.449 ln (Rsb) Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 23
  • 24. Co: Standing’s Analytical solution Analytically, Standing’s correlations for Rs and Bo can be differentiated with respect to the pressure p and substituted into Co formula At P< Pb:  Bo = oil formation volume factor at p, bbl/STB  Bg = gas formation volume factor at pressure p, bbl/scf,  p = pressure, psia, T = temperature, °R; Rs = gas solubility at pressure p, scf/STB  γo = specific gravity of the stock-tank oil, γg = specific gravity of the solution gas Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 24
  • 25. The PVT consistency when it is necessary to establish PVT relationships for the hydrocarbon system through correlations or by extrapolation, care should be exercised to see that the PVT functions are consistent. This consistency is assured if the increase in oil volume with increasing pressure is less than the decrease in volume associated with the gas going into solution. Since the co must be positive, that leads to the following consistency criteria: The PVT consistency errors most frequently occur at higher pressures where Bg, assumes relatively small values. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 25
  • 26.
  • 27. Oil Formation Volume Factor for Undersaturated Oils With increasing pressures above the bubble-point pressure, the oil formation volume factor decreases due to the compression of the oil. To account for the effects of oil compression on Bo, the oil formation volume factor at the bubble-point is first calculated by using any of the methods previously described. The calculated Bo is then adjusted to account for the effect if increasing the pressure above the bubble-point pressure. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 27
  • 28. Bo Adjustment for Undersaturated Oils This adjustment step is accomplished by using the isothermal compressibility coefficient The above relationship can be rearranged and integrated to produce Evaluating co at the arithmetic average pressure [pavg=(p1+p2)/2] and concluding the integration procedure to give: Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 28
  • 29. Bo for Undersaturated Oils using co (Vasquez-Beggs and Petrosky-Farshad) Replacing co with the Vasquez-Beggs, and integrating the resulting equation: Replacing co with the Petrosky-Farshad expression and integrating: T = temperature, °R, p = pressure, psia Rsb = gas solubility at the bubble-point pressure Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 29
  • 30.
  • 31. Crude Oil Density The crude oil density is defined as the mass of a unit volume of the crude at a specified pressure and temperature. is usually expressed in pounds per cubic foot. Several empirical correlations for calculating the density of liquids of unknown compositional analysis have been proposed. The correlations employ limited PVT data such as gas gravity, oil gravity, and gas solubility as correlating parameters to estimate liquid density at the prevailing reservoir pressure and temperature. The Equation may be used to calculate the density of the oil at pressure below or equal to the bubble-point pressure. Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 31
  • 32. Calculating the Crude Oil Density Standing (1981) proposed an empirical correlation for estimating the Bo as a function of Rs, γo, γg, T. By coupling the mathematical definition of the oil formation volume factor with Standing’s correlation, the density of a crude oil at a specified pressure and temperature can be calculated from : T = system temperature, °R γo = specific gravity of the stock-tank oil Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 32
  • 33. Oil density correlations Density of the oil at pressures above Pb can be calculated with: Vasquez-Beggs’ co correlation and the Petrosky- Farshad co expression can be incorporated For the Vasquez-Beggs co equation: For the Petrosky-Farshad co expression: Spring14 H. AlamiNia Reservoir Fluid Properties Course (3rd Ed.) 33
  • 34. 1. Ahmed, T. (2010). Reservoir engineering handbook (Gulf Professional Publishing). Chapter 2
  • 35. 1. Crude Oil Properties: A. Total formation volume factor (Bt) B. Viscosity (μo) a. Dead-Oil Viscosity b. Saturated(bubble-point)-Oil Viscosity c. Undersaturated-Oil Viscosity C. Surface Tension (σ) 2. Water Properties A. Water Formation Volume Factor (Bw) B. water viscosity (μw) C. Gas Solubility in Water (Rsw) D. Water Isothermal Compressibility (Cw)